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Abstract. We investigate basic properties of three cardinal invariants involv-

ing ω1: stick, antichain number, and matching number. The antichain number
is the least cardinal κ for which there does not exist a subcollection of size κ of

[ω1]ω1 with pairwise finite intersections and the matching number is the least

cardinal κ for which there exists a subcollection X of size κ of order-type ω
subsets of ω1 so that every uncountable subset of ω1 has infinite intersection

with a member of X. We demonstrate how these numbers are affected by Co-

hen forcing and also prove some results about the effect of Hechler forcing. We
also introduce a forcing notion to increase the matching number, and study

its basic properties.

1. Introduction

In this paper, we study the connection between antichains of [ω1]ω1 modulo finite

and the stick number |•. For X a set of ordinals and δ an ordinal, we use the notation
[X]δ to denote the collection of subsets of X of order-type δ. For δ ∈ [ω, ω1), define

|•δ = min{|X| : X ⊆ [ω1]δ and ∀y ∈ [ω1]ω1∃x ∈ X(x ⊆ y)}.(1)

We will denote |•ω simply by |•.
It is easy to verify that ℵ1 ≤ |

• ≤ 2ℵ0 , so |• assumes values typical of the cardi-
nal characteristics of the continuum. In fact, there are some known relationships

between |• and well-studied cardinal characteristics (see Brendle [5]). To point out

an early example, Truss [14] showed that |• is at least the minimum of the covering
number of the meagre ideal and the covering number of the Lebesgue-null ideal.1
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1More precisely, Truss showed that the two-step iteration of adding a Cohen real followed by

adding a random real adds an uncountable subset of ω1 which does not contain any infinite subset
from the ground model; in modern language, Cohen ∗ Random is not (ω, ω1)-semidistributive. To

show the inequality of cardinals, take an elementary submodel M of a sufficiently large initial

segment of the universe so that |M | = |• and contains each member of the family witnessing |•.
If the covering numbers of the null and meager ideals are both larger than |•, then we can find
a c ∈ V Cohen-generic over M and r ∈ V random-generic over M [c], using the measure and
category characterizations of genericity. Now in M [c ∗ r] there is an an uncountable subset of ω1

which does not contain any infinite subset from the ground model, contradicting that M contains

each member of a family witnessing |•.
1
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We also study another cardinal invariant that reflects the combinatorics at ω1

and is such that every smaller cardinal lies in the range between ω1 and the contin-
uum. Define the antichain number cc(κ, ν) to be the least λ for which there does
not exist a collection of λ-many subsets of κ of cardinality κ with pairwise inter-
sections of size < ν. We will refer such a collection as an antichain. We are also
interested in cc(ω1, ω)−, where the superscript − means predecessor if the original
cardinal happens to be successor. This can also be defined as the supremum of the
cardinalities of antichains. With some additional parameters, these quantities were
studied by Baumgartner [2].

It is not difficult to see that cc(κ, ν) is always a regular cardinal. A standard
argument gives the relationship with stick.

Fact 1.1. If λ < cc(ω1, ω), then λ ≤ |•. In other words, cc(ω1, ω)− ≤ |•.

One way to increase |• and similar invariants—witnessed by an object with abso-
lute properties—is to construct large antichains of the relevant type. Historically,
this method was often used; see Baumgartner [2], Kojman [12], or Chen [7].

A third notion seems fundamental: the matching number, introduced in Section
2. In the simplest case, matω([ω1]ω1 , ω) is the smallest cardinality of a collection
of order-type ω subsets of ω1 so that for any uncountable subset of ω1, there is a
member of the collection which it intersects infinitely. By adjusting the values of
the parameters, this definition gives rise to many interesting cardinal invariants.

The present work aims to extend the study of cardinal characteristics to these
numbers which involve combinatorics at ω1. In particular, we examine the possible
values they can take in forcing extensions by various posets—Cohen (Section 4),
Hechler (Section 5), and a natural forcing designed to influence the matching num-
ber (Section 3). In some cases we manage only to obtain partial results; however,
these partial results lie along interesting dividing lines and offer a starting point for
future investigation.

In Section 6, we consider a variation |•
ad

of |• where the witnessing family is

required to be pairwise almost disjoint and show that this number is equal to |• in
all cases, answering a question of Galgon [8].

The notation we use is largely standard. If x is a set of ordinals, then ot(x)
denotes its order-type and Lim(x) denotes the set of its limit points, i.e., {α :
sup(x ∩ α) = α}. When α is an ordinal, we also use the notation ot(α) to refer to
the property of having order-type α, and the notation lim(α) to denote the set of
limit ordinals less than α. MA refers to the version of Martin’s Axiom that asserts
the existence of filters which meet < 2ℵ0 given dense subsets of a c.c.c. poset.

The cardinals b and d play an important role in this paper. Let ωω be the
collection of functions f : ω → ω, and let <∗ be the order defined on ωω to be
f <∗ g if |{α < ω : g(n) ≤ f(n)}| < ω. The unbounding number b is the least
cardinality of a family A ⊆ ωω so that for any f ∈ ωω there is a g ∈ A so that
g 6<∗ f . The dominating number d is the least cardinality of a family A ⊆ ωω so
that for any f ∈ ωω there is a g ∈ A so that f <∗ g.

