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Steady-State Electrodiffusion through Membranes
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Electrolyte solutions — Electroneutrality
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Steady-State Electrodiffusion through Membranes
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Steady-State Electrodiffusion through Membranes
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Model of Steady-State Electrodiffusion through Membranes
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Mechanical analog for electrodiffusive equilibrium
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Figure 7.6 The spatial distribu-
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equilibrium for different tempera-
tures.




How is the Nernst potential generated?

Assumption: Single permeable ionic species (positively charged)
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Figure 7.16 Illustration
of the generation of
the Nernst equilibrium
potential. A bath is
separated into two
compartments by a
membrane permeable
only to ion n.

- Note that the creation of a significant J, need

not require significant concentration changes



Resting Potential
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- Independent of whether a cell “fires” an action potential or not, note that
there is a baseline trans-membrane potential (“resting potential”) 1



Resting Potential
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- What is the basis for



Resting Potential: Model considering only a single permeant ion

Emipirical observation:
Inside cell: high [K+], low [Na+]
Outside cell: low [K+], high [Na+]
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- Bernstein’ s idea (1902) was that membrane was permeable
to potassium only, thereby K* determined resting potential



Resting Potential: Model considering only a single permeant ion

Bernstein model:
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Nernst Equilibrium Potential
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Resting Potential: Model considering only a single permeant ion
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- Model does a decent job, but
deviations apparent (e.g., low ¢, Na*
does matter re Fig.7.23)
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Stepping back a moment....
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—> Different ways of looking at/describing the same thing!



Resting Potential: Model considering only a multiple permeant ions

- What if different ions are able to diffuse?
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Problems

L

7.6

Describe the distinctions between the following terms that refer to
ion transport across a cellular membrane: electrodiffusive equilibrium,
steady state, resting conditions, and cellular quasi-equilibrium.

The following is a discussion of electroneutrality (Nicholls et al., 1992):

The intracellular and extracellular solutions must each be electrically neutral.
For example, a solution of chloride ions alone cannot exist; their charges must
be balanced by an equal number of positive charges on cations such as sodium

or potassium (otherwise electrical repulsion would literally blow the solution
apart).

Briefly critique this discussion of electroneutrality.



Problems SOL

Exercise 7.5 In steady state the ionic flux through the membrane, the concentration
of ions in the membrane, and the voltage across the membrane are all constant with
respect to time. Electrodiffusive equilibrium requires all of the conditions for steady
state plus the condition that the ionic flux through the membrane is zero. At equilib-
rium, the potential across the membrane equals the Nernst equilibrium potentials of
each permeant ionic species. Rest requires all of the conditions for steady state plus
the condition that the net current through the membrane (total across ionic species)
is zero. Quasi-equilibrium requires all of the conditions for steady state plus that the
net flux of each ionic species (summed across all of the transport mechanisms for that
species) is zero.

As an example, suppose external electrodes pass a constant current through the
membrane of a cell. For this case, the membrane could come to a steady-state condi-
tion. It could be at electrodiffusive equilibrium if the membrane contains active trans-
port mechanisms to carry all of the current from the external electrodes through the
membrane. By definition, the cell is not at rest. Furthermore, the cell could not be in
gquasi-equilibrium, since the external current must be carried through the membrane by
some ionic species.



Problems SOL

Exercise 7.6 The statement is largely correct except for the parenthetical phrase. The
solution would not blow up. The excess charges would repel each other and would
ultimately reside on the boundaries of the vessel enclosing the solution.






