Correlation between ABR thresholds and SFOAE magnitude.

The alligator lizards had P1 latencies between 0.95 and 1.7 ms, with a slope of 0.18 ms/°C. As in the audiograms, we saw that the amplitude of the SFOAE was highest at frequencies above 5 kHz, and the magnitude of the SFOAE was 5-10 dB at frequencies above 5 kHz. At frequencies below 5 kHz, we saw no clear change with temperature in the alligator lizard. For the Whiptail lizard, the latency shift for P1 of the ABR signal with temperature was larger (0.16-0.18 ms/°C) for the Whiptail lizard and Tegu than in the Alligator lizard (0.09-0.11 ms/°C). As in the audiograms, we saw that the latency shift with increasing temperature appeared more pronounced in species with a continuous outer hair cell membrane (Whiptail, Tegu) than those without outer hair cells (Alligator). As previously suggested by Brittan-Powell (2010), the disparity may stem from differences in coupling strength across host cells. The latency shift with temperature likely reflects an increase in sensitivity with increasing temperature, since the latency is comparable to the latency function reported by Brittan-Powell et al. (2010). The latency function ranges from 0.5 to 2 ms, which is comparable to the 1-3 ms SFOAE delays reported for different species of birds. It has been suggested that this disparity may be due to a change in the inner ear as well as to the SFOAE measurements (Bergren, 2010).