Following Hrušák [9], for κ ≤ λ say that a model M is (κ, λ)-semidistributive
over V ⊆M if every subset of λ of size λ in M contains a subset of size κ in V .
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2. The matching number

We describe a weakening of the stick number |• which we denote matω([ω1]ω1 , ω),
the smallest cardinality of a collection of ot(ω) subsets of ω1 which is countably
matching for uncountable subsets of ω1.

If we weaken the guessing condition in 1 from x ⊆ y to the matching condition

|x ∩ y| = ω

and strengthen the requirement that the elements of x must be countable to in-
sisting that they must be of order-type ω, we arrive at matω([ω1]ω1 , ω). That is,
matω([ω1]ω1 , ω) is defined to be the minimal cardinality of a set X ⊆ [ω1]ω such
that for every y ∈ [ω1]ω1 , there exists x ∈ X with |x ∩ y| = ω. It is clear that

ω1 ≤ matω([ω1]ω1 , ω) ≤ |•. More generally we may define:

Definition 2.1. For γ ≤ δ ≤ κ ≤ λ, matδ([λ]κ, γ) is the minimal cardinality of an
X ⊆ [λ]δ such that for every y ∈ [λ]κ there exists x ∈ X with ot(x ∩ y) ≥ γ.

Fact 2.2. The quantity matδ([λ]κ, γ) is non-increasing in the parameters κ and δ
and non-decreasing in γ and λ.

If the elements of a matching family are limited by cardinality instead of order-
type, we can also consider natural variants like mat<µ([λ]κ, γ), and others. In the
next section, we will show to how increase the value of matω([ω1]ω1 , ω) by forcing.

Juhász considers a weakening of ♣ named the principle (t) in [11] and argues
that (t) holds after adding a Cohen real to a model of ZFC. A more direct analogue
to the matching numbers we are considering here is the natural ♣-like weakening of
(t) considered by D. Soukup [13] and called the weak (t) axiom, that is that there
exists a sequence 〈Aα : α ∈ lim(ω1)〉 with Aα ∈ [α]ω cofinal such that for every
X ∈ [ω1]ω1 , there exists α ∈ lim(ω1) with |X ∩ Aα| = ω. Soukup notes that the
weak (t) axiom fails under MA, but holds after adding a single Cohen real. We can
observe using a different method that it holds after adding a single real of a broader
class.

Theorem 2.3. If M is (ω, ω1)-semidistributive over V and contains an unbounded
real, then matω([ω1]ω1 , ω) = ω1 in M .

Proof. Let V ⊆ M be as in the hypothesis, and let f ∈ ωω be unbounded and
monotone over V . Working in V , for every α ∈ lim(ω1) larger than ω, fix 〈ξn : n <
ω〉 ⊆ α a cofinal strictly increasing sequence of ordinals such that |ξn+1\ξn| = ω for
every n < ω. Enumerate ξn+1\ξn = {βnk : k < ω} in type ω. In M , let Aα comprise
the first (f(n) + 1)-many β’s in each interval. That is, Aα =

⋃
n<ω
{βnk : k ≤ f(n)}.

Let Aω = ω.
Now, let x ∈ [ω1]ω1 . There exists y ∈ ([ω1]ω)V such that y ⊆ x. First, find the

unique α such that y ∩ α ∈ [α]ω. If α = ω then |y ∩ Aω| = ω, so suppose α > ω.
Working in V , let z = {n < ω : y ∩ (ξn+1 \ ξn) 6= ∅}. Let gy ∈ zω be defined by
setting gy(n) to be the unique m such that inf{(ξn+1 \ ξn) ∩ y} = βnm. Let g ∈ ωω
be defined as gy ◦ z, that is g(k) = gy(z(k)) for every k < ω, where we identify
z with its enumerating function. Because f is unbounded, there exists infinitely
many k with f(k) ≥ g(k), and because f is monotone, f(z(k)) ≥ f(k) ≥ gy(z(k)).
But then Aα intersects y in infinitely-many intervals, so |Aα ∩ y| = ω. �
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Remark 2.4. Note that Cohen forcing is (ω1, ω1)-semidistributive as a result of
being countable and adds unbounded reals, so satisfies the hypotheses of Theorem
2.3. However, Laver forcing for example does not add Cohen reals but also satisfies
the hypotheses of Theorem 2.3.

Remark 2.5. Juhász’s observation can be used to show that consistently, the match-
ing number matω([ω1]ω1 , ω) is less than the antichain number cc(ω1, ω)−: simply
increase cc(ω1, ω)− by any means, and then add a Cohen real (or any use any forcing
satisfying the hypotheses of Theorem 2.3).

The argument in Theorem 2.3 can also show that matching families for [λ]κ con-
sisting of elements of order-type κ have a connection to the (un)bounding number
b(κ). Similarly, covering collections for [λ]κ consisting of elements of order-type κ
have a connection to the dominating number d(κ). To state these connections, it
is helpful to define the covering number. For γ ≤ δ ≤ λ define covδ([λ]γ) to be the
minimal cardinality of a covering set for [λ]γ consisting of ot(δ) subsets of λ. That
is, the minimal cardinality of an X ⊆ [λ]δ such that for every y ∈ [λ]γ , there exists
x ∈ X with y ⊆ x. The following Proposition 2.6 is straightforward to prove using
the method of Theorem 2.3 along with an induction argument.

