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Model of Steady-State Electrodiffusion through Membranes
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- Now we will consider the effect of solutes having charge



Equations of Electrodiffusion

Nernst-Plank Equation

dcp(x,t) oY(x,t)
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Continuity

OJn(x,t) dep (x, 1)
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Poisson’ s Equation
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Some new variables

charge # (or “valence charge”)

(e.g., +1,-1,+2,0,etc...)[re 1 e=1.602 x 10-1° C]

- Faraday’ s constant [9.65 x 104 C/mol]

current density [A/cm?]

electrical potential [V]

permittivity [F/m]

mechanical mobility [s/kg]

Unpolarized
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Polarized by an applied electric field.
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http://en.wikipedia.org/wiki/Permittivity
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Mobility & Stokes-Einstein Relation

. N from Einstein
U, - mechanical mobility [s/kg] relation

> Force (f,) required to move a sphere of radius a through a fp — Gnany
viscous medium of viscosity n with a velocity of v is

1

> Particle mobility, v, , is defined as the ratio of the particle u

%
velocity to the force on the particle BT fp £ brran

> Relating to the diffusion constant (Annus Mirabilis):

Dn = unRT

Stoke’ s Law
(egn.3.22)

Similar to
(reciprocal of)
impedance

D = uykT = uUNAKkT = URT

1. u, is the molar mechanical mobility of ion n. In some fields (e.g., solid-state physics),
it is customary to use the molar electrical mobility, ii,, where i, = |z,|Fuy. ii, has units
of (cm/s)/(V/cm). In terms of the molar electrical mobility, the Einstein relation is D, =

(RT1n)/(12nlF).



Nernst-Plank Equation = Electrodiffusion

current
density

dcy(x,t) oY (x,t)

Jo(x,t) = —2,FD, — upz2F?c,(2,1)

ox ox

diffusion electric
drift

- Essentially a charged version of Fick’ s first law, but now with
an additional term due to electric forces (the drift term on the right)



Electric Drift

—> Consider a charge ¢ placed between

- 1: two uniformly/oppositely charged plates
-+ ™ SR T
: I i - uniform E field between
Hop— > )= - force exerted on charge (Coulomb’s law)

q>0
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- E depends upon spatial gradient of the
potential
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Think in terms of energy (e.g., where does it com from? conserved?)

dcy(x,t)
Ox

0Y(x, 1)

Jo(x,t) = —2,FD,
(,1) = —2 .

— Up 22 F2e, (2, 1)



Continuity Equation

0J,(z,t) dcp(x, 1)
ox ot

spatial change in temporal change in
current density charge density

= —2, I

—> Just like our derivation for diffusion, this essentially tells us
about the conservation of charge



Review: Continuity Equation (re diffusion)

= imagine a cube (with face area 4 and length Ax) and a time interval Az

volume AAx
area A
O(x,1) 4= | —— O(x+Ax,1) o x;%x—’,)
X  x+Ax X X+ Ax
solute entering from left - solute exiting from right = change in amount of solute inside cube
(during time interval [z, t +Af] ) (during time interval [z, t +Af] )

ANt ¢(x,t) AAzxc(x,t)

Weiss



Review: Continuity Equation (re diffusion)

volume AAx
area A
O(x,1) 4= | —— O(x+Ax,t) . x;%r, ‘)
X x+Ax X x+Ax
solute entering from left - solute exiting from right = change in amount of solute inside cube
(during time interval [z, t +Af] ) (during time interval [z, ¢t +Af] )

ANt ¢zt + AL/2) — AAL d(z + Az, t + At/2)

AAz c(x + Ax/2,t + At) — AAx c(z + Ax/2,t)

9w+ Az, i+ At)2) — p(z,t + At/2)  c(z+ Azx/2, 1+ Al) — c(z + Az/2,1)

Az At
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— or Ot



Review: Continuity Equation

volume AAx
area A
O(x,1) 4= | s O(x+Ax,1) e M;%r, ‘)
X x+Ax % xX+Ax
90 Oc
— _— = —
ox ot
Relationship between current density and flux:
0J,(x,1) dey (x4 t)

ar —a ot Jn(:c,t) = Zanbn(fEat)



Poisson’ s Equation

0*(x,t) 1
92— o zn:ancn(x,t)

- Stemming from Gauss’ Law, relates the

charge density and electric potential
charge density [C/m3]

p =Y zFey(a,t)
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Electrostatics (edit

Main article: Electrostatics

One of the cornerstones of electrostatics is setting up and solving problems described by the Poisson equation. Solving the Poisson equation amounts to
finding the electric potential ¢ for a given charge distribution 2.

