COV VS. PP SUPPLEMENT

This proof comes from Cardinal Arithmetic, p. 88.
Theorem 1. Suppose σ is regular and uncountable, and $\theta>\sigma$. Then

$$
\left.\sup \left\{\operatorname{pp}_{\Gamma(\theta, \sigma)}\left(\lambda^{*}\right): \lambda^{*} \in[\kappa, \lambda], \sigma \leq \operatorname{cf}\left(\lambda^{*}\right)<\theta\right)\right\}+\lambda=\operatorname{cov}(\lambda, \kappa, \theta, \sigma)+\lambda .
$$

Proof. In class we proved the " \leq " inequality and saw the following two exercises:

Exercise 2. If $\lambda>\kappa$ and σ is regular, then

$$
\operatorname{cov}(\lambda, \kappa, \theta, \sigma)=\sum_{\mu \in[\kappa, \lambda]} \operatorname{cov}(\mu, \mu, \theta, \sigma) .
$$

Exercise 3. If $\lambda=\kappa$ and $\operatorname{cf}(\lambda)<\sigma$ then $\operatorname{cov}(\lambda, \kappa, \theta, \sigma) \leq \lambda$.
So we may assume that $\lambda=\kappa$ and $\operatorname{cf}(\kappa) \geq \sigma$.
Suppose $\operatorname{pp}_{\Gamma(\theta, \sigma)}(\lambda)=\mu>\lambda$ (things reduce somewhat under our assumptions on the cardinals). We will prove that $\operatorname{cov}(\lambda, \kappa, \theta, \sigma) \leq \mu$.

Let $\chi=\left(2^{2^{\lambda}}\right)^{+}$and choose $N \prec\left(H_{\chi}, \in,<^{*}\right)$ so that $|N|=\mu$ and $\mu+1 \subseteq$ N. We will prove that $[\lambda]^{<\kappa} \cap N$ is a $<\sigma$-covering family.

For this, suppose $\sigma \leq \theta^{*}<\theta$ and $f: \theta^{*} \rightarrow \lambda$ is the increasing enumeration of a set to be covered.

Define I to be the σ-complete ideal of all $B \subseteq \theta^{*}$ for which f " B is a $<\sigma$-sized union of members of $[\lambda]^{<\kappa} \cap N$. In case f cannot be covered, I is a proper ideal. Let

$$
\begin{aligned}
H= & \left\{h: h: \theta^{*} \rightarrow P(\lambda) \cap N,\left(\forall i<\theta^{*}\right) f(i) \in h(i), \text { and there exist } \xi^{*}<\sigma\right. \\
& \text { and } \left.\left\langle X_{\zeta}: \zeta<\zeta^{*}\right\rangle \text { so that } X_{\zeta} \in[P(\lambda)]^{<\kappa} \cap N, \text { range }(h) \subseteq \bigcup_{\zeta<\zeta^{*}} X_{\zeta}\right\} .
\end{aligned}
$$

Let G be the set of functions with domain θ^{*} so that there is some $h \in H$ for which $g(i)=|h(i)|$. The sets H, G are nonempty-the constant $\{\lambda\}$ function is in H, for example, corresponding to the constant λ function in G.

Let $g^{*} \in G$ be $<_{I}$-minimal, corresponding to some $h^{*} \in H$ witnessed by some $\left\langle X_{j}: j<j^{*}\right\rangle$.
Claim 4. The set $\left\{i<\theta^{*}: g^{*}(i)=1\right\}$ belongs to I.
Proof of claim: for each $j<j^{*}$, the set $\left\{\alpha<\lambda:\{\alpha\} \in X_{j}\right\} \in[\lambda]^{<\kappa} \cap N$, so the claim follows immediately from the definition of I by noting that the image of $\left\{i<\theta^{*}: g^{*}(i)=1\right\}$ under f is the union over j^{*} of such sets. \dashv

Take in N a function which associates to $y \subseteq \lambda$ a \subseteq-increasing sequence $\left\langle y^{[\epsilon]}: \epsilon<\operatorname{cf}(|y|)\right\rangle$ so that $y=\bigcup_{\epsilon<\mathrm{cf}(|y|)} y^{[\epsilon]}$.

