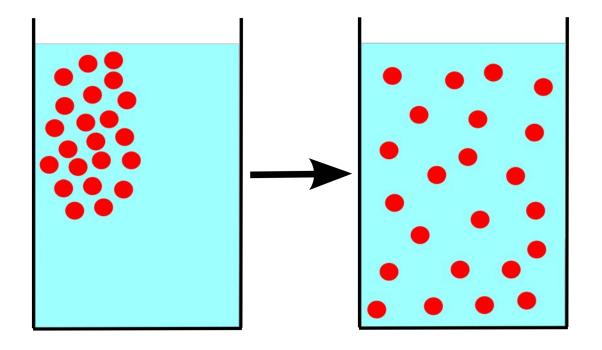
Biophysics I (BPHS 4080)

<u>Instructors:</u> Prof. Christopher Bergevin (cberge@yorku.ca)

Website: http://www.yorku.ca/cberge/4080W2018.html

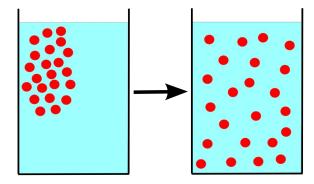
Diffusion

> According to wikipedia....



Diffusion

> According to wikipedia....



> According to the dictionary....

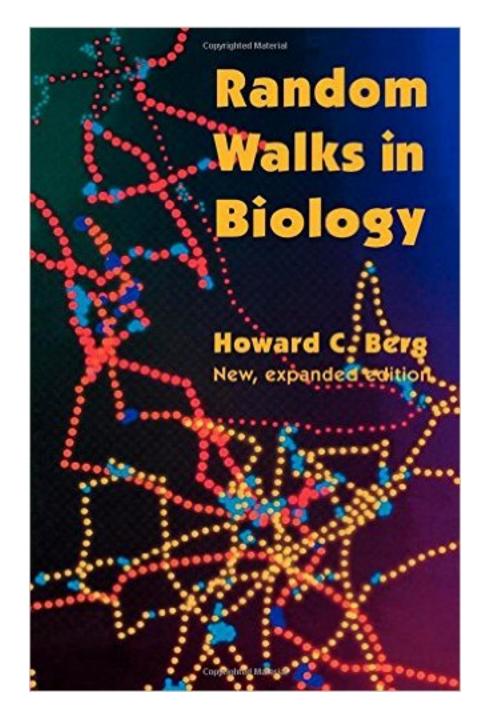
diffusion 🐠

[dih-fyoo-zhuh n]

Examples Word Origin

noun

- act of diffusing; state of being diffused.
- 2. prolixity of speech or writing; discursiveness.
- 3. Physics.
 - a. Also called **migration**. an intermingling of molecules, ions, etc., resulting from random thermal agitation, as in the dispersion of a vapor in air.
 - a reflection or refraction of light or other electromagnetic radiation from an irregular surface or an erratic dispersion through a surface; scattering.
- Movies. a soft-focus effect resulting from placing a gelatin or silk plate in front of a studio light or a camera lens, or through the use of diffusion filters.
- Meteorology. the spreading of atmospheric constituents or properties by turbulent motion as well as molecular motion of the air.
- Anthropology, Sociology. Also called cultural diffusion. the transmission of elements or features of one culture to another.



Chapter 1

Diffusion: Microscopic Theory

Diffusion is the random migration of molecules or small particles arising from motion due to thermal energy. A particle at absolute temperature T has, on the average, a kinetic energy associated with movement along each axis of kT/2, where k is Boltzmann's constant. Einstein showed in 1905 that this is true regardless of the size of the particle, even for particles large enough to be seen under a microscope, i.e., particles that exhibit Brownian movement. A particle of mass m and velocity v_x on the x axis has a kinetic energy $mv_x^2/2$. This quantity fluctuates, but on the average $\langle mv_x^2/2 \rangle = kT/2$, where $\langle \ \rangle$ denotes an average over time or over an ensemble of similar particles. From this relationship we compute the mean-square velocity,

$$\langle v_x^2 \rangle = kT/m, \tag{1.1}$$

and the root-mean-square velocity,

$$\langle v_x^2 \rangle^{1/2} = (kT/m)^{1/2}.$$
 (1.2)

