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Diffusion

> According to wikipedia....

> According to the dictionary....

diffusion

[dih-fyoo-zhuh n]
B v

Examples Word Origin

noun
1. act of diffusing; state of being diffused.

2. prolixity of speech or writing; discursiveness.

3. Physics.
a. Also called migration. an intermingling of

_— molecules, ions, etc., resulting from random

thermal agitation, as in the dispersion of a
vapor in air.

b. a reflection or refraction of light or other
electromagnetic radiation from an irregular
surface or an erratic dispersion through a
surface; scattering.

4. Movies. a soft-focus effect resulting from placing
a gelatin or silk plate in front of a studio light or a
camera lens, or through the use of diffusion
filters.

5. Meteorology. the spreading of atmospheric
constituents or properties by turbulent motion as
well as molecular motion of the air.

6. Anthropology, Sociology. Also called cultural
diffusion. the transmission of elements or
features of one culture to another.
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Diffusion

Chapter 1

Diffusion: Microscopic Theory

Diffusion is the random migration of molecules or small
particles arising from motion due to thermal energy. A
particle at absolute temperature 7 has, on the average, a
kinetic energy associated with movement along each axis
of kT/2, where k is Boltzmann’s constant. Einstein
showed in 1905 that this is true regardless of the size of the
particle, even for particles large enough to be seen under a
microscope, i.e., particles that exhibit Brownian move-
ment. A particle of mass m and velocity v, on the x axis
has a kinetic energy mv,%/2. This quantity fluctuates, but
on the average {(mv,”/2) = kT/2, where { ) denotes an
average over time or over an ensemble of similar particles.
From this relationship we compute the mean-square
velocity,

(v = kT/m, (1.1)
and the root-mean-square velocity,
(oY = (kT/m)"2. (1.2)

We can use Eq.1.2 to estimate the instantaneous velocity
of a small particle, for example, a molecule of the protein
lysozyme. Lysozyme has a molecular weight 1.4 x 10%g.
This is the mass of one mole, or 6.0 x 10%* molecules; the
mass of one molecule is m = 2.3 x 107 g. The value of
kT at 300°K (27°C)is 4.14 x 10-'*g cm%sec?. Therefore,
(02)"? = 1.3 x 10% cm/sec. This is a sizeable speed. If
there were no obstructions, the molecule would cross a
typical classroom in about 1 second. Since the protein is
not in a vacuum but is immersed in an aqueous medium, it
does not go very far before it bumps into molecules of

Berg (1993)



Diffusion

Chapter 1

Diffusion: Microscopic Theory

Diffusion is the random migration of molecules or small
particles arising from motion due to thermal energy. A
particle at absolute temperature 7 has, on the average, a
kinetic energy associated with movement along each axis
of kT/2, where k is Boltzmann’s constant. Einstein
showed in 1905 that this is true regardless of the size of the
particle, even for particles large enough to be seen under a
microscope, i.e., particles that exhibit Brownian move-
ment. A particle of mass m and velocity v, on the x axis
has a kinetic energy mv,%/2. This quantity fluctuates, but
on the average (mv,/2) = kT/2, where { ) denotes an
average over time or over an ensemble of similar particles.
From this relationship we compute the mean-square
velocity,

(v?) = kT/m, (1.1)
and the root-mean-square velocity,
(1,2 = (kT/m)'2. (1.2)

We can use Eq.1.2 to estimate the instantaneous velocity
of a small particle, for example, a molecule of the protein
lysozyme. Lysozyme has a molecular weight 1.4 x 10%g.
This is the mass of one mole, or 6.0 x 10% molecules; the
mass of one molecule is m = 2.3 x 1072 g. The value of
kT at 300°K (27°C) is 4.14 x 107" g cm?sec?. Therefore,
w2"? = 1.3 x 10% cm/sec. This is a sizeable speed. If
there were no obstructions, the molecule would cross a
typical classroom in about 1 second. Since the protein is
not in a vacuum but is immersed in an aqueous medium, it
does not go very far before it bumps into molecules of

Some (remarkably deep) ideas right off the bat:

>

Random walkers

Temperature, Boltzmann’s constant

Einstein and 1905

Mean-squared velocity, “ensemble”

“Brownian movement”

“Microscopic theory” (ch.2 is “Macroscopic theory”)

- A kernel of a deep idea is here, the distinction
between “lots of little things” versus “big things”

[statistical mechanics being the thread tying things together]

Berg (1993)



Brownian motion

http://www.microscopy-uk.org.uk/dww/home/hombrown.htm



Diffusion

http://en.wikipedia.org/wiki/Image:Entropie.png



Diffusion (1-D)

- Thomas Graham (Scottish chemist, ~1828-1833)

[pioneered the concept of dialysis]

c(x,1) c(x,1)
_A A
= >
X X

- Adolf Fick (German physiologist, ~1855)

[actually was the first to successfully put a contact lens on a person in 1888!]



