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Abstract. Let κ be a singular cardinal of countable cofinality, 〈κn : n < ω〉
a sequence of regular cardinals which is increasing and cofinal in κ. Using a
scale, we define a mapping µ from

∏
n P(κn) to P(κ+) which relates tight

stationarity on κ to the usual notion of stationarity on κ+. We produce a

model where all subsets of κ+ are in the range of µ for some κ a singular.
Using a version of the diagonal supercompact Prikry forcing, we obtain such

a model where κ is strong limit. Then we construct a sequence of stationary

sets that is not tightly stationary in a strong way, namely, its image under µ
is empty. All of these results start from a model with a continuous tree-like

scale on κ.

1. Introduction

In their study of the non-saturation of the nonstationary ideal on [κ]ω for κ a
singular cardinal, Foreman and Magidor [8] introduced two concepts of stationarity
for singular cardinals (even those of countable cofinality): mutual stationarity and

tight stationarity. Each of these notions is a property of sequences ~S = 〈Sξ : ξ <
cf(κ)〉 where Sξ ⊆ κξ and 〈κξ : ξ < cf(κ)〉 is a sequence of regular cardinals cofinal
in κ. Tight stationarity is a more tractable strengthening of mutual stationarity
that admits analogues of results for the classical notion of stationarity for regular
cardinals, namely Fodor’s lemma and Solovay’s splitting theorem (whether those
results hold for mutual stationarity is an open problem, see [7]).

This paper explores a method to transfer results from the theory of stationary
subsets of κ+ to that of tightly stationary sequences on κ. We introduce a function

µ which takes a sequence ~S = 〈Sξ : ξ < cf(κ)〉 to a subset of κ+. The key property

of µ is that it preserves stationarity in the sense that ~S is tightly stationary if and

only if µ(~S) is stationary (this requires certain assumptions, see Lemma 2.5 for a
precise statement). This function µ will be defined from a scale, and makes sense
if there is a scale on

∏
κξ modulo the ideal of bounded subsets of κ.

The existence of µ is by itself enough for some connections between stationarity
at κ+ and tight stationarity at κ. For example, it can be used to derive the version
of Fodor’s lemma previously obtained by Foreman-Magidor [8] for tight stationarity
at κ from the usual Fodor’s lemma at κ+; see Proposition 2.7.

But for other applications, we want to have an inverse for µ, in the following

strong sense: for each A ⊆ κ+ we want to have a sequence ~S so that µ(~S) = A and

µ(~S′) = κ+ \A, where ~S′ is the sequence S′ξ = κξ \Sξ. Call A ⊆ κ+ careful if there
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exists such a sequence ~S. The notion of carefulness can be thought of as a symmet-
rical strengthening of being in the range of µ — Boolean operations on careful sets
commute with µ, although this is not generally true for sets which are just in the
range of µ. Consequently, µ gives a particularly useful connection between careful
subsets of κ+ and sequences of the kind considered for tight stationarity.

If every subset of κ+ is careful, then we can transfer Solovay’s splitting theorem
on κ+ to the context of tight stationarity on κ. Under this assumption, we obtain
a new splitting result for tightly stationary sets (Proposition 2.8). We remark
that Proposition 2.8 differs from the splitting theorem obtained by Foreman and
Magidor in [8].

Although there are many situations in which there exists a non-careful subset
of κ+, the main constructions in this paper show that it is actually consistent for
every subset of κ+ to be careful. In Section 3, we use forcing to construct a model
where every subset of κ+ is careful. The construction succeeds when κ has cofinality
which is either countable or indestructibly supercompact. The µ function here is
defined from a scale which is tree-like, a useful property studied by Pereira [11].

In Section 4, we start with a supercompact cardinal κ and modify the construc-
tion of Section 3 so that in the extension, κ is a strong limit singular cardinal of
countable cofinality and every subset of κ+ is careful. Additionally, collapses can
be interleaved into the construction so that κ is the least cardinal fixed point (i.e.,
the least κ with κ = ℵκ). This uses ideas from the diagonal supercompact Prikry
forcing of Gitik–Sharon [9].