We can use Eq.1.2 to estimate the instantaneous velocity of a small particle, for example, a molecule of the protein lysozyme. Lysozyme has a molecular weight 1.4×10^4 g. This is the mass of one mole, or 6.0×10^{23} molecules; the mass of one molecule is $m = 2.3 \times 10^{-20}$ g. The value of kT at 300°K (27°C) is 4.14×10^{-14} g cm²/sec². Therefore, $\langle v_x^2 \rangle^{1/2} = 1.3 \times 10^3$ cm/sec. This is a sizeable speed. If there were no obstructions, the molecule would cross a typical classroom in about 1 second. Since the protein is not in a vacuum but is immersed in an aqueous medium, it does not go very far before it bumps into molecules of

Diffusion

Chapter 1

Diffusion: Microscopic Theory

Diffusion is the random migration of molecules or small particles arising from motion due to thermal energy. A particle at absolute temperature T has, on the average, a kinetic energy associated with movement along each axis of kT/2, where k is Boltzmann's constant. Einstein showed in 1905 that this is true regardless of the size of the particle, even for particles large enough to be seen under a microscope, i.e., particles that exhibit Brownian movement. A particle of mass m and velocity v_x on the x axis has a kinetic energy $mv_x^2/2$. This quantity fluctuates, but on the average $\langle mv_x^2/2 \rangle = kT/2$, where $\langle \rangle$ denotes an average over time or over an ensemble of similar particles. From this relationship we compute the mean-square velocity,

$$\langle v_x^2 \rangle = kT/m, \tag{1.1}$$

and the root-mean-square velocity,

$$\langle v_{\rm r}^2 \rangle^{1/2} = (kT/m)^{1/2}.$$
 (1.2)

We can use Eq.1.2 to estimate the instantaneous velocity of a small particle, for example, a molecule of the protein lysozyme. Lysozyme has a molecular weight 1.4×10^4 g. This is the mass of one mole, or 6.0×10^{23} molecules; the mass of one molecule is $m = 2.3 \times 10^{-20}$ g. The value of kT at 300°K (27°C) is 4.14×10^{-14} g cm²/sec². Therefore, $\langle v_x^2 \rangle^{1/2} = 1.3 \times 10^3$ cm/sec. This is a sizeable speed. If there were no obstructions, the molecule would cross a typical classroom in about 1 second. Since the protein is not in a vacuum but is immersed in an aqueous medium, it does not go very far before it bumps into molecules of

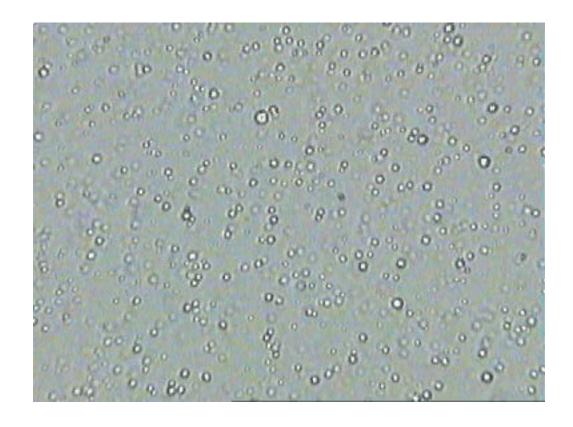
Some (remarkably deep) ideas right off the bat:

- Random walkers
- > Temperature, Boltzmann's constant
- > Einstein and 1905
- Mean-squared velocity, "ensemble"
- "Brownian movement"
- "Microscopic theory" (ch.2 is "Macroscopic theory")

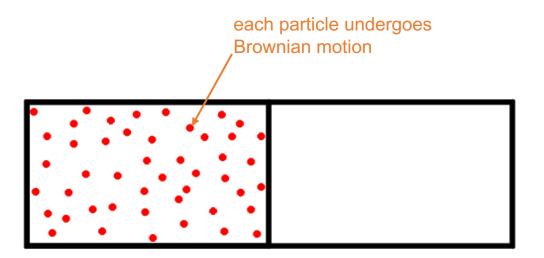
→ A kernel of a deep idea is here, the distinction between "lots of little things" versus "big things"

