Biophysics I (BPHS 4080)

Instructors: Prof. Christopher Bergevin (cberge@yorku.ca)

Website: http://www.yorku.ca/cberge/4080W2018.html
Figure 2.19
Steady-State Electrodiffusion through Membranes

Inside | Membrane | Outside

$\psi(x)$

J_n

Steady-state

$\frac{\partial c_n(x,t)}{\partial t} = 0$

$\frac{\partial J_n(x,t)}{\partial x} = 0$

$J_n = \text{constant}$

Electrolyte solutions \rightarrow Electroneutrality

if $t \gg \tau_r$ and $x \gg \Lambda_D$ then $\sum_n z_n F c_n(x,t) = 0$

$\frac{\partial^2 \psi(x,t)}{\partial x^2} = -\frac{1}{\epsilon} \sum_n z_n F c_n(x,t)$

\rightarrow Simplifies Poisson’s equation such that ψ is a linear function across the membrane.
Steady-State Electrodiffusion through Membranes

Inside $\rightarrow c_n^i(x)$ \hspace{1cm} $\psi(x)$ \hspace{1cm} Membrane \hspace{1cm} \rightarrow \hspace{1cm} Outside $\rightarrow c_n^o(x)$

$J_n \rightarrow$ Steady-state

$\rightarrow \frac{\partial c_n(x,t)}{\partial t} = 0$

$\rightarrow \frac{\partial J_n(x,t)}{\partial x} = 0$

$\rightarrow J_n = \text{constant}$

Mobility & Stokes-Einstein Relation

$D_n = u_n RT$

Rearrange Nernst-Plank Equation

$J_n = -z_n F D_n \frac{dc_n(x)}{dx} - u_n z_n^2 F^2 c_n(x) \frac{d\psi(x)}{dx} = -u_n z_n^2 F^2 c_n(x) \left[\frac{D_n}{u_n z_n F c_n(x)} \frac{dc_n(x)}{dx} + \frac{d\psi(x)}{dx} \right]$

Integrate across membrane

$J_n \int_0^d \frac{dx}{u_n z_n^2 F^2 c_n(x)} = - \int_0^d \frac{d}{dx} \left[\frac{RT}{z_n F} \ln c_n(x) + \psi(x) \right] dx$

$\frac{1}{G_n}$

Solve/Rearrange/Rename

$J_n \frac{1}{G_n} = - \frac{RT}{z_n F} \ln \frac{c_n(d)}{c_n(0)} + \frac{V_m}{\psi(0) - \psi(d)}$ \hspace{1cm} \rightarrow \hspace{1cm} $J_n = G_n (V_m - V_n)$
Steady-State Electrodiffusion through Membranes

\[
\begin{aligned}
\text{Inside} & \quad \text{Membrane} & \quad \text{Outside} \\
\frac{c_i^n}{c_o^n} & \quad \begin{align*}
\frac{c_n(x)}{\psi(x)} & \\
\end{align*} & \quad J_n \\
0 & \quad d & \quad x \\
\end{aligned}
\]

Steady-state

\[
\begin{align*}
\rightarrow \quad & \frac{\partial c_n(x, t)}{\partial t} = 0 \\
\rightarrow \quad & \frac{\partial J_n(x, t)}{\partial x} = 0 \\
\rightarrow \quad & J_n = \text{constant}
\end{align*}
\]

\[
J_n \frac{1}{G_n} = -\left(\frac{V_n}{RT} \ln \frac{c_n(d)}{c_n(0)} + \psi(0) - \psi(d)\right)
\]

\[
J_n = G_n (V_m - V_n)
\]

\[
\Rightarrow \text{Like Ohm’s law!}
\]

Nernst Equilibrium Potential

\[
V_n = \frac{RT}{z_n F} \ln \frac{c_n(d)}{c_n(0)} = \frac{RT}{z_n F} \ln \frac{c_o^n}{c_i^n}
\]

\[
G_n = \frac{1}{\int_o^d \frac{dx}{u_n z_n^2 F^2 c_n(x)}} \geq 0
\]
Model of Steady-State Electrodiffusion through Membranes

Nernst Equilibrium Potential \(V_n = \frac{RT}{z_n F} \ln \frac{c_n^o}{c_n^i} \)

Electrical Conductivity \(G_n = \frac{1}{\int_o^d \frac{dx}{u_n z_n^2 F^2 c_n(x)}} \geq 0 \)
Mechanical analog for electrodiffusive equilibrium

Analog to gravitational potential energy
(no negative concentrations!)

$$
\frac{\partial^2 \psi(x, t)}{\partial x^2} = -\frac{1}{\epsilon} \sum_n z_n F c_n(x, t)
$$

Figure 7.6 The spatial distribution of electric potential and ion concentration at electrodiffusive equilibrium for different temperatures.
How is the Nernst potential generated?