In Section 5, we address the question of whether there is always a sequence of
stationary sets that is not tightly stationary. We prove that if the scale used to

define µ is tree-like, then there is a sequence ~S such that Sξ is stationary for every

ξ < cf(κ) and µ(~S) = ∅ (in fact, µ(~S′) = κ+, where S′ξ = κξ \ Sξ). This shows
in particular that there is a sequence of stationary subsets which is not tightly
stationary, under the seemingly mild assumption of a continuous tree-like scale at
κ.

2. Preliminaries

First we will define the terminology used in the introduction. Let κ be a singular
cardinal, and 〈κξ : ξ < cf(κ)〉 a sequence of regular cardinals cofinal in κ.Take

θ = (22
κ

)+ and letA be an algebra on H(θ), i.e., a structure on H(θ) with countably
many functions in the language. If M ≺ A is an elementary substructure, then
define the characteristic function of M as χM : ξ 7→ sup(M ∩ κξ). We say M is
tight if M ∩

∏
ξ<cf(κ) κξ is cofinal in

∏
(M ∩ κξ).

Suppose Sξ ⊆ κξ for all ξ < cf(κ). The sequence ~S = 〈Sξ : ξ < cf(κ)〉 is mutually
stationary if for any algebra A on H(θ) there is M ≺ A such that {ξ : χM (ξ) 6∈ Sξ}
is bounded in cf(κ) (we say that χM meets ~S). The sequence ~S is tightly stationary
if for every A on H(θ), a tight structure M ≺ A as in the previous definition can
be chosen.

For our purposes, a scale is a sequence 〈fα : α < κ+〉 which is increasing and
cofinal in (

∏
ξ<cf(κ) κξ, <

∗), where 〈κξ : ξ < cf(κ)〉 are regular cardinals cofinal in

κ and f <∗ g if and only if {ξ : f(ξ) ≥ g(ξ)} is bounded in cf(κ). Scales were
previously considered in the context of mutual and tight stationarity in [5] and [6].
A basic result of pcf theory due to Shelah [12] says that for singular κ, there is an
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increasing sequence of regular cardinals 〈κξ : ξ < cf(κ)〉 which carries a scale. The
scales in this paper will always be continuous, which means that for every β < κ+

of cofinality > cf(κ), if there is an exact upper bound for 〈fα : α < β〉 (i.e., a
<∗-upper bound g such that 〈fα : α < β〉 is cofinal in

∏
ξ g(ξ)) then fβ is such a

bound.
It is an easy and useful fact that if 〈fα : α < β〉 is a <∗-increasing sequence

with cf(β) > cf(κ) and there are Y ⊂ β unbounded and ξ∗ < cf(κ) such that
〈fγ(ξ) : γ ∈ Y 〉 strictly increasing for all ξ∗ ≤ ξ < cf(κ), then the pointwise
supremum supγ<β fγ is an exact upper bound. Given a scale 〈fα : α < κ+〉 on∏
ξ κξ, a good point is an ordinal β so that 〈fα : α < β〉 satisfies the conditions of

the previous sentence. A scale is called good if the set of its good points is club in
κ+. In [12] it is shown that the set of good points of a fixed cofinality greater than
cf(κ) is stationary.

As stated in the introduction, we can use the scale to relate sequences on the
〈κξ : ξ < cf(κ)〉 to subsets of κ+. The key point is Theorem 5.2 of [4], which says
that for tight N containing 〈fα : α < κ+〉 , there is an α such that χN =∗ fα. Thus,
we can replace characteristic functions of tight structures by scale functions.

Definition 2.1. Suppose Sξ ⊆ κξ for each ξ < cf(κ). Then define

µ(~S) = {α : fα meets ~S}.