[statistical mechanics being the thread tying things together]

Brownian motion



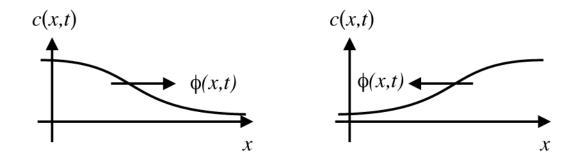
Diffusion



Diffusion (1-D)

- Thomas Graham (Scottish chemist, ~1828-1833)

[pioneered the concept of dialysis]



- Adolf Fick (German physiologist, ~1855)

[actually was the first to successfully put a contact lens on a person in 1888!]

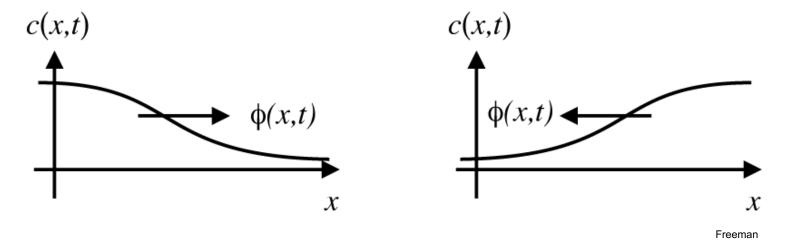
"A few years ago, Graham published an extensive investigation on the diffusion of salts in water, in which he more especially compared the diffusibility of different salts. It appears to me a matter of regret, however, that in such an exceedingly valuable and extensive investigation, the development of a fundamental law, for the operation of diffusion in a single element of space, was neglected, and I have therefore endeavoured to supply this omission."

- A. Fick (1855)

Qualitative Quantitative Analytical

Diffusion (1-D)

From Graham's observations (~1830):

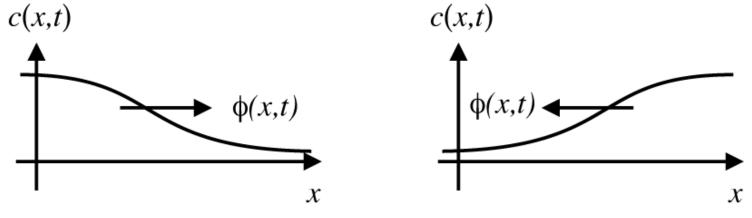


"A few years ago, Graham published an extensive investigation on the diffusion of salts in water, in which he more especially compared the diffusibility of different salts. It appears to me a matter of regret, however, that in such an exceedingly valuable and extensive investigation, the development of a fundamental law, for the operation of diffusion in a single element of space, was neglected, and I have therefore endeavoured to supply this omission."

- A. Fick (1855)

Diffusion (1-D)

From Graham's observations (~1830):



Concentration - of solute in solution [mol/m³]

$$\phi(x,t)$$

Note: flux is a vector!

Flux - net # of moles crossing per unit time t through a unit area perpendicular to the x-axis [$mol/m^2 \cdot s$]

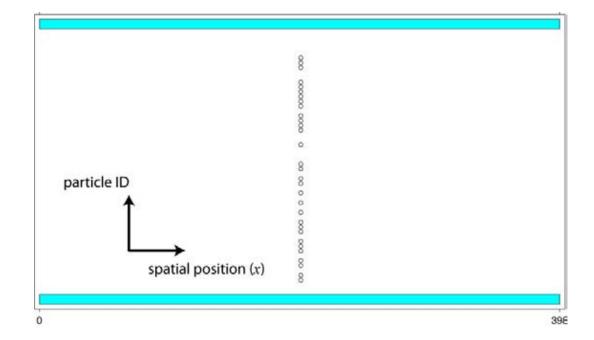
x, t

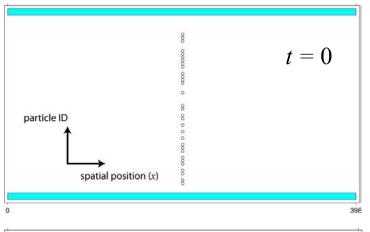
Position [m], Time [s]

