Biophysics I (BPHS 4080)

Instructors: Prof. Christopher Bergevin (cberge@yorku.ca)

Website: http://www.yorku.ca/cberge/4080W2018.html
Summary: HH Equations

\[\frac{1}{2\pi a(r_o + r_i)} \frac{\partial^2 V_m}{\partial z^2} = C_m \frac{\partial V_m}{\partial t} + G_K(V_m, t) (V_m - V_K) \]

\[+ G_{Na}(V_m, t) (V_m - V_{Na}) + G_L(V_m - V_L) \]

\[G_K(V_m, t) = \overline{G}_K n^4(V_m, t) \]

\[G_{Na}(V_m, t) = \overline{G}_{Na} m^3(V_m, t) h(V_m, t) \]

\[n(V_m, t) + \tau_n(V_m) \frac{dn(V_m, t)}{dt} = n_\infty(V_m) \]

\[m(V_m, t) + \tau_m(V_m) \frac{dm(V_m, t)}{dt} = m_\infty(V_m) \]

\[h(V_m, t) + \tau_h(V_m) \frac{dh(V_m, t)}{dt} = h_\infty(V_m) \]

\[\tau_x \frac{dx}{dt} + x = x_\infty \]

\[\frac{dx}{dt} = \alpha_x (1 - x) - \beta_x x \]

\[x_\infty = \alpha_x / (\alpha_x + \beta_x) \]

\[\tau_x = 1 / (\alpha_x + \beta_x) \]

\[\alpha_m = \frac{-0.1(V_m + 35)}{e^{-0.1(V_m+35)} - 1}, \]

\[\beta_m = 4e^{-(V_m+60)/18}, \]

\[\alpha_h = 0.07e^{-0.05(V_m+60)}, \]

\[\beta_h = \frac{1}{1 + e^{-0.1(V_m+30)}}, \]

\[\alpha_n = \frac{-0.01(V_m + 50)}{e^{-0.1(V_m+50)} - 1}, \]

\[\beta_n = 0.125e^{-0.0125(V_m+60)}, \]
Four phases:

1. Local disturbance due to capacitance (behaves like cable model)

2. Onset: V_m change triggers m (increased G_{Na} take V_m with it)

3. Falloff: h turns off, n turns on (both work to lower V_m back towards V_k, basis for absolute refractory period)

4. Undershoot: increased G_k pushes V_m beyond V^0_m (basis for relative refractory period)

Note: Membrane current (J_M) can be parsed up into two components: a capacitive current (J_C) and an ionic current (J_{ion})
Note: Fairly little net current across membrane (i.e., relatively few net ions transported)
Threshold

In vivo: For the same stimulus, sometimes an AP fires, sometimes it does not.

What is mechanism for a threshold?

Model exhibits ‘exceedingly narrow threshold region’

Note: Model is deterministic and does not capture stochastic behaviors manifest in vivo.
Threshold

Note lag for AP to occur (stems from capacitive build-up to threshold)

Figure 4.42

→ Note lag for AP to occur (stems from capacitive build-up to threshold)
Determine $J_{ion}-V_m$ relationship right after shock (dashed line)

- Current purely due to C_m
- Membrane “deciding” whether to fire AP or not

\[J_{ion} = -J_C = -C_m \frac{dV_m}{dt} \]

Note: This picture only holds as a snapshot right after the stimulus
Equilibrium points

Stability

Threshold

Ohm’s Law: Negative resistance?
These pictures make it easy to envision a *stochastic* component too. (e.g., consider random force jittering object about)
Threshold

\[G_K(V_m,t) = G'_K n^4(V_m,t) \]
\[G_{Na}(V_m,t) = G_{Na} m^3(V_m,t) h(V_m,t) \]

\[V_{Na} = \frac{RT}{F} \log \frac{c_{Na}^0}{c_{Na}} \]

\[G_{Na}(V_m,t) = \frac{J_{Na}(V_m,t)}{V_m - V_{Na}} \]

\[m_\infty(V_m) = m^3(V_m) h_\infty(V_m) \]

\[J_{Na} \]
\[(mA/cm^2) \]

\[J_{K} + J_{L} \]
\[(mA/cm^2) \]

\[J_{ion} \]
\[(mA/cm^2) \]

⇒ assume \(n \) and \(h \) are constant

⇒ Ultimately more than one ion is needed

(Na⁺ alone is insufficient)
Threshold: Phase Plane Portrait

assumes \(n \) and \(h \) are constant, but \(m \) varies dynamically

\[V(t) = V_m(t) - V^o_m \text{ (mV)} \]
Refractory Period

Figure 1.13

Figure 4.52

Figure 4.53
Back to the question of spatial propagation...

Decremental conduction

\[I_e(t) \]

Decrement-free conduction

\[I_e(t) \]

Figure 1.16
Propagated APs

Space clamp
\(\frac{\partial V_m}{\partial z} = 0 \)

Step voltage clamp
\(\frac{\partial V_m}{\partial z} = \frac{\partial V_m}{\partial t} = 0 \)

Separation of ionic currents

Figure 1.22
Propagated APs

→ Solutions only stable for appropriate choice of conduction velocity
 (think back to cable model; C_m matters!)

Figure 4.30

Figure 4.31
Propagated APs

Stimulus
(think cable model)

Figure 4.29
Note lag between V_m and G_m (stems from capacitive surge).

Similar picture as before for propagated AP.

Figure 4.32
Note lag between V_m and G_m (stems from capacitive surge)
Figure 5.1