Proposition 2.6. If κ is regular and λ ∈ (κ,ℵκ), then matκ([λ]κ, κ) = λ ·b(κ) and
covκ([λ]κ) = λ · d(κ).

Remark 2.7. Proposition 2.6 says that b is the minimal cardinality of a collection
of ot(ω) subsets of ω1 which is matching for [ω1]ω and d is the minimal cardinality
of a collection of ot(ω) subsets of ω1 which is covering for [ω1]ω.

This connection between ot(ω)-matching and covering, and unbounded and dom-
inating reals can also be phrased in terms of models.

Definition 2.8. Let V ⊆M be models. Then V is ([ω1]ω, ot(ω))-covering in M if
for every y ∈ ([ω1]ω)M , there exists x ∈ ([ω1]ω)V with y ⊆ x. V is ([ω1]ω, ot(ω))-
matching in M if for every y ∈ ([ω1]ω)M , there exists x ∈ ([ω1]ω)V with |x∩y| = ω.

Proposition 2.9. Let V ⊆ M be models. Then V is ([ω1]ω, ot(ω))-covering in M
if and only if M does not add an unbounded real. Similarly, V is ([ω1]ω, ot(ω))-
matching in M if and only if M does not add a dominating real.

It is useful to have notation for the type of subsets witnessing e.g. a failure
of matching or covering as we have been considering, just as one can refer to an
unbounded real as witnessing the failure of ωω-bounding. The following notation
is suitable, and can be easily generalized to other ordinal order-types, disjointing
modulo sets of cardinality less than κ, etc.

Definition 2.10. If V ⊆ M are models, say that M contains an [ω1]ω-disjointing
ot(ω)-subset over V if there exists some x ∈ ([ω1]ω)M such that for every y ∈
([ω1]ω)V , |x ∩ y| < ω. Similarly, say that M contains an [ω1]ω-uncovered ot(ω)-
subset if and only if there exists x ∈ ([ω1]ω)M such that for every y ∈ ([ω1]ω)V ,
¬(x ⊆ y).

With the terminology of Definition 2.10, Proposition 2.9 says that a dominat-
ing real is added if and only if an [ω1]ω-disjointing ot(ω)-subset is added and an
unbounded real is added if and only if an [ω1]ω-uncovered ot(ω)-subset is added.
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3. The poset Pmatδ

In this section, we investigate a natural forcing notion to increase the matching
number.

Definition 3.1. Let Pmatδ consist of conditions p = (sp, cp) where sp ∈ [ω1]<ω and
cp ∈ [ω1]<δω, ot(cp) = δk for some k < ω. Say that (sq, cq) ≤ (sp, cp) if and only if
sq ⊇ sp, cq ⊇ cp, and (sq \ sp) ∩ cp = ∅.

It is not difficult to see that forcing with Pmatδ adds a subset AG =
⋃
p∈G sp

such that |AG| = |ωV1 | and |AG ∩ a| < ω for every a ∈ ([ω1]δ)V . We will check that
P is c.c.c.

Theorem 3.2. The poset Pmatδ is c.c.c.

Proof. Let {pξ = (sξ, cξ) : ξ < ω1} ⊆ Pmatδ . Using the ∆-system lemma, we
may assume that {sξ : ξ < ω1} forms a ∆-system with root r. Note that for
ξ < ω1, there exist at most countably-many ξ′ < ω1 such that (sξ′ \ r)∩ cξ 6= ∅. So
by iteratively removing offending conditions, we may assume that for ξ < ξ′ < ω1,
(sξ′\r)∩cξ = ∅. By a further thinning, we may similarly assume that for ξ < ξ′ ∈ ω1,
sup(r) < min(sξ \ r) and sup(sξ) < inf(sξ′ \ r).

For future reference, we will call a ∆-system {sξ : ξ < ω1} head-tail-tail with
root r if it satisfies the conditions of the previous sentence.

Next, consider pδω. Enumerate cδω = 〈αβ : β < ot(cδω)〉 in increasing order. For
any ξ < δω, because (sδω \r)∩cξ = ∅, if pξ ⊥ pδω then necessarily for some βξ < δk,
αβξ ∈ sξ. Suppose towards a contradiction that pξ ⊥ pδω for every ξ ∈ δω. Then
〈αβξ : ξ < δω〉 ⊆ 〈αβ : β < ot(cδω)〉 is increasing, contradicting ot(cδω) < δω. �

This forcing can be iterated to increase the matching number. For example,

Corollary 3.3. Under MA, we have matδ([ω1]ω1 , ω) = matδ([ω1]δω, ω) = 2ω for
every δ ∈ [ω, ω1).

We observe that the Pmatδ forcings can consistently add a large antichain.

Proposition 3.4. There is a model V of |• = ℵ1 so that cc(ω1, ω) > ω1 in the
extension obtained by forcing with the poset Pmatωω over V .

