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- Physiological data suggests Na* activates and then
inactivates while K* simply activates (based upon V)
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- First order kinectics
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n — potassium activation



- First order kinectics
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% = 20.11, ¢4 = 400 mmol/L; V; = —49 mV;, temperature is 6.3°C.
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Summary: HH Equations
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Depolarization mechanism — positive feedback
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Two (possible) Ways to Solve HH Eqgns. To reduce solving a PDE, simplifying assumptions
can be made to reduce to an ODE

1. Membrane APS (space-
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2. Propagated APs assume wave-like Vin(z,t) = f(t —2z/V)

solution
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(numerically) Solving HH Eqgns.

Review point
How does one numerically solve ODEs?

! — t, 1.

|ldea: Since equations tell us how things change, numerically integrate to find solution(s)

dy Yo+1 — VYu

—~ = f(t, — X f(t,, . 7.1.4

o fty) = A f(tn,y,) (7.1.4)
Approximation: Y1 =Y, + AL f(tn,y,). (7.1.5)

Kutz (2013)



Starting point: Euler’s method

|ldea: Since equations tell us how things change, numerically integrate to find solution(s)

dy
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Runge-Kutta (RK)

> ‘Higher order’ methods improve in a similar fashion to Riemann sums, for example:
= FEuler > LEFT

= Modified Euler > MID
= Improved Euler > TRAP

> Most popular RK method is the ‘fourth order’ (RK4) and is equivalent to SIMP:

fo = f(xO’yO)’ y(zo + h) = y(xo) + E(fo +2f1+2f2+ f3)
h h 6

fi = f(zo + 590 + gfo),
h h f(t

f2=f(a:0+§,yo+§f1), "’

f3 = f(xo + h,yo + hf2).

f(t+At)

f(t) f(t+At/2)

t t+AL/2 AL

Devries
(1994)



(numerically) Solving HH Eqgns.

Review point
How does one numerically solve ODEs?

SoftCell numerically
integrates the ODEs

How to run HH model
backwards?
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https://de.wikipedia.org/wiki/Brunsviga_Maschinenwerke



Membrane APs (space-clamped)
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Propagated APs
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Finally there was the difficulty of computing the action potentials from the equations
which we had developed. We had settled all the equations and constants by March 1951
and hoped to get these solved on the Cambridge University computer. However, before
anything could be done we learnt that the computer would be off the air for 6 months or
so while it underwent a major modification. Andrew Huxley got us out of that difficulty
by solving the differential equations numerically using a hand-operated Brunsviga. The
propagated action potential took about three weeks to complete and must have been an
enormous labour for Andrew. But it was exciting to see it come out with the right shape
and velocity and we began to feel that we had not wasted the many months that we had
spent in analysing records.

—Hodgkin, 1977
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State whether each of the following is true or false, and give a reason for
your answer.

a. In response to a step of membrane potential in a voltage-clamped

axon, the factors n(t), m(t), and h(t) are exponential functions of
time.

b. In response to a step of membrane current in a current-clamped

axon, the factors n(t), m(t), and h(t) are exponential functions of

time.
c. In response to an impulse of membrane current in an unclamped
axon, the factors n(t), m(t), and h(t) are exponential functions of

time.



Ex. (ANSWERS)

State whether each of the following is true or false, and give a reason for
your answer.

a. In response to a step of membrane potential in a voltage-clamped

axon, the factors n(t), m(t), and h(t) are exponential functions of True
time.

b. In response to a step of membrane current in a current-clamped .
axon, the factors n(t), m(t), and h(t) are exponential functions of
time.

c. In response to an impulse of membrane current in an unclamped e

axon, the factors n(t), m(t), and h(t) are exponential functions of
time.