Let $\lambda_{i}:=\operatorname{cf}\left(g^{*}(i)\right)$.
Let $\tau^{*}=\sup _{j}\left|X_{j}\right|$. Then $\tau^{*}<\kappa$ since $\kappa=\lambda$ has cofinality $\geq \sigma>j^{*}$. For every i with $g^{*}(i)>\tau^{*}$, there is some $j<j^{*}$ so that

$$
\lambda_{i}:=\operatorname{cf}\left(g^{*}(i)\right) \in\left\{\operatorname{cf}(|y|): y \in X_{j}, \operatorname{cf}(|y|)>\left|X_{j}\right|\right\}=: \mathfrak{b}_{\mathfrak{j}} .
$$

The point is that for each $j<j^{*}, \mathfrak{b}_{\mathfrak{j}} \in N$, even though $\left\{\lambda_{i}: i<\theta^{*}\right\}$ may not be. There are $<\sigma$ many such \mathfrak{b}_{j}. In N, fix pcf generators $B_{\tau}^{j}:=B_{\tau}\left[\mathfrak{b}_{j}\right]$, $\tau<\mu$. By (a $J_{\lambda}^{\mathrm{bd}}$ version of) the characterizations of $J_{<\mu}^{\sigma \text {-com }}$ we proved and the assumption that $\operatorname{pp}_{\Gamma(\theta, \sigma)}(\lambda)=\mu$, for each $j<j^{*}$, there is some $\kappa_{j}<\kappa$ so that $\left\{\lambda_{i}: i<\theta^{*}\right\} \cap \mathfrak{b}_{j} \backslash \kappa_{j}$ is a subset of the union of $<\sigma$ many of the $B_{\tau}^{j}, \tau \leq \mu$. Now $B_{\tau}^{j} \in N$ since $\tau \leq \mu$ so B_{τ}^{j} in N. We can work on each B_{τ}^{j} individually to attempt to reduce the values of g^{*}.

So fix B_{τ}^{J} used above. By the calculation of cofinality of products, we can pick a cofinal family $\mathcal{P}_{\tau}^{j} \in N$ in $\left(\prod B_{\tau}^{j},<\right)$ so that $\left|\mathcal{P}_{\tau}^{j}\right|=\tau$ and hence \mathcal{P}^{j} is a subset of N.

We define a function $e \in \prod_{i: \lambda_{i} \in B_{\tau}^{j}} \lambda_{i}$ by mapping i to the least ϵ so that $f(i) \in g(i)^{[\epsilon]}$. Now there is $e_{\tau}^{j} \in \mathcal{P}_{j}$ so that $e<e_{\tau}^{j}$.

Define X_{j}^{τ} to be

$$
X_{j} \cup\left\{y^{\left[e_{\mathcal{T}}^{j}(\operatorname{cf}(|y|))\right]}: y \in X_{j}, \operatorname{cf}(|y|) \in \mathfrak{b}_{j}\right\} .
$$

The family X_{j}^{τ} is in N and has size $<\kappa$.
We will now define $h^{* *}$ in H. If $\lambda_{i}=1$, let $h^{* *}(i)=h^{*}(i)$. If $\lambda_{i} \in B_{\tau}^{j}$ for some j, τ, define $h^{* *}(i)$ to be $h^{*}(i)^{\left[e_{\tau}^{j}\left(\lambda_{i}\right)\right]}$ for the lexicographically least such (j, τ).

Let A be the set of i for which neither of the two cases above holds, consisting of the indices of the bounded set of λ_{i} thrown out for each $j<j^{*}$ in the construction above. Since $\operatorname{cf}(\kappa) \geq \sigma$, there is a $\kappa^{*}<\kappa$ so that $\lambda_{i}<\kappa^{*}$ for all $i \in A$. We can expand X_{j}^{τ} for each τ, j so that for every $y \in X_{j}^{\tau}$, if $\operatorname{cf}(|y|) \leq \kappa^{*}$ then $y^{[\epsilon]} \in X_{j}^{\tau}$. Since $\kappa^{*}<\kappa$, adding all of these sets $y^{[\epsilon]}$ to X_{j} keeps the cardinality of X_{j}^{τ} below κ (and we get the desired X_{j}^{τ} by iterating this procedure ω times, in N). Now for $i \in A$ define $h^{* *}(i)=h^{*}(i)^{[\epsilon(i)]}$, where $\epsilon(i)<\lambda_{i}$ is minimal with $f(i) \in h^{*}(i)^{[\epsilon(i)]}$.

The collection of all $X_{j}^{\tau}\left(j<j^{*}\right.$ and τ taken as above) is of size $<\sigma$ and witnesses that $h^{* *} \in H$. However, the associated $g^{* *}$ is $<_{I}$-below g^{*}, contradicting minimality of g^{*}.