Proof. Start from the model V of Chen [7] where |• = ℵ1 and there is a collection of
ℵ2-many subsets 〈Aα : α < ω2〉, Aα ⊆ ω1 whose pairwise intersections have order-
type less than ωω. Let eα : ω1 → Aα be the increasing enumeration of Aα for each
α < ω2. Note that Pmatωω adds a subset AG ⊆ ω1 having finite intersection with

every element of ([ω1]ω
ω

)V . Let Bα := eα[AG]. Then Bα also has finite intersection
with every element of ([ω1]ω

ω

)V . Now for any α, α′ < ω2 distinct,

Bα ∩Bα′ ⊆ (Aα ∩Aα′) ∩Bα
is finite. �

Now we consider the question of whether Pmatω adds an uncountable subset of

ω1 whose intersection with every member of [ω1]ω
2 ∩ V is finite (and thus has the

crucial property of the generic subset of ω1 added by Pmatω2 ). We show that this
doesn’t happen, so Pmatω satisfies a very weak form of distributivity. A main tool
will be the following lemma, which reappears in Section 5.
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Lemma 3.5. If {fξ : ξ ∈ ω1} ⊆ ωω, then for some g ∈ ωω,

|{ξ ∈ ω1 : ∀n ∈ ω(fξ(n) < g(n))}| ≥ ω.
Proof. Fix {fξ : ξ ∈ ω1} ⊆ ωω. First, find n0 ∈ ω such that A0 = {ξ ∈ ω1 : fξ(0) <
n0} is uncountable. Then find n1 ∈ ω such that A1 = {ξ ∈ A0 : fξ(1) < n1} is
uncountable. Proceeding in this fashion, we have 〈ni : i ∈ ω〉 and A0 ⊇ A1 ⊇ . . ..
Let A = {αn : n ∈ ω} ⊆ ω1 be such that αn ∈ An. By construction, if g(k) =
nk +

∑
i∈k

fαi(k) for every k ∈ ω, then sup{fα(k) : α ∈ A} < g(k), as desired. �

Actually, we will use the following strengthened version of Lemma 3.5.

Corollary 3.6. Suppose k < ω and there are k families {f iξ : ξ ∈ ω1} ⊆ ωω, i < k.
Then for some h ∈ ωω,

ot({ξ ∈ ω1 : ∀i < k∀n ∈ ω(f iξ(n) < h(n))}) ≥ ω2.

Proof. By letting fξ := supi<k f
i
ξ, it suffices to prove the corollary for a single

family. Apply Lemma 3.5 ω1 times to get subsets Aζ ∈ [ω1]ω and functions gζ ∈ ωω
for ζ < ω1 so that:

• for all ξ ∈ Aζ , fξ < gζ (pointwise).
• for ζ < ζ ′ < ω1, sup(Aζ) < min(Aζ′).

Remark 3.7. It is possible to replace ω2 in the Corollary above by any countable
ordinal, using the technique of [10] in a straightforward way.

Then applying Lemma 3.5 again, there is B ∈ [ω1]ω and h ∈ ωω so that gζ < h
for all ζ ∈ B. This choice of h works, bounding all fξ with ξ ∈

⋃
ζ∈B Aζ . �

Theorem 3.8. Forcing with P := Pmatω does not add an uncountable subset of ω1

whose intersection with every member of [ω1]ω
2 ∩ V is finite.

Proof. Let Ȧ be a P-name for an uncountable subset of ω1 and let p ∈ P be arbitrary.
Find an increasing sequence 〈βξ : ξ < ω1〉 and pξ = (sξ, cξ) ≤ p so that pξ  βξ ∈ Ȧ.
Then we may thin out and re-index to assume:

(1) {sξ : ξ < ω1} forms a head-tail-tail ∆-system (defined in the proof of
Theorem 3.2) with root r.

(2) There is a k < ω so that for all ξ < ω1, ot(cξ) = ω · k.
(3) {Lim(cξ) : ξ < ω1} forms a head-tail-tail ∆-system with root r′.
(4) For each ξ < ω1, let tail(ξ) = {α ∈ cξ : min(Lim(cξ) \ α) 6∈ r′}. Then
{tail(ξ) : ξ < ω1} forms a ∆-system with root rtail.

To get condition 4, we use the following combinatorial lemma:

Lemma 3.9. Suppose {dξ : ξ < ω1} is a set of subsets of ω1 of order-type ω,
and sup(dξ) is strictly increasing in ξ. Then there is a subset X ⊆ ω1 such that
|X| = ω1 and {dξ : ξ ∈ X} is a head-tail-tail ∆-system with a finite root.

Proof of Lemma 3.9. For each ξ < ω there is kξ < ω so that |dξ+1 ∩ sup(dξ)| = kξ.
Fix the value k for kξ on an uncountable set X ′. For each ξ ∈ X ′, let start(ξ + 1)
be the least k elements of dξ+1. Then there is an uncountable X ′′ ⊆ X ′ so that
{start(ξ + 1) : ξ ∈ X ′′} forms a head-tail-tail ∆-system with root r. Now thin to
get an uncountable X so that for any ξ < ξ′ both in X, sup dξ < min(start(ξ′) \ r).

