Biophysics I (BPHS 4080)

Instructors: Prof. Christopher Bergevin (cberge@yorku.ca)

Website: http://www.yorku.ca/cberge/4080W2018.html

Simple, Symmetric Four-State Model

Assumption: Steady-state
(i.e., carrier densities are independent of time)

Figure 6.20

Figure 6.21
Simple, Symmetric Four-State Model

\[c^i_S = 0, \quad c^o_S = 0 \]
\[c^i_S = K, \quad c^o_S = 0 \]
\[c^i_S = K, \quad c^o_S = K \]
\[c^i_S > K, \quad c^o_S = 0 \]
\[c^i_S = 0, \quad c^o_S > K \]
\[c^i_S \gg K, \quad c^o_S \gg K \]

Figure 6.23
Simple, Symmetric Four-State Model

\[\phi_S = (\phi_S)_{\text{max}} \left(\frac{c_S^i}{c_S^i + K} - \frac{c_S^o}{c_S^o + K} \right) \]

\[(\phi_S)_{\text{max}} = \frac{\alpha \beta}{\alpha + \beta} \eta_{ET} \]

\[\phi_S = (\phi_S)_{\text{max}} \left(\frac{c_S^o}{c_S^o + K} \right) \]

Figure 6.25
→ Carrier model qualitatively explains the data that D&D could not!
Linear way to plot nonlinear relationship (e.g., Lineweaver-Burk plot)

Figure 6.1

Figure 6.2

Simple Symmetric 4-State Carrier Model

\[
\frac{1}{\phi_S} \quad \frac{1}{(\phi_S)_{max}}
\]

\[
\frac{1}{K} \quad \frac{1}{c_S^i}
\]
Carrier-Mediated Transport: glucose transporter as example

Distinguishing characteristics of glucose transport:
- facilitated -- i.e., faster than dissolve and diffuse
- structure specific -- different rates for even closely related sugars
- passive -- given a single solute, flow is down concentration gradient
- transport saturates -- solute-solute interactions
- transport can be inhibited -- solute-other interactions
- pharmacology (cytochalasin B)
- hormonal control (insulin)

similar to water channels
(Hg, vasopressin)
Glucose transport → Important to understand re insulin (e.g., diabetes)

![Insulin backbone](image)

Figure 1.19

Figure 1.18
Distinguishing characteristics of glucose transport
- are they also characteristic of the simple symmetric 4-state model?

- facilitated: ✓ solute doesn't need to dissolve in membrane
- structure specific: ✓ parameters are structure specific
- passive: ✓ given a single solute, flow is down concentration gradient
- transport saturates: ✓ rectangular hyperbola
- transport can be inhibited: ✗ need more states
- pharmacology (cytochalasin B): ✓ similar to inhibition
- hormonal control?
(Selective) Inhibition

Glucose inhibits sorbose transport

Figure 6.3
Two solutes
(competition, both transported)
Two solutes
(competition, both transported)
2 Solutes

\[\phi_S = (\phi_S)_{max} \left(\frac{c_S^i}{c_S + K_S \left(1 + \frac{c_R^i}{K_R} \right)} \right) - \frac{c_S^0}{c_S + K_S \left(1 + \frac{c_R^i}{K_R} \right)} \]

\[\phi_S = (\phi_S)_{max} \left(\frac{c_S^0}{c_S + K_S \left(1 + \frac{c_R^i}{K_R} \right)} \right) = (\phi_S)_{max} \left(\frac{c_S^0}{c_S + K_{eff}} \right) \]

\[K_{eff} = K_S \left(1 + \frac{c_R^i}{K_R} \right) \]
1 Solute + 1 Competitive Inhibitor

\[\phi_S = \phi_{ES} = \phi_E = \phi_{EI} \]

\[\begin{align*}
S^i + E^i &\rightarrow ES^i \\
E^i &\rightarrow E^o \\
S^o &\rightarrow I^o
\end{align*} \]

\[\begin{align*}
K_S &\quad \beta \\
\phi_S &\quad \alpha \\
K_I &\quad \beta
\end{align*} \]

\[K_{eff} = K_S \left(1 + \frac{c_S^0}{\alpha + \beta K_I}\right) \]

\[\phi_S = (\phi_S)_{max} \left(\frac{c_S^o}{c_S^0 + K_S \left(1 + \frac{\alpha}{\alpha + \beta K_I}\right)}\right) \]