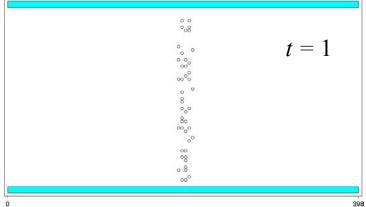
Short Excursion: Microscopic Basis for Diffusion

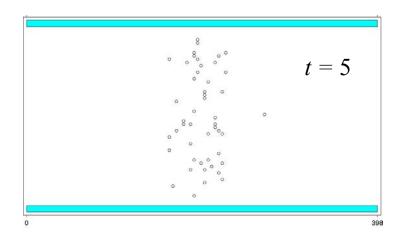
Brownian motion ⇒ 'Random Walker' (1-D)

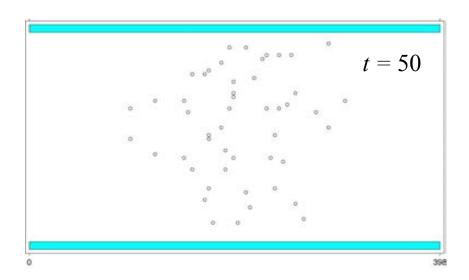
Ensemble of Random Walkers

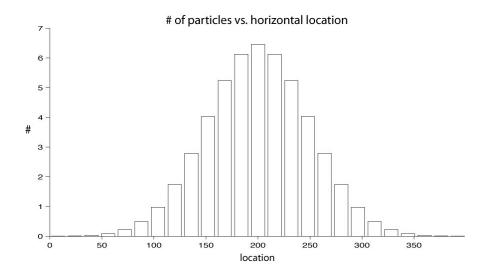




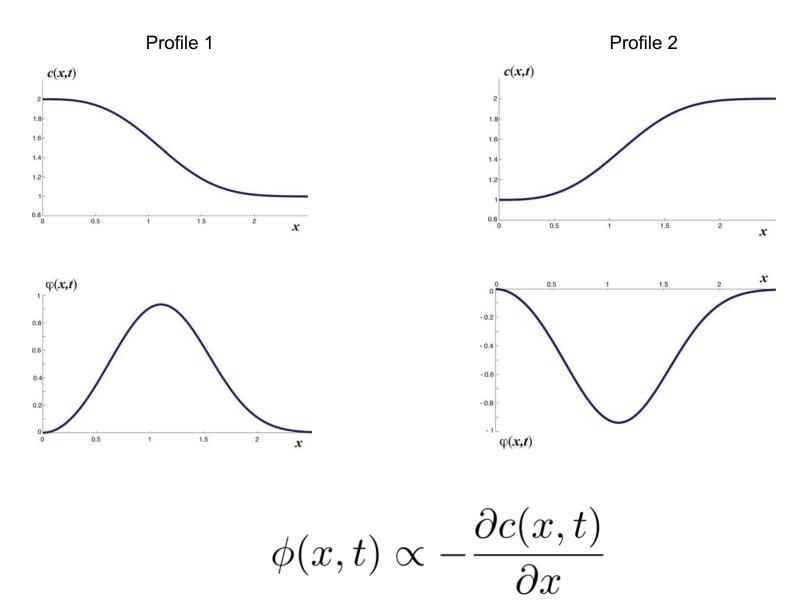








Fick's 1st Law (1-D)