We can now check that for any ξ < ξ′ both in X,

dξ ∩ dξ′ ⊆ sup(dξ) ∩ dξ′ ⊆ sup(dξ) ∩ start(ξ′) = r,
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and the least element of dξ′ \ r is above sup(dξ). �

Now condition 4 can be achieved by breaking each cξ into k blocks of order-
type ω and applying Lemma 3.9 to the families of corresponding blocks to build a
head-tail-tail ∆-system.

For each ξ < ω1, let

head(ξ) = {α ∈ cξ : min(Lim(cξ) \ α) ∈ r′}.

We will find x ∈ [ω1]ω
2

and y ∈ [ω1]<ω
2

so that for each ξ ∈ x, head(ξ) ⊆ y.
For each α ∈ r′, find 〈αn : n < ω〉 increasing and cofinal in α. Let ϕαn :

[αn, αn+1)→ ω be injective. Associate to each ξ < ω1 and each α ∈ r′ the function
fαξ defined by

fαξ (n) := supϕαn[cξ ∩ [αn, αn+1)].

By Corollary 3.6, there are B ∈ [ω1]ω
2

and h : ω → ω so that fαξ < h pointwise for

all α ∈ r′ and all ξ ∈ B. Define

x := {βξ : ξ ∈ B}

y :=
⋃

α∈r′,n<ω
ϕαn[h(n)]

and

p∗ := (r, rtail ∪ y).

Note that ot(y) ≤ ωk.

To finish the proof, we claim that p∗ forces x ∩ Ȧ is infinite.
To show this, let (s, c) ≤ p∗ be arbitrary and x0 ⊆ x be finite, and we will find

a strengthening of (s, c) which forces a member of x \ x0 into Ȧ.
The set C0 := {ξ < ω1 : (sξ \ r)∩ c 6= ∅} has order-type < ω2 since {sξ : ξ < ω1}

forms a head-tail-tail ∆-system with root r.
Now consider the set C1 := {ξ ∈ B : s∩(cξ \(rtail∪y)) 6= ∅}. By the construction

of B and p∗, if ξ ∈ B then cξ \ y ⊆ tail(ξ). But {tail(ξ) : ξ < ω1} forms a ∆-system
with root rtail. So

|{ξ ∈ B : s ∩ (cξ \ (rtail ∪ y)) 6= ∅}| < ω.

Putting this all together, there exists ξ ∈ B \ (C0 ∪ C1) with βξ ∈ x \ x0. Now

(s, c) is compatible with pξ and a common strengthening forces βξ ∈ Ȧ. �

Theorem 3.8 does not extend to iterations.

Proposition 3.10. Pmatω ∗ Ṗmatω adds an uncountable subset of ω1 whose inter-

section with every member of [ω1]ω
2 ∩ V is finite.

Proof. Let G0 ∗ G1 be generic for the iteration, and let A0 =
⋃
p∈G0

sp and A1 =⋃
p∈G1

sp be the subsets of ω1 they define in the generic extension. By a straightfor-

ward density argument, A1 has infinite intersection with every member of [ω1]ω
2 ∩

V [G0], so A0 ∩A1 is uncountable.

Let y ∈ [ω1]ω
2∩V be arbitrary. Then y∩(A0∩A1) = (y∩A0)∩A1. Since y ∈ V we

have ot(y∩A0) ≤ ω and since y∩A0 ∈ V [G0] we conclude ot((y∩A0)∩A1) < ω. �
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4. Cohen forcing

In this section, let C be Cohen forcing and for a cardinal κ let Cκ be the forcing
adding κ Cohen reals with finite support. For concreteness, let Cκ be the set of all
partial functions κ→ 2 with finite domain, ordered by reverse inclusion.

Proposition 4.1. Forcing with C does not change the value of |•.
Proof. Let G be generic for C over V . As Cohen forcing is (ω1, ω1)-semidistributive,

a |•-sequence in the ground model remains a |•-sequence in the extension, so |•
V [G]

≤
|•
V

. On the other hand, we can construct a |•-sequence in the ground model from a

name for a |•-sequence in the extension. More generally, we can prove:

Lemma 4.2. Suppose P is a forcing poset preserving ω1. Then for any generic G,

|•
V
≤ max{|•

V [G]
, d(P)}. Here d(P) refers to the density of P, that is the minimal

cardinality of a dense subset of P.

Working in V , let 〈ḋξ : ξ < |•
V [G]
〉 be a name for a |•-sequence of minimal

cardinality in V P and let 〈pi : i < d(P)〉 be an enumeration of a suitable dense

D ⊆ P. Let Aξi = {A ∈ [ω1]ω1 : pi  ḋξ ⊆ A}. Then we claim that the set{⋂
Aξi : ξ < |•

V [G]
, i < d(P)

}
is a |•-sequence in V . This set has cardinality max{|•

V [G]
, d(P)} and each member

is infinite (since each ḋξ is forced to be infinite). Finally, for each A ∈ [ω1]ω1 there

are i, ξ such that pi  ḋξ ⊆ A, so
⋂
Aξi ⊆ A. �

The (ω1, ω1)-semidistributivity together with other simple properties also easily
implies that C has no effect on cc(ω1, ω) or matω([ω1]ω1 , ω).