1 Solute + 1 Noncompetitive Inhibitor

\[\begin{align*}
S^i + E^i &\rightarrow ES^i \\
E^i &\rightarrow E^o
\end{align*} \]

\[\begin{align*}
S^o &\rightarrow I^o \\
K_I &\quad \beta \\
\phi_S &\quad \alpha \\
K_S &\quad \beta
\end{align*} \]

\[(\phi_S)_{max} = \eta_{ET} \left(\frac{\alpha \beta}{c_S^0 + K_S}\right) \]

\[(\phi_S)_{max} = \eta_{ET} \left(\frac{\alpha \beta}{c_S^0 + K_S}\right) \]

\[(\phi_S)_{max} = \eta_{ET} \left(\frac{\alpha \beta}{c_S^0 + K_S}\right) \]
Model can be adapted to describe a wide array of behaviors
Molecular biology to identify glucose transporter

Glucose transport → Are all the bases covered?

→ Need to consider additional aspects (e.g., electrical charge)

Figure 2.15
Problem 1. Solute S is transported through a membrane by the simple, symmetric, four-state carrier model. The enzyme can be found in four different states: unbound to solute at either the inside or outside faces of the membrane or bound to solute at either face. The steady-state densities of enzymes in these four states are \mathcal{N}_E^i, \mathcal{N}_E^o, \mathcal{N}_{ES}^i, and \mathcal{N}_{ES}^o mol/cm2; the total enzyme density is $\mathcal{N}_{ET} = \mathcal{N}_E^i + \mathcal{N}_E^o + \mathcal{N}_{ES}^i + \mathcal{N}_{ES}^o$. The state of the enzyme system is depicted schematically for four different conditions in the following figure.

The length of the darker part of the box representing each state is proportional to the fraction of enzyme in that state.

Answer question a-h and give brief explanations for your choice.

a) **True or False:** For all four conditions (1)-(4), $\phi_E = -\phi_{ES}$.

b) **Multiple choice:** Which of the following statements applies to (1):
 i) $c_S^i > K$.
 ii) $c_S^i = K$.
 iii) $c_S^i < K$.

c) **True or False:** The transition from (1) to (3) can be achieved by changing c_S^i only.

d) **True or False:** In (2), $\phi_S > 0$.
Problem

Simple Symmetric 4-State Carrier Model

\[
\mathcal{N}^i_{ES} = \left(\frac{\beta}{\alpha + \beta} \right) \left(\frac{c_S^i}{c_S^i + K} \right) \mathcal{N}_{ET}
\]

\[
\mathcal{N}^i_E = \left(\frac{\beta}{\alpha + \beta} \right) \left(\frac{K}{c_S^i + K} \right) \mathcal{N}_{ET}
\]

\[
\mathcal{N}^o_{ES} = \left(\frac{\alpha}{\alpha + \beta} \right) \left(\frac{c_S^o}{c_S^o + K} \right) \mathcal{N}_{ET}
\]

\[
\mathcal{N}^o_E = \left(\frac{\alpha}{\alpha + \beta} \right) \left(\frac{K}{c_S^o + K} \right) \mathcal{N}_{ET}
\]

\[
\phi_S = \left(\frac{\alpha \beta}{\alpha + \beta} \right) \mathcal{N}_{ET} \left(\frac{c_S^i}{c_S^i + K} - \frac{c_S^o}{c_S^o + K} \right)
\]
Problem

a) **True or False**: For all four conditions (1)-(4), $\phi_E = -\phi_{ES}$. \[\rightarrow \text{True} \]

b) **Multiple choice**: Which of the following statements applies to (1):

 i) $c'_S > K$.
 ii) $c'_S = K$. \[\rightarrow \text{ii} \]
 iii) $c'_S < K$.

c) **True or False**: The transition from (1) to (3) can be achieved by changing c'_S only. \[\rightarrow \text{True} \]

d) **True or False**: In (2), $\phi_S > 0$. \[\rightarrow \text{False} \]