“ A few years ago, Graham published an extensive investigation
on the diffusion of salts in water, in which he more especially
compared the diffusibility of different salts. It appears to me a
matter of regret, however, that in such an exceedingly valuable and
extensive investigation, the development of a fundamental law, for
the operation of diffusion in a single element of space, was
neglected, and I have therefore endeavoured to supply this
omission.”

- A. Fick (1855)



Qualitative

Quantitative < E——)  Analytical



Diffusion (1-D)

From Graham’s observations (~1830):

c(x,1) c(x,)
_A A
(l)(x,l‘) M
— >
X X

Freeman

“ A few years ago, Graham published an extensive investigation on the diffusion of
salts in water, in which he more especially compared the diffusibility of different

salts. It appears to me a matter of regret, however, that in such an exceedingly valuable
and extensive investigation, the development of a fundamental law, for the operation
of diffusion in a single element of space, was neglected, and I have therefore

endeavoured to supply this omission.”
- A. Fick (1855)



Diffusion (1-D)

From Graham’ s observations (~1830):

c(x,1) c(x,1)
A A
\w‘ ¢(x,t)/4—./-
>
X X
C(:I:, t) Concentration - of solute in solution
[mol/m3]

Flux - net # of moles crossing per
o(x,t) unit time ¢ through a unit area
perpendicular to the x-axis [mol/m?2-s]

Note: flux is a vector!

T,t Position [m], Time [s]



Short Excursion: Microscopic Basis for Diffusion

Brownian motion = ‘Random Walker’ (1-D)

Ensemble of Random Walkers

particle ID

L.

spatial position (x)

39¢
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Fick's 1st Law (1-D)

Profile 1 Profile 2

c(x,1)
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Diffusion Constant (D)

Oc(x,t)
Ox

d(x,t) ox —

Oc(x,t)
ox

¢(x,t) =—D

- diffusion constant is always positive (i.e., D > 0)

- determines time it takes solute to diffuse a given distance in a medium

- depends upon both solute and medium (solution)

- Stokes-Einstein relation predicts that D is inversely proportional to solute molecular radius



Diffusion Constant (D)
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Generalizations

Oc(x,t —
Higher Dimensions: P(x,t) = —D% — ¢ =—DVc
.Oc Oc  Oc \
where Ve = i + yé’—y + 2y, = grad(c)

Analogous Flux Laws:

oT heat flow, thermal conductivity,

Heat Flow (Fourier): ¢n = _O'h% and temperature

oY current densit ' Vi
. . . _ _, ¥ y, electrical conductivity,
Electric Conduction (Ohm): J =05 and electric potential
_ Op . . N
Convection (Darcy): (I)v = —k— fluid flow, hydraulic permeability,
ox and pressure

e

Diffusion (Fick): ¢ = —D%



Continuity equation

= imagine a cube (with face area 4 and length Ax) and a time interval Az

volume AAx
area A
O(x,1) 4= | —— O(x+Ax,1) o x;%x—’,)
X  x+Ax X X+ Ax
solute entering from left - solute exiting from right = change in amount of solute inside cube
(during time interval [z, t +Af] ) (during time interval [z, t +Af] )

ANt ¢(x,t) AAzxc(x,t)

Weiss



area A
O(x,t) > | L (x+Ax.1)
X  x+Ax

solute entering from left - solute exiting from right
(during time interval [z, t +Af] )

AAt ¢(x,t + At/2) — AAL ¢(x + Ax,t + At/2)

amount of solute entering
on left side of cube

amount of solute leaving
on right side of cube

o(x+ Ax,t + At/2) — p(x,t + At/2)

volume AAx

- 7
c(x+251)
X x+Ax

change in amount of solute inside cube
(during time interval [z, t +Af] )

AAzxc(x + Ax/2,t+ At) — AAx c(x + Ax/2,t)

amount of solute in cube at
the start of the interval

amount of solute in cube at
the end of the interval

c(x+ Az/2,t+ At) — c(x + Ax/2,1)

Ax

At



o(x + Azt + At/2) — p(x, t + At/2)  c(x+ Ax/2,t + At) — c(x + Ax/2,t)

Ax At

lim dop  Oc

At,Axz—0 ; or o ot
X
volume AAx
area A
O(x,1) = —— O(x+Ax,t) c(x+%"',t)
X x+Ax X x+Ax

= conservation of mass within the context of our imaginary cube yielded the continuity equation



Diffusion equation

oc
1. Fick’ s First Law: qb — - —
ox
+
2. Continuity Equation: % — @
ox Ot

- — — = (Fick’ s Second Law)




Diffusion processes

1. Equilibrium: Zero flux and concentration is independent of time

D # 0 = concentration is independent of space and time

D = 0 = non-diffusible solute is automatically at equilibrium

2. Steady-state: Flux can be non-zero, but flux and concentration are independent of time

20 foie [t = cda) - B,

c(x)

> X

Freeman



Diffusion processes

3. Impulse Response: Point-source of particles (n, mol/cm?) at#=0and x =0

[Dirac delta function &(x)]

given the inital/boundary conditions:

c(x,t) =ny,d(x) at t=0  where / d(z)dr =1
2
need to solve: % — DQ
ot ox?