Let S′ξ = κξ \ Sξ. Then define ν(~S) = κ+ \ µ(〈S′ξ〉).

Another way to think of ν(~S) is {α : fα(ξ) ∈ Sξ for unboundedly many ξ}.
We list some straightforward algebraic properties of µ.

Proposition 2.2. Let Sξ, Tξ ⊆ κξ for ξ < cf(κ). Then

µ(〈Sξ ∩ Tξ〉) = µ(~S) ∩ µ(~T )

and
µ(〈Sξ ∪ Tξ〉) ⊇ µ(~S) ∪ µ(~T ).

Recall the notion of a careful subset of κ+ from the introduction.

Definition 2.3. A set A ⊆ κ+ is careful if there is a sequence ~S with µ(~S) =

ν(~S) = A.

So a careful set A is in the range of the µ function, witnessed by a sequence ~S
which does not intersect scale functions indexed by κ+ \ A too much. Sequences
which witness carefulness behave nicely under finite coordinatewise intersections
and unions.

Proposition 2.4. Let A,B be careful, witnessed by the sequences 〈Sξ : ξ < cf(κ)〉
and 〈Tξ : ξ < cf(κ)〉, respectively. Then

µ(〈Sξ ∩ Tξ〉) = ν(〈Sξ ∩ Tξ〉) = A ∩B
and

µ(〈Sξ ∪ Tξ〉) = ν(〈Sξ ∪ Tξ〉) = A ∪B.

The following lemma is the key point relating tight stationarity to the µ of
Definition 2.1. We will work in the case where there is some regular cardinal η < κ0
so that Sξ ⊆ Cof(η)—this gives the uniformity we need to apply results about the
characteristic functions of tight structures from Cummings–Foreman–Magidor [4].



4 WILLIAM CHEN

Lemma 2.5. Let η be an uncountable regular cardinal in the interval (cf(κ), κ0).

Suppose Sξ ⊆ κξ ∩Cof(η). Then ~S is tightly stationary iff µ(~S)∩Cof(η)∩Good is
stationary in κ+, where Good is the set of good points.

Proof. If ~S is tightly stationary, then for any algebra A on H(θ) there is a tight

N ≺ A which meets ~S and contains the scale 〈fα : α < κ+〉 as an element. Let
α := sup(N ∩ κ+). By Theorem 5.2 of [4], χN =∗ fα and α is a good point of

cofinality η, so α ∈ µ(~S) ∩ Cof(η) ∩Good.

For the converse, suppose that B = µ(~S)∩Cof(η)∩Good is stationary in κ+. Let

C ⊆ [H(θ)]<η
+

be an arbitrary club so that every member of C is an elementary

submodel of (H(θ);∈, 〈fα : α < κ+〉, ~S). Then construct 〈Mx : x ∈ [κ+]<η〉 ⊆ C so
that:

(1) x ⊆Mx,
(2) if y end-extends x, then Mx ⊆ My and My contains some α < κ+ so that

χMx
<∗ fα.

Define g : [κ+]<η → κ+ by sending x to the least α so that χMx
<∗ fα. Consider

the set D = {α ∈ κ+ : g“[α]<η ⊆ α}, and let E ⊆ κ+ be its closure. Then
E∩Cof(η) = D∩Cof(η), so there exists γ ∈ B∩D∩Cof(η). Since γ is good, there
are 〈γi : i < η〉 cofinal in γ and ξ∗ < cf(κ) so that for all ξ ≥ ξ∗, 〈fγi(ξ) : i < η〉 is
strictly increasing. Since γ ∈ D, we can further assume that g(〈γj : j < i〉) < γi+1

for all i < η.
For convenience, let Ni denote the substructure M〈γj :j<i〉. Put M =

⋃
i<η Ni.

Then M ∈ C (since it is the increasing union of members of C) and M is tight
(which follows from clause (2) in the construction of the Mx). The argument is
finished by showing that χM =∗ fγ .

