Biophysics I (BPHS 4080)

Instructors: Prof. Christopher Bergevin (cberge@yorku.ca)

Website: http://www.yorku.ca/cberge/4080W2018.html

York University Winter 2018 Lecture 4

Reference/Acknowledgement: - TF Weiss (Cellular Biophysics) - D Freeman

Membrane Diffusion: Two-Compartment Geometry

reference direction for flux is outward

Diffusion Through Cell Membranes: History 101

Diffusion through Cell Membranes

Charles Ernest Overton (late 1800s): first systematic studies

- qualitative:
 - put cell in bath with solute
 - wait, rinse, squeeze
- analyze to see how much got in (+ = some; +++ = a lot)
- 100's of solutes, dozens of cell types
- surprising results: previously cell membranes had been thought to be impermeant to essentially everything but water

Overton's Rules:

- cell membranes are semi-permeable
- · relative permeabilities of plant and animals cells are similar
- permeabilities correlate with solubility of solute in organic solvents
 → membrane is lipid (specifically cholesterol and phospholipids)
- certain cells concentrate some solutes \rightarrow active transport
- potency of anesthetics correlated with lipid solubility \rightarrow Meyer-Overton theory of narcosis
- · muscles don't contract in sodium-free media

Diffusion through Cell Membranes

Paul Runar Collander (1920-1950): first quantitative studies

- large cells (cylindrical algae cells, 1 mm diameter, 1 cm long)
- bathe cell in solute for time t₁, squeeze out cytoplasm, analyze
- repeat with new cell and new time t₂
- plot intracellular quantity versus time
- fit with exponential function of time (two-compartment theory)
- · infer permeability from time constant

Step 1: Dissolve

Equilibrium characterized by relative solubilities of solute *n* in oil and water

partition coefficient
$$k_{oil:water} = \frac{c_n^{oil}}{c_n^{water}}$$

Step 2: Solute diffuses though membrane

Step 3: Solute enters the cell

Fick's law:
$$\phi_n(t) = -D_n \frac{\partial c_n(x,t)}{\partial x}$$

$$= -D_n \frac{c_n(d,t) - c_n(0,t)}{d}$$
$$= \frac{D_n k_n}{d} (c_n^{\ i}(t) - c_n^o(t))$$

$$\phi_n(t) = P_n \left(c_n^{i}(t) - c_n^o(t) \right) \ ; \ P_n = \frac{D_n k_n}{d}$$

Fick's law for membranes P_n = permeability of membrane to solute n

Step 4: Concentration in cell changes: two-compartment diffusion

Assume

- \mathcal{V}_i and \mathcal{V}_o constant
- well-stirred baths: $c_n^i(t), c_n^o(t)$
- solute is conserved and membrane is thin: $c_n^i(t)\mathcal{V}_i + c_n^o(t)\mathcal{V}_o = N_n$ membrane always in steady state: $\phi_n(t) = P_n(c_n^i(t) c_n^o(t))$

By continuity,

$$A\phi_n(t) = -\frac{d}{dt}(c_n^i(t)\mathcal{V}_i) = \frac{d}{dt}(c_n^o(t)\mathcal{V}_o)$$

$$\frac{d}{dt}c_n^i(t) = -\frac{AP_n}{\mathcal{V}_i}(c_n^i(t) - c_n^o(t)) = -\frac{AP_n}{\mathcal{V}_i}\left(c_n^i(t) - \frac{1}{\mathcal{V}_o}N_n + c_n^i(t)\frac{\mathcal{V}_i}{\mathcal{V}_o}\right)$$

$$\frac{d}{dt}c_n^i(t) + AP_n(\frac{1}{\mathcal{V}_i} + \frac{1}{\mathcal{V}_o})c_n^i(t) = \frac{AP_nN_n}{\mathcal{V}_i\mathcal{V}_o}$$

First-order linear differential equation with constant coefficients, therefore

$$c_n^i(t) = c_n^i(\infty) + [c_n^i(0) - c_n^i(\infty)]e^{-t/\tau_{EQ}}$$

$$c_n^i(\infty) = \frac{N_n}{\mathcal{V}_i + \mathcal{V}_o} \qquad \qquad \tau_{EQ} = \frac{1}{AP_n(\frac{1}{\mathcal{V}_i} + \frac{1}{\mathcal{V}_o})}$$

Membrane Diffusion: Summary

Dissolve and diffuse model

- solute outside cell dissolves into cell membrane
- solute diffuses through membrane
- solute dissolves into cytoplasm

Membrane time constant $t_{SS} = \frac{d^2}{\pi^2 D_n}$

Fick's law for membranes: $\phi_n(t) = P_n \left(c_n^i(t) - c_n^o(t) \right)$; $P_n = \frac{D_n k_n}{d}$

Two-compartment diffusion

Cell time constant $t_{EQ} =$

$$\frac{1}{AP_n\left(\frac{1}{V_o}+\frac{1}{V_i}\right)}$$

Dynamics of Membrane Diffusion

- Numerical solution to eqns.
- Arbitrary initial condition (top)
- Fast dynamics (middle)
- Steady-state set up (middle)
- Eventually, the two compartments change (bottom)

Effect of changing parameters on flux: What is being changed?

$$\phi_n(t) = P_n \left(c_n^{i}(t) - c_n^o(t) \right) ; P_n = \frac{D_n k_n}{d}$$

Fick's law for membranes P_n = permeability of membrane to solute n

$$\phi_n(t) = P_n \left(c_n^{i}(t) - c_n^o(t) \right) \; ; \; P_n = \frac{D_n k_n}{d}$$

Fick's law for membranes P_n = permeability of membrane to solute n

Question(s)

- → What are cell membranes made of?
- \rightarrow How does one go about determining such?

 \rightarrow It is only relatively recently we had a picture such as this!!

Empirical means to estimate cell diffusion?

Diffusion of ethylene glycol through *Chara* membrane (Collander) (see Weiss eqns. 3.56, 3.58, 3.60)

- strong correlation between solute permeability and solute ether:water partition coefficient

- supports Overton' s rules & dissolve-diffuse mechanism

- relates in molecular weight (i.e., there is a strong 'physical' aspect to line of thought)

 \rightarrow Raises question as to what solvent best resembles partitioning in actual membranes

 \rightarrow These figures represent the key empirical observations leading up to the deduction of what constitutes the cell membrane

- Diffusion is slow over long distances (e.g., neuron carrying information to and from the toe to the base of the spinal cord)
- So how else might things get across a cell membrane? Could such a mechanism speed up 'transport'?
- \Rightarrow Specialized ion channels (permeability unique to different ions)

Exercise

Two adjoining cells have closely apposed membranes. The concentrations of uncharged solutes *n* are c_n^1 and c_n^2 inside cells 1 and 2, respectively, and c_n^0 in the intercellular space. The membrane permeabilities for this solute are P_1 and P_2 for the membranes of cell 1 and 2, respectively. Find the net permeability, *P*, between the inside of cell 1 and the inside of cell 2 in terms of P_1 and P_2 , where

$$\phi_n = P\left(c_n^1 - c_n^2\right)$$

and φ_n is the steady-state flux of *n* in mol/(cm²·s) across both membranes.