It is not difficult to show that Cω1
adds an uncountable subset of ω1 with no

infinite subset in the ground model (i.e., Cω1
is not (ω, ω1)-semidistributive). There-

fore, for κ regular and uncountable, Cκ makes the value of |• at least κ. Alterna-

tively, it is not difficult to see that MA(Cω1
) implies |• = 2ω.

We also observe that after forcing with Cκ for any κ, ([ω1]ω)V is countably
matching for [ω1]ω1 . In fact, since Cκ does not add dominating reals, Proposition
2.9 implies that V is ([ω1]ω, ot(ω))-matching in V [G], so ([ω1]ω)V is even countably
matching for [ω1]ω.

We will now show that cc(ω1, ω) is not affected by adding ω2 Cohen reals. This

is not obvious from Fact 1.1 since as noted |• > ℵ1 in this model.
Say that a partial order P is < κ-centered if and only if for some λ < κ we can

write P =
⋃
α∈λ

Pα where Pα ⊆ P is centered, that is so that every finite collection

of conditions in Pα has a lower bound in Pα. First, we present a well-known but
somewhat surprising fact:

Fact 4.3. Let log2(ℵ2) be the least cardinal κ such that 2κ ≥ ω2. Then Cω2
is

< log2(ℵ2)+-centered. Therefore, Cω2
is ω1-centered, and if CH fails then Cω2

is
σ-centered.

Proof. If CH fails then log2(ℵ2) = ℵ0, and otherwise log2(ℵ2) = ℵ1. It is well-
known that there is an independent family on log2(ℵ2) of size ℵ2, i.e., a family
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〈fα : α < ω2〉 of functions log2(ℵ2)→ 2 such that for any finite subset A ⊆ ω2 × 2,
there is ξ < log2(ℵ2) so that for each (α, ε) ∈ A, fα(ξ) = ε.

Now for ξ < log2(ℵ2), let D(ξ) be the set of all conditions p ∈ Cω2 so that for
all α ∈ supp(p), p(α) = fα(ξ). Clearly, D(ξ) is centered. Since the functions fα
are independent, any p ∈ Cω2

is in D(ξ) for some ξ < log2(ℵ2). This proves the
fact. �

Theorem 4.4. Let cc(ω1, ω) = κ. After forcing with Cω2
, the value of cc(ω1, ω)

remains κ.

Proof. First we consider the case where CH fails. Then Fact 4.3 implies that Cω2

is σ-centered, so let D(n), n < ω, be centered subsets whose union is Cω2 .

Suppose that there is in V Cω2 a name for an antichain 〈Ȧα : α < κ〉.
For each α < κ, let A′α ⊆ ω1 be cofinal in ω1 so that:

(1) for every ξ ∈ A′α, there is pαξ  ξ ∈ Ȧα.

(2) there is nα < ω so that pαξ ∈ D(nα) for all ξ ∈ A′α.

(3) 〈dom(pαξ ) : ξ ∈ A′α〉 forms a ∆-system with root rα, and there is pα so that
pαξ �r

α = pα.

We obtain A′α by using the fact that Ȧα is forced to be cofinal in ω1, thinning to
stabilize the centered piece containing the pαξ , and then using the ∆-system lemma.

Since κ is regular, there are n < ω and X ⊆ κ with |X| = κ such that nα = n for
all α ∈ X. Take α0, α1 distinct in X such that |A′α0

∩A′α1
| ≥ ω. Let p∗ := pα0∪pα1 .

We will show that p∗ forces that Ȧα0 ∩ Ȧα1 is infinite, a contradiction.
For this, fix B ⊆ A′α0

∩ A′α1
of order-type ω. We will show that for every

ξ′ < sup(B), the set of conditions p ≤ p∗ forcing some ξ ∈ B \ ξ′ into Ȧα0
∩ Ȧα1

is dense. So let q ≤ p∗. Since dom(q) is finite, and 〈dom(pαξ ) : ξ ∈ A′α〉 forms a

∆-system for α = α0, α1, there is ξ ∈ B \ ξ′ so that dom(q) ∩ dom(pα0

ξ ) ⊆ rα0 and

dom(q)∩dom(pα1

ξ ) ⊆ rα1 . Then pα0

ξ , pα1

ξ , and q are all compatible, and their union

forces ξ into Ȧα0
∩ Ȧα1

. This finishes the proof in the first case.
If CH holds, this result is proved in Section 5 of [3]. We remark that the argument

above adapts for this case as well, using the < ω2-centeredness of Cω2 (Fact 4.3) and
the CH to ensure that conditions forcing corresponding ordinals into the members
of the antichain come from the same centered piece. �

5. Hechler forcing

Proposition 2.9 gives a strong limitation about what happens to the matching
numbers under forcings which do not add dominating reals, so our focus shifts to
forcing which do add them, such as Hechler forcing.

Furthermore, we are interested in whether b can be large while the values of the

cardinal invariants remain small. For example, it is open whether |• = ℵ1 implies
b = ℵ1. A natural way to increase b is to iterate forcings which add dominating
reals.