By clause (1) of the construction of the Mx, we have that the range of fγi is
contained in Ni+1 for all i < η, and therefore fγi < χNi+1

. Since g(〈γj : j < i〉) <
γi+1, we also have that χNi <

∗ fγi+1
. Putting the inequalities together with the

fact that η > cf(κ), we have χM =∗ supi<η χNi =∗ supi<η fγi =∗ fγ . �

The following proposition is straightforward.

Proposition 2.6. If Sξ is club in κξ for all ξ < cf(κ), then µ(~S) contains a club.

If Sξ is nonstationary in κξ for all ξ, then µ(~S) is nonstationary.

Using this point of view offers another proof of the version of Fodor’s Lemma
for tightly stationary sets on ℵω proved in [8], which illustrates the definitions here
and shows the relationship with the usual Fodor’s Lemma on regular cardinals. The
proof given below uses the unnecessary assumption that there is a scale of length
ℵω+1 on

∏
ℵn, but this can be eliminated using the theory of pcf generators.

Proposition 2.7. Let k < ω. Suppose 〈Sn : k < n < ω〉 is tightly stationary
and Sn ⊆ Cof(ωk). If f : ℵω → ℵω satisfies f(γ) < γ for all γ, then there is
a function g ∈

∏
n∈ω ℵn such that the sequence 〈Sgn : k < n < ω〉 defined by

Sgn = {γ ∈ Sn : f(γ) < g(n)} is tightly stationary.

Proof. Let A = µ(~S) ∩ {α : α is a good point of cofinality ωk}. This is stationary

by Lemma 2.5 since ~S is tightly stationary. Define F̄ : A→ κ+ to be F̄ (α) = least
β < α such that f ◦ fα <∗ fβ . Such exists since f is regressive and any α ∈ A is
a good point. Then F̄ is a regressive function on A, hence by the usual Fodor’s



TIGHT STATIONARITY AND TREE-LIKE SCALES 5

lemma, is constant on a stationary set A′, say with constant value β0. Put g = fβ0
.

Consider

Sgn = {γ ∈ Sn : f(γ) < g(n)}.
We now show that A′ ⊆ µ(〈Sgn〉), hence by Lemma 2.5 that 〈Sgn〉 is tightly stationary.
For any α ∈ A′, we have f ◦ fα <∗ g by choice of A′ and β0. This means there is
i ∈ ω such that for all n ≥ i we have fα(n) ∈ Sgn, or in other words, α ∈ µ(〈Sgn〉). �

If every subset of κ+ is careful, then similar ideas can be applied to splitting
tightly stationary sets.

Proposition 2.8. Suppose every subset of κ+ is careful. Then for any tightly

stationary sequence ~S, there are ~T ξ = 〈T ξn : n < ω〉 for ξ < κ+ such that

• T ξn ⊆ Sn for all n < ω, ξ < κ+,

• ~T ξ is tightly stationary for all ξ < κ+,
• ν(〈T ξn ∩ T ζn〉) = ∅ for all ξ 6= ζ < κ+.

Proof. Let A = µ(~S) ∩ Good, which is stationary in κ+ by Lemma 2.5. Then A
can be split into κ+ many pairwise disjoint stationary subsets of κ+, say 〈Aξ : ξ <

κ+〉. Each Aξ is careful, so let ~T ξ be the corresponding sequence, which is tightly

stationary by Lemma 2.5. By intersecting with ~S, we may assume that T ξn ⊆ Sn
for all n < ω, ξ < κ+. By Proposition 2.2, condition (3) holds. �

In the next section, we will show that the hypothesis of Proposition 2.8 is con-
sistent.

From a scale, one can define two-place functions [κ+]2 → cf(κ) which will help
describe how the µ function works.