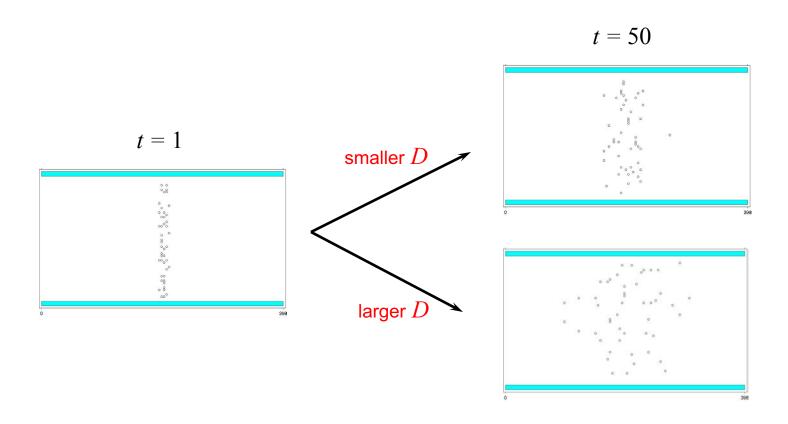
Diffusion Constant (D)

$$\phi(x,t) \propto -rac{\partial c(x,t)}{\partial x}$$
 constant of proportionality?

$$\phi(x,t) = -D \frac{\partial c(x,t)}{\partial x}$$

- diffusion constant is always positive (i.e., D > 0)
- determines time it takes solute to diffuse a given distance in a medium
- depends upon both solute and medium (solution)
- Stokes-Einstein relation predicts that D is inversely proportional to solute molecular radius

<u>Diffusion Constant</u> (D)



Generalizations

$$\phi(x,t) = -D\frac{\partial c(x,t)}{\partial x} \qquad \longleftrightarrow$$

$$\vec{\phi} = -D\nabla c$$

where
$$\nabla c = \hat{x} \frac{\partial c}{\partial x} + \hat{y} \frac{\partial c}{\partial y} + \hat{z} \frac{\partial c}{\partial z} = \operatorname{grad}(c)$$

Analogous Flux Laws:

Heat Flow (Fourier):

$$\phi_h = -\sigma_h \frac{\partial T}{\partial x}$$

heat flow, thermal conductivity, and temperature

Electric Conduction (Ohm):

$$J = -\sigma_e \frac{\partial \psi}{\partial x}$$

current density, electrical conductivity, and electric potential

Convection (Darcy):

$$\Phi_v = -\kappa \frac{\partial p}{\partial x}$$

fluid flow, hydraulic permeability, and pressure

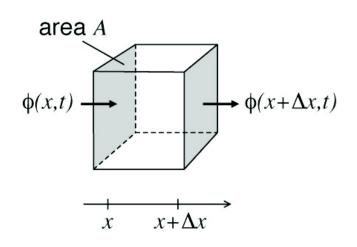
Diffusion (Fick):

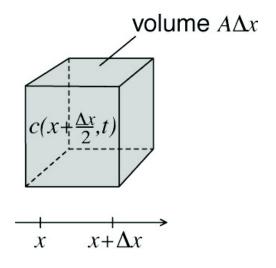
$$\phi = -D\frac{\partial c}{\partial x}$$

Continuity equation

 \Rightarrow imagine a cube (with face area A and length Δx) and a time interval Δt

=



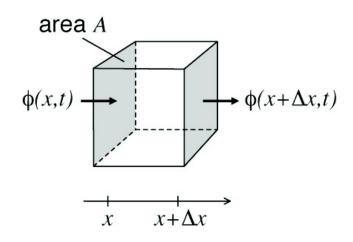


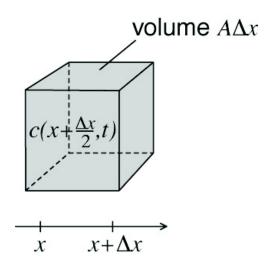
solute entering from \underline{left} - solute exiting from \underline{right} (during time interval $[t, t + \Delta t]$)

change in amount of solute \underline{inside} cube (during time interval $[t, t + \Delta t]$)

$$A \Delta t \phi(x,t)$$

$$A \Delta x c(x,t)$$





solute entering from left - solute exiting from right (during time interval $[t, t + \Delta t]$)

change in amount of solute inside cube (during time interval $[t, t + \Delta t]$)

