Biophysics I (BPHS 3090)

Instructors: Prof. Christopher Bergevin (cberge@yorku.ca)

Website: http://www.yorku.ca/cberge/3090W2015.html
“A few years ago, Graham published an extensive investigation on the diffusion of salts in water, in which he more especially compared the diffusibility of different salts. It appears to me a matter of regret, however, that in such an exceedingly valuable and extensive investigation, the development of a fundamental law, for the operation of diffusion in a single element of space, was neglected, and I have therefore endeavoured to supply this omission.”

- A. Fick (1855)
Diffusion (1-D)

From Graham’s observations (~1830):

\[c(x, t) \]

Concentration - of solute in solution \([mol/m^3]\)

\[\phi(x, t) \]

Flux - net # of moles crossing per unit time \(t\) through a unit area perpendicular to the \(x\)-axis \([mol/m^2 \cdot s]\)

\(x, t\)

Position \([m]\), **Time** \([s]\)

Note: flux is a vector!
Short Excursion: Microscopic Basis for Diffusion

Brownian motion ⇒ ‘Random Walker’ (1-D)

Ensemble of Random Walkers
Fick’s First Law (1-D)

\[\phi(x, t) \propto -\frac{\partial c(x, t)}{\partial x} \]
Diffusion Constant D

$$\phi(x, t) \propto -\frac{\partial c(x, t)}{\partial x}$$

constant of proportionality?

$$\phi(x, t) = -D \frac{\partial c(x, t)}{\partial x}$$

- diffusion constant is always positive (i.e., $D > 0$)
- determines time it takes solute to diffuse a given distance in a medium
- depends upon both solute and medium (solution)
- *Stokes-Einstein relation* predicts that D is inversely proportional to solute molecular radius
Diffusion Constant D

$t = 1$

smaller D

larger D

$t = 50$
Generalizations

Higher Dimensions:

\[\phi(x, t) = -D \frac{\partial c(x, t)}{\partial x} \quad \leftrightarrow \quad \vec{\phi} = -D \nabla c \]

where \(\nabla c = \hat{x} \frac{\partial c}{\partial x} + \hat{y} \frac{\partial c}{\partial y} + \hat{z} \frac{\partial c}{\partial z} = \text{grad}(c) \)

Analogous Flux Laws:

Heat Flow (Fourier):

\[\phi_h = -\sigma_h \frac{\partial T}{\partial x} \]

heat flow, thermal conductivity, and temperature

Electric Conduction (Ohm):

\[J = -\sigma_e \frac{\partial \psi}{\partial x} \]

current density, electrical conductivity, and electric potential

Convection (Darcy):

\[\Phi_v = -\kappa \frac{\partial p}{\partial x} \]

fluid flow, hydraulic permeability, and pressure

Diffusion (Fick):

\[\phi = -D \frac{\partial c}{\partial x} \]
Continuity Equation

⇒ imagine a cube (with face area A and length Δx) and a time interval Δt

solute entering from *left* - solute exiting from *right*
(during time interval $[t, t + \Delta t]$)

=
change in amount of solute *inside* cube
(during time interval $[t, t + \Delta t]$)

\[
A \Delta t \phi(x, t) = A \Delta x c(x, t)
\]
solute entering from left - solute exiting from right
(during time interval \([t, t+\Delta t]\)) = change in amount of solute inside cube
(during time interval \([t, t+\Delta t]\))

\[
A \Delta t \phi(x, t + \Delta t/2) - A \Delta t \phi(x + \Delta x, t + \Delta t/2) = A \Delta x c(x + \Delta x/2, t + \Delta t) - A \Delta x c(x + \Delta x/2, t)
\]

\[
\frac{\phi(x + \Delta x, t + \Delta t/2) - \phi(x, t + \Delta t/2)}{\Delta x} = \frac{c(x + \Delta x/2, t + \Delta t) - c(x + \Delta x/2, t)}{\Delta t}
\]
\[
- \frac{\phi(x + \Delta x, t + \Delta t/2) - \phi(x, t + \Delta t/2)}{\Delta x} = \frac{c(x + \Delta x/2, t + \Delta t) - c(x + \Delta x/2, t)}{\Delta t}
\]

\[
\lim_{\Delta t, \Delta x \to 0} \quad \implies \quad \frac{\partial \phi}{\partial x} = -\frac{\partial c}{\partial t}
\]

⇒ conservation of mass within the context of our imaginary cube yielded the continuity equation.
Diffusion Equation

1. Fick’s First Law: \[\phi = -D \frac{\partial c}{\partial x} \]

2. Continuity Equation: \[\frac{\partial \phi}{\partial x} = -\frac{\partial c}{\partial t} \]

\[\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} \] (Fick’s Second Law)
Diffusion Processes

1. **Equilibrium**: Zero flux and concentration is independent of time

\[D \neq 0 \Rightarrow \text{concentration is independent of space and time} \]

\[D = 0 \Rightarrow \text{non-diffusible solute is automatically at equilibrium} \]

2. **Steady-state**: Flux can be non-zero, but flux and concentration are independent of time

\[
\frac{\partial \phi}{\partial x} = 0 \quad \Rightarrow \quad \int \phi_o \, dx = \int -D \, dc \quad \Rightarrow \quad c(x) = c(x_o) - \frac{\phi_o}{D} (x - x_o)
\]

\[\text{[integrate Fick's 1st Law]} \]

\[\text{[}x_o\text{ is a reference location where the concentration is known]} \]
3. Impulse Response: Point-source of particles \((n_o \text{ mol/cm}^2)\) at \(t = 0\) and \(x = 0\)

[Dirac delta function \(\delta(x)\)]

Given the initial/boundary conditions:

\[c(x, t) = n_o \delta(x) \quad \text{at} \quad t = 0 \quad \text{where} \quad \int_{-\infty}^{\infty} \delta(x) \, dx = 1 \]

Need to solve:

\[\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} \]

[Aside: solution can be found by a # of different methods, one being by separation of variables and using a Fourier transform]

Solution

(for \(t > 0\))

\[c(x, t) = \frac{n_o}{\sqrt{4\pi Dt}} e^{-x^2/4Dt} \]
solution to diffusion equation!

\[f(x, y) = \frac{1}{\sqrt{y}} e^{-x^2 / y} \]