Let D be the Hechler poset, which is the set of pairs (s, f) such that s ∈ <ωω,
f ∈ ωω, and s ⊆ f , with ordering (s, f) ≤ (t, g) iff s ⊇ t and f(n) ≥ g(n) for all n.
We call s the stem of the condition.

Proposition 5.1. D is (ω1, ω1)-semidistributive if and only if b > ω1.



10 WILLIAM CHEN AND GEOFF GALGON

Proof. First suppose b > ω1. Let Ȧ be a D-name for an uncountable subset of ω1.
Then find an increasing sequence 〈βξ : ξ < ω1〉 in ω1 and conditions pξ = (sξ, fξ),

ξ < ω1, so that pξ  βξ ∈ Ȧ. By thinning out, we may assume that all conditions
have the same stem s. Since b > ω1, {fξ : ξ < ω1} is <∗-bounded, so find a
bound g. By thinning out again, we may assume that there is some n < ω so
that {fξ(i) : fξ(i) > g(i)} ⊆ n for all ξ < ω1. Then define h := max(n, g) on
ω \ dom(s) (and h = s on dom(s)). The condition (s, h) is a common lower bound

for {pξ : ξ < ω1} and therefore (s, h)  {βξ : ξ < ω1} ⊆ Ȧ.
Now suppose b = ω1. Fix a <∗-increasing, unbounded sequence of functions

B = 〈gξ : ξ < ω1〉 and a bijection ϕ : <ωω × B → ω1. Define a D-name Ȧ for a

subset of ω1 so that (s, f)  α ∈ Ȧ if and only (s, f) ≤ ϕ−1(α). Now Ȧ is forced
to be uncountable, since for any α0 < ω1 and (s, f) ∈ D there is some ξ so that
ϕ(s, gξ) > α0, and (s, gξ) and (s, f) are compatible.

It remains to see that Ȧ contains no ground model uncountable set. Suppose
otherwise, so there are (s, f) ∈ D and A′ ∈ [ω1]ω1 ∩ V so that (s, f)  A′ ⊆ Ȧ. Let

I = {gξ : ∃α ∈ A′∃t ∈ <ωω (ϕ−1(α) = (t, gξ))}.

The set I must be uncountable since A′ is uncountable and <ωω is countable. Since
B is <∗-increasing, I is unbounded. But by the definition of the name Ȧ, we have
(s, f) ≤ ϕ−1(α) for all α ∈ A′, which implies that f(n) ≥ gξ(n) for all gξ ∈ I and
n ≥ length(s), a contradiction. �

Remark 5.2. The same argument as in Proposition 5.1 shows more generally that
for regular κ, D is (κ, κ)-semidistributive if b > κ and is not (κ, κ)-semidistributive
if b = κ. However, because d(D) = d and generally for any λ with cf(λ) > d(P)
we must have that P is (λ, λ)-semidistributive by a pigeonhole argument, D is for
example (d+, d+)-semidistributive.

The argument in Proposition 5.1 showed that when b > ω1, if {fξ : ξ ∈ ω1} ⊆ ωω
then for some g ∈ ωω,

|{ξ ∈ ω1 : ∀n ∈ ω(fξ(n) < g(n))}| = ω1.

Compare this to Lemma 3.5, which says that (regardless of the value of b) if {fξ :
ξ ∈ ω1} ⊆ ωω, then for some g ∈ ωω,

|{ξ ∈ ω1 : ∀n ∈ ω(fξ(n) < g(n))}| ≥ ω.

It is then straightforward to see

Proposition 5.3. D is always (ω, ω1)-semidistributive.

We can apply the results about semidistributivity to prove a partial result on
the preservation of cc(ω1, ω) by Hechler forcing.

Theorem 5.4. Suppose either CH holds or b > ω1. Let cc(ω1, ω) = κ. After forcing
with D, the value of cc(ω1, ω) remains κ.

Proof. If CH holds in V , then it holds in the extension by D and hence cc(ω1, ω)
remains ω1.

If b > ω1, then suppose that there is in V D a name for an antichain 〈Ȧα : α < κ〉.
For each α < κ, find A′α ∈ [ω1]ω1 and pα = (sα, fα) so that pα  A′α ⊆ Aα. By
thinning, we may assume that there is s ∈ <ωω such that sα = s for all α < κ.
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Since cc(ω1, ω) = κ in the ground model, there are α < β < κ so that A′α ∩ A′β is
infinite. But then

(s,max(fα, fβ))  A′α ∩A′β ⊆ Ȧα ∩ Ȧβ ,

contradicting that 〈Ȧα : α < κ〉 was forced to be an antichain. �

Unfortunately, the hypothesis b > ω1 does not persist through iterations of
the forcing (even the two-step iteration, as shown by [6]) and we do not know
if the iteration preserves the value of cc(ω1, ω), or whether it is consistent that
b > cc(ω1, ω)−.

6. Almost disjoint |• sequences

In this section, we consider the problem of the existence of |• sequences which
are themselves almost disjoint families.