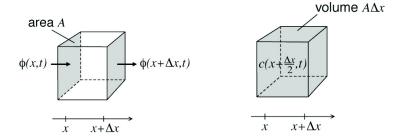
$$\frac{A\,\Delta t\,\phi(x,t+\Delta t/2)-A\,\Delta t\,\phi(x+\Delta x,t+\Delta t/2)}{\text{amount of solute entering}} = \frac{A\,\Delta x\,c(x+\Delta x/2,t+\Delta t)-A\,\Delta x\,c(x+\Delta x/2,t)}{\text{amount of solute in cube at on left side of cube}} = \frac{A\,\Delta x\,c(x+\Delta x/2,t+\Delta t)-A\,\Delta x\,c(x+\Delta x/2,t)}{\text{amount of solute in cube at the end of the interval}} = \frac{A\,\Delta x\,c(x+\Delta x/2,t+\Delta t)-A\,\Delta x\,c(x+\Delta x/2,t)}{\text{amount of solute in cube at the start of the interval}}$$

=

$$-\frac{\phi(x+\Delta x,t+\Delta t/2)-\phi(x,t+\Delta t/2)}{\Delta x} = \frac{c(x+\Delta x/2,t+\Delta t)-c(x+\Delta x/2,t)}{\Delta t}$$

$$-\frac{\phi(x+\Delta x,t+\Delta t/2)-\phi(x,t+\Delta t/2)}{\Delta x}=\frac{c(x+\Delta x/2,t+\Delta t)-c(x+\Delta x/2,t)}{\Delta t}$$

$$\lim_{\Delta t, \Delta x \to 0} \quad \Longrightarrow \quad \frac{\partial \phi}{\partial x} = -\frac{\partial c}{\partial t}$$



⇒ conservation of mass within the context of our imaginary cube yielded the continuity equation

Diffusion equation

$$\phi = -D\frac{\partial c}{\partial x}$$

+

$$\frac{\partial \phi}{\partial x} = -\frac{\partial \phi}{\partial t}$$

$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2}$$

(Fick's Second Law)

Diffusion processes

1. Equilibrium: Zero flux and concentration is independent of time

 $D \neq 0 \Rightarrow$ concentration is independent of space and time

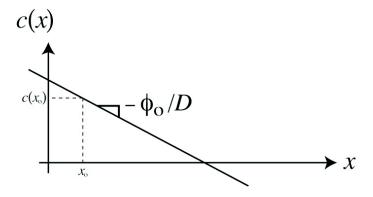
 $D = 0 \Rightarrow$ non-diffusible solute is automatically at equilibrium

2. Steady-state: Flux can be non-zero, but flux and concentration are independent of time

$$\frac{\partial \phi}{\partial x} = 0 \quad \Rightarrow \quad \int \phi_o \, dx = \int -D \, dc \quad \Rightarrow \quad c(x) = c(x_o) - \frac{\phi_o}{D}(x - x_o)$$

[integrate Fick's 1st Law]

 $[x_o]$ is a reference location where the concentration is known]



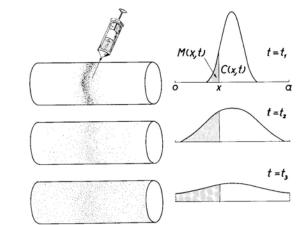
Diffusion processes

3. <u>Impulse Response</u>: Point-source of particles (n_o mol/cm²) at t = 0 and x = 0 [Dirac delta function $\delta(x)$]

given the inital/boundary conditions:

$$c(x,t) = n_o \delta(x)$$
 at $t = 0$ where $\int_{-\infty}^{\infty} \delta(x) dx = 1$

need to solve:
$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2}$$

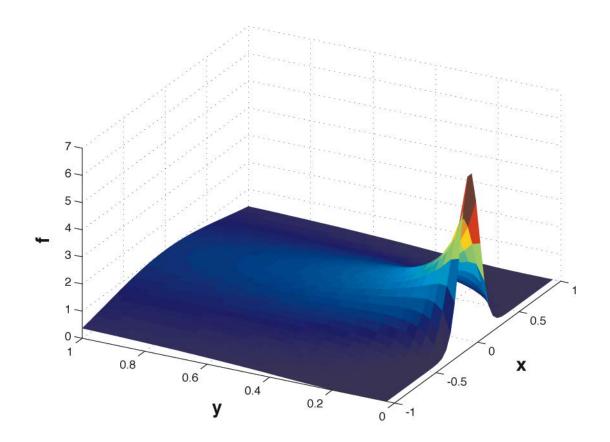


Batschelet Fig.12.5

[Aside: solution can be found by a # of different methods, one being by separation of variables and using a Fourier transform]