Definition 2.9. Let 〈fα : α < κ+〉 be a scale on κ, and suppose α < β. Then
d(α, β) = sup{ξ + 1 : fα(ξ) ≥ fβ(ξ)}, and d∗(α, β) = sup{ξ + 1 : fα(ξ) = fβ(ξ)}.

The function d was used by Shelah in [12], for example, to prove κ+ 6→ [κ+]2cfκ
for singular κ.

A crucial concept for the constructions in this paper is a tree-like scale. This
concept appears in Shelah [12] (see II Conclusion 3.5) and was isolated and further
studied by Pereira in [11].

Definition 2.10. A scale 〈fα : α < λ〉 is tree-like if whenever fα(ξ) = fβ(ξ), then
fα�ξ = fβ�ξ.

IF cf(κ) = ω, then any product which carries a scale also carries a tree-like
scale, but that scale is not necessarily continuous, as we require. Pereira described
a forcing notion in [11] which produces a continuous tree-like scale and preserves
cardinals, and hence also the approachability property at κ (a principle which
implies that every scale on κ is good) if it holds in the ground model.

Unless otherwise indicated, we assume from now on that cf(κ) = ω for concrete-
ness, although this assumption will only really be essential in Theorem 1. The next
lemma describes how the assumption of a tree-like scale affects the d∗ function.

Lemma 2.11. Let 〈fα : α < κ+〉 be a tree-like scale. For any α, β, γ ∈ κ+, the
smaller two among d∗(α, β), d∗(β, γ), d∗(α, γ) are equal.
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Proof. Assume without loss of generality that d∗(α, β) ≤ d∗(β, γ) ≤ d∗(α, γ). Fix
arbitrary n < d∗(β, γ). Using the tree-like property and d∗(β, γ) ≤ d∗(α, γ), we
have fα(n) = fγ(n). But by definition of d∗, fγ(n) = fβ(n). Combining the two
equations, we get fα(n) = fβ(n), so d∗(α, β) ≥ d∗(β, γ). �

In this situation, there is a qualitative difference between d and d∗.

Proposition 2.12. Let 〈fα : α < κ+〉 be a tree-like scale. Then there are disjoint
stationary sets A,B ⊆ κ+ such that d∗(α, β) is constant on A×B.

Proof. For each α, let D(α) = {n : d∗(α, β) = n for stationarily many β < κ+}.
Since cf(κ+) > ω, each D(α) 6= ∅.

We will find an α such |D(α)| > 1. If this does not exist, then for each α let n(α)
be the unique element of D(α). Then Cα = {β : d∗(α, β) = n(α)} must contain a
club of κ+. Let C be the diagonal intersection of the Cα, α < κ+. Let n0 be such
that n(α) = n0 for κ+ many α ∈ C. Then let E = {α ∈ C : n(α) = n0}. If α < β
are members of E, then d∗(α, β) = n(α) = n0. This implies that fα(n0), α ∈ E,
are pairwise distinct, a contradiction.

So fix α0 such that |D(α0)| > 1, and let m < n be elements of D(α0). Then
let A = {α : d∗(α0, α) = m} and B = {β : d∗(α0, β) = n}. By Lemma 2.11,
d∗(α, β) = m for all α ∈ A, β ∈ B. �

On the other hand, Shelah [12] showed that if A,B ⊆ κ+ are unbounded, then
for any sufficiently large n, there are α ∈ A and β ∈ B such that d(α, β) = n.

The next lemma gives a combinatorial criterion for carefulness which involves
the d∗ function.

Lemma 2.13. Suppose A ⊆ κ+ and there is F : κ+ → ω such that d∗(α, β) ≤
max{F (α), F (β)} for all α ∈ A and β 6∈ A. Then A is careful.