For a cardinal κ, define |•
ad

(κ) to be the minimal cardinality of an almost disjoint

subset X ⊆ [κ+]κ such that for every y ∈ [κ+]κ
+

there exists x ∈ X with x ⊆ y.
Here X is said to be almost disjoint if |x ∩ x′| < κ for every x, x′ ∈ X. We denote

|•
ad

(ω) by |•
ad

. In [8] it was observed that |• = |•
ad

so long as |• < 2ω. In [7] it

was observed that if |• = ω1, then |• = |•
ad

. Using a result of Balcar and Vojtáš [1]
concerning the almost disjoint refinability of positive sets for certain tall ideals over

ω, we may show that |• = |•
ad

outright.

Theorem 6.1. |• = |•
ad

.

Proof. For |• < 2ω we have already seen that |• = |•
ad

, so it suffices to show that

[ω1]ω
2

can be almost disjointly refined. Fix δ ∈ lim(ω1) and let 〈αδn : n ∈ ω〉 ⊆ δ
be increasing and cofinal with αδ0 = 0 and |[αδn, αδn+1)| ≥ n for every n ∈ ω. Let

Q = {qn : n ∈ ω} with qn = [αδn, α
δ
n+1) be the corresponding partition of δ so that

in particular Q comprises pieces which are not eventually bounded by any finite
cardinality. Let Y+(Q) denote the collection of positive sets for the ideal over δ
generated by Q along with the subsets of δ whose intersections with the qn’s are
eventually bounded in finite cardinality. By Theorem A in [1], Y+(Q) has an almost
disjoint refinement. Let Xδ = {x ∈ [δ]ω : |x ∩ qn| < ω and limsupn|x ∩ qn| = ω},
and note that Xδ ⊆ Y+(Q) and comprises elements of order type ω. So there exits
Aδ ⊆ [δ]ω such that Aδ is an almost disjoint collection and for every x ∈ Xδ there
is a ∈ Aδ with a ⊆ x. Note that A = {a ∈ [ω1]ω : a ∈ Aδ for some δ ∈ lim(ω1)} is

an almost disjoint collection, and if x ∈ [ω1]ω
2

there exists y ∈ Xsup(x) with y ⊆ x,
so then for some a ∈ Asup(x) ⊆ A, a ⊆ y ⊆ x. That is, A is an almost disjoint

refinement of [ω1]ω
2

. �

Let MAD(κ) denote the spectrum of cardinalities of maximal almost disjoint
collections of κ-sized subsets of κ modulo < κ. In [8] it is observed that any λ-
sized collection of elements in [κ]κ of cardinality less than cc(κ, κ)− can be almost
disjointly refined. Balcar and Vojtáš’s Theorem A may be generalized in certain
circumstances [8]:
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Proposition 6.2. Let κ > ω be regular with the additional property that MAD(κ)∩
(κ, 2κ] = {2κ}. Let {qβ : β ∈ κ} ⊆ P (κ) be a partition of κ such that |{β ∈ κ :
|qβ | ≥ ω}| = κ. Then {x ∈ [κ]κ : |{β ∈ κ : |x ∩ qβ | ≥ ω}| = κ} can be almost
disjointly refined.

Note that the combinatorial hypotheses of Proposition 6.2 hold if κ is regular
and 2κ = κ+. Using 6.2, we can generalize Theorem 6.1 to larger κ in certain
circumstances.

Proposition 6.3. If κ > ω is regular with the additional property that MAD(κ) ∩
(κ, 2κ] = {2κ}, |•κ = |•

ad

κ .

Proof. The proof is analogous to the argument in Theorem 6.1, this time referencing

Proposition 6.2 to show that [κ+]κ
2

can be almost disjointly refined by considering
a suitable κ-ladder to every α ∈ κ+ which can accommodate a cofinal ot(κ2)-
sequence, and so on. �

7. Open questions

Many open questions remain. The first question addresses matching numbers
for countable subsets of ω1.

Question 7.1. Is it consistent that matδ([ω1]δ·ω
2

, ω) < matδ([ω1]δ·ω, ω)?

We would like to have a more complete picture of the matching numbers for
uncountable subsets of ω1.

Question 7.2. What are the equalities between quantities of the form matδ([ω1]ω1 , ω)
provable in ZFC?

The general question of computing cc(ω1, ω) in different forcing extensions is
interesting. In particular, we ask:

Question 7.3. Can D change the value of cc(ω1, ω)? What about Hechler iterations
(finite support, or even the mixed-support iterations considered in Brendle [4])?

By the results of Section 5, the question for a single Hechler forcing is only of
interest when b = ω1 and ¬CH.

We saw that Lemma 3.5 is used both in understanding the semidistributivity of
Hechler forcing as well as in the proof to Theorem 3.8. It is natural to consider
higher analogues, like the following question about ω1-Baire space:

Question 7.4. If {fξ : ξ ∈ ω2} ⊆ ω1ω1, when is it the case that there exists a
g ∈ ω1ω1 with |{ξ ∈ ω1 : ∀α ∈ ω1(fξ(α) < g(α))}| ≥ ω1?

Remark 7.5. The statement that there always exists such a function g in Question
7.4 is consistently true modulo large cardinals—in the model obtained by Lévy
collapsing a measurable cardinal λ to ω2, the resulting strong ideal over ω2 can be
used to mimic the proof of Lemma 3.5.

References
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