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York University BPHS 4080 (Winter 2018)

Project Overview

As per the course syllabus, there are two parts of the “project” component of BPHS 4080. For both
(described in detail below), students will self-form into pairs (and different pairs for each of the two
components). For each part, everything will be done together (e.g., there will be one report per group to
hand in) and one grade will be assigned to everyone in the group for that part. Each student is expected
to contribute equally.

1 Hodgkin-Huxley Simulations
1.1 Timeline
e 3/16 — Proposals due by 4:30 PM (soft copy okay; lateness penalty applies)

e 4/2 —In-class presentations (including a two hard copies of your slides)

2 “Journal Club”

2.1 Timeline
e 3/14 — Deadline for getting a paper approved by the course instructor
e 3/26 — In-class “journal club” presentations

e 3/28 — Report due
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Review: Membrane as a circuit

Model of Steady-State Electrodiffusion through Membranes
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Review: Cell as a “leaky submarine cable”
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Decremental conduction
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Looking Ahead....
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The culmination of this effort was the systematic measurements and
the theoretical formulations of Hodgkin and Huxley (Hodgkin et al., 1952;
Hodgkin and Huxley, 1952a, 1952b, 1952¢, 1952e), for which they were
awarded the Nobel Prize in 1963. Their theory is one of the most successful
mathematical theories in biology and greatly accelerated research in neurobi-
ology. The theory explained the properties of the electrically excitable squid
giant axon in terms of the measured relations of the membrane potential
and the membrane current. The primitive entities of this theory were a set of
hypothetical transmembrane ionic channels.

Hence, this research focused the attention of neurobiologists on the iden-
tification and elucidation of the properties of these ionic channels. Since the
1970s, electrophysiological techniques have been developed to record the
ionic current through such isolated single channels, and molecular biologi-
cal techniques have been developed to isolate the channel macromolecules.

- Huge amount of scientific/biophysical “gravitas” here....

Weiss (v.2 ch.4)



Looking Ahead....
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IJ 'm 4 Intracellular
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- What are G (V,,t) and G,,(V,,1)?
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This gets to the heart of the (Vs £) + Tin (Vin) dt = Moo(Vm)

Hodgkin-Huxley model as dh(Vy, 1)
we’ ll see..... h(Vin, 8) + 70 (Vin) == = hoo(Vin)



Finally there was the difficulty of computing the action potentials from the equations
which we had developed. We had settled all the equations and constants by March 1951
and hoped to get these solved on the Cambridge University computer. However, before
anything could be done we learnt that the computer would be off the air for 6 months or
so while it underwent a major modification. Andrew Huxley got us out of that difficulty
by solving the differential equations numerically using a hand-operated Brunsviga. The
propagated action potential took about three weeks to complete and must have been an
enormous labour for Andrew. But it was exciting to see it come out with the right shape
and velocity and we began to feel that we had not wasted the many months that we had
spent in analysing records.

—Hodgkin, 1977



https://de.wikipedia.org/wiki/Brunsviga_Maschinenwerke
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Some key observations...
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—> Active transport not a priori
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Some key observations...
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- Na* flux affects APs (early on)
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- K* flux affects APs (/ater on)
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ldea 1 — Multiple permeant ions with different conductance (e.g., G, >> G,,)

Idea 2 — K+ and Na+ conductances can vary time
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What are Gi(V,,f) and G, (V,.H)?

- Not easy to empirically distinguish, so new
electrophysiological techniques were required



Space-Clamp
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- Electrically ‘small’ cell can still fire action potentials



Voltage-Clamp
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Separating lonic Currents
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Capacitive Current
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But what of the other ionic currents?
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- What are G(V,,¢) and G, (V,.H)?
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