The mathematical details behind Poisson's equation in electrostatics are as follows (SI units are used rather than Gaussian units, which are also
frequently used in electromagnetism).

Starting with Gauss's law for electricity (also one of Maxwell's equations) in differential form, we have:
V-D=py

where /. is the divergence operator, D = electric displacement field, and ps= free charge density (describing charges brought from outside). Assuming
the medium is linear, isotropic, and homogeneous (see polarization density), we have the constitutive equation:

D=cE
where € = permittivity of the medium and E = electric field. Substituting this into Gauss's law and assuming ¢ is spatially constant in the region of interest
obtains:
p
V-E=X

<

In the absence of a changing magnetic field, B, Faraday's law of induction gives:

VxE:—%:O

where Y/ x is the curl operator and tis time. Since the curl of the electric field is zero, it is defined by a scalar electric potential field, ¥ (see Helmholtz
decomposition).

E=-Vyp
The derivation of Poisson's equation under these circumstances is straightforward. Substituting the potential gradient for the electric field
P
V-E=V.(-Vy)=-Vip="L,
directly obtains Poisson's equation for electrostatics, which is:

Vip = —%f.

Solving Poisson's equation for the potential requires knowing the charge density distribution. If the charge density is zero, then Laplace's equation
results. If the charge density follows a Boltzmann distribution, then the Poisson-Boltzmann equation results. The Poisson-Boltzmann equation plays a
role in the development of the Debye—Hiickel theory of dilute electrolyte solutions.

The above discussion assumes that the magnetic field is not varying in time. The same Poisson equation arises even if it does vary in time, as long as
the Coulomb gauge is used. In this more general context, computing ¢ is no longer sufficient to calculate E, since E also depends on the magnetic vector
potential A, which must be independently computed. See Maxwell's equation in potential formulation for more on ¢ and A in Maxwell's equations and
how Poisson's equation is obtained in this case.



Steady-State Electrodiffusion through Membranes
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Electrolyte solutions — Electroneutrality

if t>>7, and z >> Ap then > zpFen(z,t) =0

0y (w,t) _ 1 S 2w Fen(, 1) - Simplifies Poisson’ s equation such that
Ox? e v is a linear function across the membrane



Electrolyte solutions — Electroneutrality

if t>>7 and z >> Ap then Zancn(x,t) =0

= Charge Relaxation Time Ty

Measures temporal change in charge density
(i.e., relaxation time of charge distribution)

z/Ap

Figure 7.7 The spatial distribution of
charge near a plate containing positive
fixed charges. The counterions are
x/Ap  anions and are in higher concentration
near the plate than far from the platg.
Measures spatial extent of electric potential The cations are at a lower concentration
(i.e., distance over which electroneutrality is violated) () near the plate .thar} fa.r fr?m the
plate. The spatial distributions of both
mobile ions are exponential, with space
constant equal to the Debye length.

- Debye Length A p

—> Both are very small (1 ns and 1 nm respectively; see Weiss v.1 7.2.3),
justifying that ionic solutions obey electroneutrality



Steady-State Electrodiffusion through Membranes
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Rearrange Nernst-Plank Equation

dey(z) 2 2 di)(z) 2 72 D, den(x) | dip(x)
= -2z, FD,————=— F = — F
In asn dx tnp Fen () dx Unp Fen () UnzpnFey(x)  dx - dx
d dx d d [RT
Integrate across membrane Jn/o " zQF;rc @ = —/0 I [z Fln cn(z) +(x)| do
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Steady-State Electrodiffusion through Membranes

Inside Membrane Outside
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+(0) — I/J(dy Nernst Equilibrium Potential

_ BT In Cn(d) _ RT I

2 F en(0) 2z, F
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|
G, = >0

/d dx —
> Like Ohm’ s law! o Up22F2c,(x)



Model of Steady-State Electrodiffusion through Membranes

Inside Cn +
I
G’!l
Membrane In Vi
+
Vn _I
Outside < v B
eq ) RT . ¢°
Nernst Equilibrium Potential V,, = In >
A D
: . 1
Electrical Conductivity G, = >0

- /d dx -
o Upz2F?%c,(7)






