Biophysics I (BPHS 3090)

Instructors: Prof. Christopher Bergevin (cberge@yorku.ca)

Website: http://www.yorku.ca/cberge/3090W2015.html
Dissolution and diffusion through lipid bilayer
Transport through water channels
Transport through gated ion channels
Carrier-mediated transport
Pumps

Figure 2.19

Intracellular
Membrane
Extracellular
What (biophysically) distinguishes between these two?
Variable Na+ and K+ conductances
Looking Ahead....

\[J_m = C_m \frac{\partial V_m}{\partial t} + G_K(V_m, t) (V_m - V_K) + G_{Na}(V_m, t) (V_m - V_{Na}) + G_L(V_m - V_L) \]

V_{Na} = \frac{RT}{F} \log \frac{c_{Na}^0}{c_{Na}^i} \quad V_K = \frac{RT}{F} \log \frac{c_K^0}{c_K^i}

\[
\frac{1}{2\pi a(r_o + r_i)} \frac{\partial^2 V_m}{\partial z^2} = C_m \frac{\partial V_m}{\partial t} + G_K(V_m, t) (V_m - V_K) + G_{Na}(V_m, t) (V_m - V_{Na}) + G_L(V_m - V_L)
\]
What are $G_K(V_m, t)$ and $G_{Na}(V_m, t)$?

Looking Ahead....

$$
\frac{1}{2\pi a(r_0 + r_i)} \frac{\partial^2 V_m}{\partial z^2} = C_m \frac{\partial V_m}{\partial t} + G_K(V_m, t) (V_m - V_K) + G_{Na}(V_m, t) (V_m - V_{Na}) + G_L(V_m - V_L)
$$

→ What are $G_K(V_m, t)$ and $G_{Na}(V_m, t)$?

This gets to the heart of the Hodgkin-Huxley model as we’ll see.....
Finally there was the difficulty of computing the action potentials from the equations which we had developed. We had settled all the equations and constants by March 1951 and hoped to get these solved on the Cambridge University computer. However, before anything could be done we learnt that the computer would be off the air for 6 months or so while it underwent a major modification. Andrew Huxley got us out of that difficulty by solving the differential equations numerically using a hand-operated Brunsviga. The propagated action potential took about three weeks to complete and must have been an enormous labour for Andrew. But it was exciting to see it come out with the right shape and velocity and we began to feel that we had not wasted the many months that we had spent in analysing records.

—Hodgkin, 1977
DNP reduces ATP production

Some key observations...

Interrelationships between:
Na$^+$ flux, ‘active’ transport, & action potentials

\rightarrow Active transport not a priori required for AP generation
Some key observations...

- Na$^+$ flux affects APs (early on)
- K$^+$ flux affects APs (later on)

Figure 4.2

Figure 4.5

K^+_o (mmol/L)

→ K$^+$ flux affects APs (later on)

→ Na$^+$ flux affects APs (early on)
Idea 1 – Multiple permeant ions with different conductance (e.g., $G_k \gg G_{Na}$)

Idea 2 – K+ and Na+ conductances can vary with time
What are $G_K(V_m, t)$ and $G_{Na}(V_m, t)$?

\rightarrow Not easy to empirically distinguish, so new electrophysiological techniques were required
Space-Clamp

→ Eliminates spatial dependence (i.e., make an electrically large cell a small one)

Conduction velocity (Core-Conductor model)

\[r_i = \frac{\rho_i}{\pi a^2} \quad \nu = \sqrt{\frac{\kappa_m a}{2 \rho_i}} \]

Figure 4.10

Kenneth Cole & George Marmont (1940s)

Figure 2.15
Figure 1.32

Electrically ‘small’ cell can still fire action potentials
Voltage-Clamp

Space clamp
\[\frac{\partial V_m}{\partial z} = 0 \]

Step voltage clamp
\[\frac{\partial V_m}{\partial z} = \frac{\partial V_m}{\partial t} = 0 \]

Separation of ionic currents

\[J_C, J_{ion}, J_K, J_{Na}, J_L \]
Separating Ionic Currents

Figure 4.12