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Decremental conduction Decrement-free conduction
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Core-Conductor Model (starting point) = Model for electrically large cells
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THE Core — Conductor Equation

0*Vin(2,1)
022

= (ro + 1) Kin(2,1) — ro K. (2, 1)



Decremental conduction Decrement-free conduction
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Note dynamics of response....
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Figure 3.1

1. Linear (to a point)
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2. Delay apparent



Dissolution Transport Transport Carrier- Pumps

and diffusion through through mediated
through water gated ion transport
lipid bilayer channels channels
Intracellular A
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|dea: Membrane not only allows for charge transport, but also charge separation



Cell Membrane = Capacitor

= Steady-state electrodiffusion
cause charge buildup on both
sides of membrane

= Charge separation acts like
- parallel-plate capacitor
(C~ 1 uF/cm?)
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Hobbie & Roth



Lipid Bilayer = Dielectric
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- Lipid bilayer is an insulator

(i.e., acts as a dielectric w/ const. k)

- k~3-7, meaning more charge
separation can occur (higher

capacitance)

Hobbie & Roth



Circuit Representation
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Resistor and capacitor in series
- RC time constant

Hobbie & Roth
Weiss



Review: Capacitance

= Charging a parallel-plate capacitor
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The charge escalator moves charge from When AV. = AV, the current stops
one plate to the other. AV, increases as and the capacitor is fully charged.

the charge separation increases.

£ C - Stored charge is proportional to potential
Q = CA VC (charge ona capac1t0r) difference. Constant of proportionality is

characterizes the “capacitance”

Knight



Review: RC Circuits

KVL (combined w/ Ohm’s law):
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(a) Before the switch closes

The switch will--..
close atr = 0.

. 8
/.

++1++ R

Charge Q,
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Charge 0 The current is reducing the
Vs = DU charge on the capacitor.

Knight



Review: RC Circuits

Q — QO e-t/RC

0 =CAV,

TERC AV = AV

“RC time
constant”

-> Resistor dissipates energy stored in the capacitor

Current through the capacitor?
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Review: RC Circuits

DC (some energy initially stored
via charged capacitor) = KCL

av v
Ca g0

AC (sinusoidally-driven at o,
steady-state) 2 KVL
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Wikipedia (RC circuit)
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Ty = ~% membrane time constant
Gm independent of cell size

see Weiss Figure 3.8
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— Delay explained
(but not action potentials yet!)
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Cable Model - History

- First solved by William Thomson (aka Lord Kelvin) in ~1855

- Motivated by Atlantic submarine cable for intercontinental telegraphy
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Cable Model - Overview

- Uses the Core Conductor model as underlying basis

- Assumes membrane that it can be described as a parallel capacitance and conductance

- Linear
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Core Conductor Model
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