Assumption: Single permeable ionic species (positively charged)

$C_1 < C_2$

![Figure 7.16 Illustration of the generation of the Nernst equilibrium potential. A bath is separated into two compartments by a membrane permeable only to ion n.](image)

\rightarrow Note that the creation of a significant V_n need not require significant concentration changes
Independent of whether a cell “fires” an action potential or not, note that there is a baseline trans-membrane potential ("resting potential") V_m^o.

$V_m(t)$

Figure 1.1

V_m^o

Figure 1.8
What is the basis for such a resting potential?
Resting Potential: Model considering only a single permeant ion

Bernstein’s idea (1902) was that membrane was permeable to potassium only, thereby K^+ determined resting potential.
Resting Potential: Model considering only a *single permeant ion*

Bernstein model:

\[
V_m^o = V_K = \frac{RT}{F \log_{10} e} \log_{10} \left(\frac{c_K^o}{c_K^i} \right)
\]

\[
\frac{RT}{z_n F \log_{10} e} \approx 59 \text{ mV}
\]

(for \(z_n = +1\), room temp.)

Nernst Equilibrium Potential

\[
V_n = \frac{RT}{z_n F} \ln \frac{c_n(d)}{c_n(0)} = \frac{RT}{z_n F} \ln \frac{c_n^o}{c_n^i}
\]

\[
G_n = \int_0^d \frac{1}{dx} = \int_0^d \frac{1}{u_n z_n^2 F^2 c_n(x)} \geq 0
\]

Inside cell: high [K⁺], low [Na⁺]

Outside cell: low [K⁺], high [Na⁺]

Figure 7.19

Figure 7.20
Resting Potential: Model considering only a single permeant ion

Model does a decent job, but deviations apparent (e.g., low c_K, Na$^+$ does matter re Fig. 7.23)
Stepping back a moment....

Different ways of looking at/describing the same thing!
Resting Potential: Model considering only a multiple permeant ions

→ What if different ions are able to diffuse?

![Diagram](image)

Figure 7.24
Problems

7.5 Describe the distinctions between the following terms that refer to ion transport across a cellular membrane: electrodiffusive equilibrium, steady state, resting conditions, and cellular quasi-equilibrium.

7.6 The following is a discussion of electroneutrality (Nicholls et al., 1992):

The intracellular and extracellular solutions must each be electrically neutral. For example, a solution of chloride ions alone cannot exist; their charges must be balanced by an equal number of positive charges on cations such as sodium or potassium (otherwise electrical repulsion would literally blow the solution apart).

Briefly critique this discussion of electroneutrality.
Exercise 7.5 In steady state the ionic flux through the membrane, the concentration of ions in the membrane, and the voltage across the membrane are all constant with respect to time. Electrodiffusive equilibrium requires all of the conditions for steady state plus the condition that the ionic flux through the membrane is zero. At equilibrium, the potential across the membrane equals the Nernst equilibrium potentials of each permeant ionic species. Rest requires all of the conditions for steady state plus the condition that the net current through the membrane (total across ionic species) is zero. Quasi-equilibrium requires all of the conditions for steady state plus that the net flux of each ionic species (summed across all of the transport mechanisms for that species) is zero.

As an example, suppose external electrodes pass a constant current through the membrane of a cell. For this case, the membrane could come to a steady-state condition. It could be at electrodiffusive equilibrium if the membrane contains active transport mechanisms to carry all of the current from the external electrodes through the membrane. By definition, the cell is not at rest. Furthermore, the cell could not be in quasi-equilibrium, since the external current must be carried through the membrane by some ionic species.
Exercise 7.6 The statement is largely correct except for the parenthetical phrase. The solution would not blow up. The excess charges would repel each other and would ultimately reside on the boundaries of the vessel enclosing the solution.