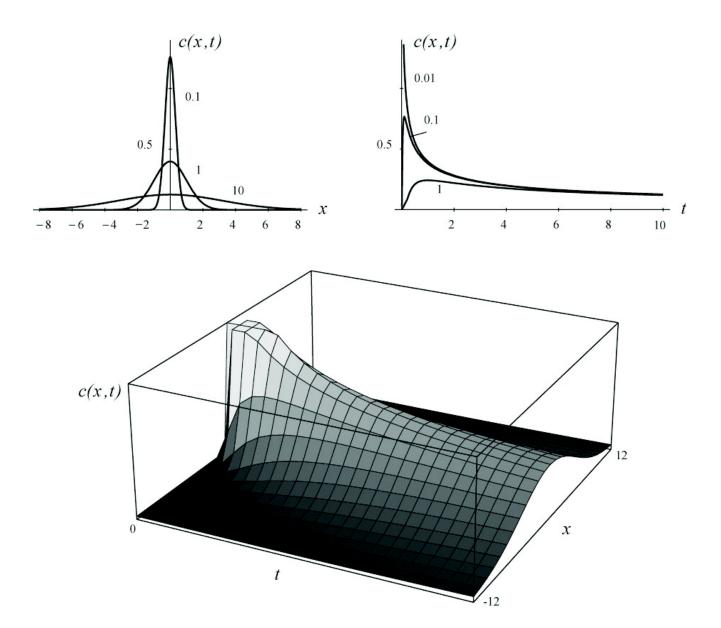
$$\frac{\text{Solution}}{\text{(for } t > 0)}$$

$$c(x,t) = \frac{n_o}{\sqrt{4\pi Dt}} e^{-x^2/4Dt}$$



$$f(x,y) = \frac{1}{\sqrt{y}}e^{-x^2/y}$$

solution to diffusion equation!

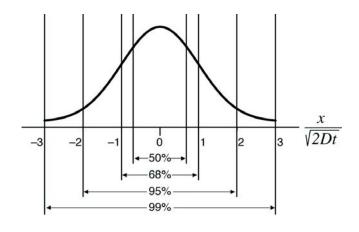


Importance of Scale

$$c(x,t) = \frac{n_o}{\sqrt{4\pi Dt}} e^{-x^2/4Dt}$$

Gaussian function with zero mean and standard deviation:

$$\sigma = \sqrt{2Dt}$$



Question: How long does it take $(t_{1/2})$ for ~1/2 the solute to move at least the distance $x_{1/2}$?

$$\frac{x_{1/2}}{\sqrt{2Dt_{1/2}}} \approx \frac{2}{3} \qquad \Longrightarrow \qquad t_{1/2} \approx \frac{x_{1/2}^2}{D}$$

$$D \approx 10^{-5} \ \frac{\mathrm{cm}^2}{\mathrm{s}}$$

	$x_{1/2}$	$t_{1/2}$
membrane sized	10 nm	1/10 μsec
cell sized	10 μm	$\frac{1}{10}$ sec
dime sized	10 mm	$10^5 \text{ sec} \approx 1 \text{ day}$

At a junction between two neurons, called a synapse, there is a 20 nm cleft that separates the cell membranes. A chemical transmitter substance is released by one cell (the pre-synaptic cell), diffuses across the cleft, and arrives at the membrane of the other (post-synaptic) cell. Assume that the diffusion coefficient of the chemical transmitter substance is $D = 5 \times 10^{-6}$ cm²/s.

→ Make a rough estimate of the delay caused by diffusion of the transmitter substance across the cleft. What are the limitations of this estimate? Explain.