Batschelet Fig.12.5

[Aside: solution can be found by a # of different methods, one being by separation of variables and using a Fourier transform]

Mo

VAar Dt

Solution —
(for ¢ > 0) C(LU, t)

€

—z2 /4Dt
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f(g:’ y) — € diffusion equation!

solution to
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Weiss Fig.3.14 (modified)



Importance of Scale

c(z,t) = "o o~ 2% /4Dt Gaussian function with zero mean and
’ VArxDt standard deviation:
o=V2Dt
//\\
/ \ Question: How long does it take (z4,,) for ~1/2 the solute
to move at least the distance x,,,?
.-/ \ X
-3 -2 -1 6 1 2 3 W 2
ol T2 2 ; L1/2
i 2Dty 5 3 = |2 ® T
For small solutes D~ 10-° cm? X112 172
(e.g. K" at body temperature) ° membrane sized 10 nm % usec
cell sized 10 um 1 sec

10
dime sized 10 mm 10° sec ~ 1 day

Freeman



Exercise

At a junction between two neurons, called a synapse, there is a 20
nm cleft that separates the cell membranes. A chemical transmitter
substance is released by one cell (the pre-synaptic cell), diffuses
across the cleft, and arrives at the membrane of the other (post-
synaptic) cell. Assume that the diffusion coefficient of the chemical
transmitter substance is D =5 X 1076 cm?/s.

- Make a rough estimate of the delay caused by diffusion of the
transmitter substance across the cleft. What are the limitations of this
estimate? Explain.



Exercise

At a junction between two neurons, called a synapse, there is a 20 nm cleft that
separates the cell membranes. A chemical transmitter substance is released by one
cell (the pre-synaptic cell), diffuses across the cleft, and arrives at the membrane of
the other (post-synaptic) cell. Assume that the diffusion coefficient of the chemical
transmitter substance is D =5 x 1076 cm?/s.

- Make a rough estimate of the delay caused by diffusion of the transmitter substance

across the cleft. What are the limitations of this estimate? Explain.

Answer

Consider the time it takes for %% to cross the cleft, then we have
approximately 1 us (1 X 1076 s). However, this calculation:

- Ignores the cleft geometry (e.g., not infinite baths)
- There is nothing special about 72 the solute here (perhaps only a few
molecules are needed, or perhaps a lot are)



Exercise

To wiggle your big toe, neural messages travel along a single neuron that stretches from the base
of your spine to your toe. Assume that the membrane of this neuron can be represented as a
uniform cylindrical shell that encloses the intracellular environment, which is represented as a
simple saline solution. The diameter of the shell is 10 um and the length is 1 m. Assume that 10-1°
moles of dye are injected into the neuron at time t = 0 and at a point located in the center of the
neuron, which we will refer to as the point z = 0. Assume that the dye diffuses across the radial
dimension so quickly that the concentration of dye c(z,t) depends only on the longitudinal direction z
and time t. Assume that the diffusivity of the dye in the intracellular saline is D = 1077 cm?/s and that
the membrane is impermeant to the dye.

- Determine the amount of time t, required for 5% the injected dye to diffuse to points outside the
region -1 mm<z <1 mm.

- Determine the amount of time t, required for half the injected dye to diffuse to points outside the
region -1 mm< z < 1 mm. Determine the ratio of t, to t,. Briefly explain the physical significance of
this result.

- Determine the amount of time t; required for 5% the injected dye to diffuse to points outside the
region —10 mm< z < 10 mm. Determine the ratio of t; to t,. Briefly explain the physical significance
of this result.



Answers

- Determine the amount of time t, required for 5% the injected dye to diffuse to points outside the
region -1 mm<z <1 mm.

3.5 hours

- Determine the amount of time t, required for half the injected dye to diffuse to points outside the
region -1 mm< z < 1 mm. Determine the ratio of t, to t,. Briefly explain the physical significance of
this result.

1.3 days

- Determine the amount of time t; required for 5% the injected dye to diffuse to points outside the
region —10 mm< z < 10 mm. Determine the ratio of t; to t,. Briefly explain the physical significance
of this result.

14.5 days



Exercise

To wiggle your big toe, neural messages travel along a single neuron that stretches from the base
of your spine to your toe. Assume that the membrane of this neuron can be represented as a
uniform cylindrical shell that encloses the intracellular environment, which is represented as a
simple saline solution. The diameter of the shell is 10 um and the length is 1 m. Assume that 10-1°
moles of dye are injected into the neuron at time t = 0 and at a point located in the center of the
neuron, which we will refer to as the point z = 0. Assume that the dye diffuses across the radial
dimension so quickly that the concentration of dye c(z,t) depends only on the longitudinal direction z
and time t. Assume that the diffusivity of the dye in the intracellular saline is D = 1077 cm?/s and that
the membrane is impermeant to the dye.

16-08 — _—
% 1 - The following plot shows the
§ 9 i - concentration of dye as a function of time
- - - for a particular point at z0 > 0.
Z [ - Determine z0.
0 - l LI | LI I LI | LI l LI | L I -
0 10000 20000 30000

t (seconds)