At a junction between two neurons, called a synapse, there is a 20 nm cleft that separates the cell membranes. A chemical transmitter substance is released by one cell (the pre-synaptic cell), diffuses across the cleft, and arrives at the membrane of the other (post-synaptic) cell. Assume that the diffusion coefficient of the chemical transmitter substance is $D = 5 \times 10^{-6}$ cm²/s.

→ Make a rough estimate of the delay caused by diffusion of the transmitter substance across the cleft. What are the limitations of this estimate? Explain.

Answer

Consider the time it takes for $\frac{1}{2}$ to cross the cleft, then we have approximately 1 us (1 × 10⁻⁶ s). However, this calculation:

- Ignores the cleft geometry (e.g., not infinite baths)
- There is nothing special about ½ the solute here (perhaps only a few molecules are needed, or perhaps a lot are)

To wiggle your big toe, neural messages travel along a single neuron that stretches from the base of your spine to your toe. Assume that the membrane of this neuron can be represented as a uniform cylindrical shell that encloses the intracellular environment, which is represented as a simple saline solution. The diameter of the shell is 10 μ m and the length is 1 m. Assume that 10^{-15} moles of dye are injected into the neuron at time t = 0 and at a point located in the center of the neuron, which we will refer to as the point z = 0. Assume that the dye diffuses across the radial dimension so quickly that the concentration of dye c(z,t) depends only on the longitudinal direction z and time t. Assume that the diffusivity of the dye in the intracellular saline is D = 10^{-7} cm²/s and that the membrane is impermeant to the dye.

- \rightarrow Determine the amount of time t₁ required for 5% the injected dye to diffuse to points outside the region -1 mm< z < 1 mm.
- \rightarrow Determine the amount of time t_2 required for half the injected dye to diffuse to points outside the region -1 mm< z < 1 mm. Determine the ratio of t_2 to t_1 . Briefly explain the physical significance of this result.
- → Determine the amount of time t_3 required for 5% the injected dye to diffuse to points outside the region -10 mm< z < 10 mm. Determine the ratio of t_3 to t_1 . Briefly explain the physical significance of this result.

Answers

 \rightarrow Determine the amount of time t₁ required for 5% the injected dye to diffuse to points outside the region -1 mm< z < 1 mm.

3.5 hours

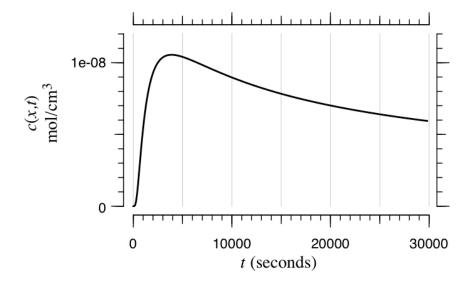
 \rightarrow Determine the amount of time t_2 required for half the injected dye to diffuse to points outside the region -1 mm< z < 1 mm. Determine the ratio of t_2 to t_1 . Briefly explain the physical significance of this result.

1.3 days

→ Determine the amount of time t_3 required for 5% the injected dye to diffuse to points outside the region -10 mm< z < 10 mm. Determine the ratio of t_3 to t_1 . Briefly explain the physical significance of this result.

14.5 days

To wiggle your big toe, neural messages travel along a single neuron that stretches from the base of your spine to your toe. Assume that the membrane of this neuron can be represented as a uniform cylindrical shell that encloses the intracellular environment, which is represented as a simple saline solution. The diameter of the shell is 10 μ m and the length is 1 m. Assume that 10^{-15} moles of dye are injected into the neuron at time t = 0 and at a point located in the center of the neuron, which we will refer to as the point z = 0. Assume that the dye diffuses across the radial dimension so quickly that the concentration of dye c(z,t) depends only on the longitudinal direction z and time t. Assume that the diffusivity of the dye in the intracellular saline is D = 10^{-7} cm²/s and that the membrane is impermeant to the dye.



The following plot shows the concentration of dye as a function of time for a particular point at z0 > 0.

→ Determine z0.