Proof. Define Sn = {fα(n) : α ∈ A and F (α) ≤ n}. Then A ⊆ µ(~S) since for

any α ∈ A, fα(n) ∈ Sn for all n ≥ F (α). It remains to show that ν(~S) ⊆ A.
For β ∈ κ+ \ A, we will show that fβ(n) 6∈ Sn for n ≥ F (β). Let n be so that
fβ(n) ∈ Sn. Then d∗(α, β) > n for some α ∈ A with F (α) ≤ n. Since n <
d∗(α, β) < max{F (α), F (β)}, it follows that n < F (β). �

Remark 2.14. This is actually an equivalence if the background scale is tree-like: if

A is careful, witnessed by ~S, then define F (α) to be the least n such that fα(n) ∈ Sn
if α ∈ A, and the least n such that fα(n) 6∈ Sn if α ∈ A.

We conclude this section by identifying situations where there exist subsets of

κ+ which are not in the range of µ. Suppose 2κ < 2κ
+

(e.g., when the SCH holds
at κ). Then there are only 2κ choices for a sequence S̄, so there is a subset of κ+

which is not in the range of µ.
We can also add a set which is not in the range of µ by forcing. This example

was inspired by similar arguments of Foreman and Steprāns from Section 4 of [5].
Think of P = Add(ω, κ+) as the forcing adding a subset of κ+ using finite

conditions—if G is generic for P , then
⋃
G is a function ω × κ+ → 2, and us-

ing a bijection ϕ between κ+ and ω × κ+, we obtain a subset S from G (whose
characteristic function is

⋃
G ◦ ϕ). Recall that P is c.c.c., and for any λ < κ+,

P ' Add(ω, λ)×Add(ω, κ+). Since P is c.c.c., any function in
∏
n<ω κn ∩ V [G] is

dominated pointwise by a function in
∏
n<ω κn ∩V . Thus the scale ~f in V remains

a scale in V [G].
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Proposition 2.15. Let P = Add(ω, κ+), and S ⊆ κ+ as above. Then in V [G], S
is not in the range of µ.

Proof. Work in V [G]. For any sequence 〈Un : n < ω〉 with Un ⊆ κn, we claim
that the sequence (and hence also every Un) is contained in the generic extension
of V by Add(ω, λ) for some λ < κ+. This is because there is a nice name for each

Un (i.e., consisting of pairs (α̌, p) where for any given α̌, {p : (α̌, p) ∈ U̇n} is an
antichain), so there is a name for 〈Un : n < ω〉 which uses at most κ many elements
of P .

Factor V [G] = V [H][G′] where H is generic for Add(ω, λ) and 〈Un : n < ω〉 ∈
V [H], and G′ is generic for the quotient Add(ω, κ+). Now µ(〈Un〉) lies in V [H].
By a density argument using the construction of S from G′, S 6∈ V [H]. �

In the next section, we show that it is consistent that every subset of κ+ is in
the range of µ (in fact, careful).

3. A model where every set is careful

A better scale is a scale 〈fα : α < κ+〉 such that for every limit ordinal α < κ+

there is a club C ⊆ α such that for every γ ∈ C there is N < ω such that
∀n > N (fβ(n) < fγ(n)) for all β < γ with β ∈ C. This is a stronger property than
the one that good scales satisfy. The existence of better scales is a consequence of
the weak square �∗κ.

We start with the observation that if the background scale is better, then every
bounded subset of κ+ is careful. The argument follows along the lines of the
construction of an ADS-sequence from a better scale by Cummings, Foreman and
Magidor in [3].

Proposition 3.1. If 〈fα : α < κ+〉 is a better scale, then every bounded A ⊂ κ+ is
careful.

Proof. In [3], it is proved from a better scale that that for every γ < κ+, there is a
function Gγ : γ → ω such that for any α < β < γ, d∗(α, β) < max{Gγ(α), Gγ(β)}.
Now if A ⊂ κ+ is bounded, then let γ be a bound. Set F (α) to be max(d(α, γ) +
1, G(α)) if α < γ, 0 if α = γ, and d(γ, α) + 1 if α > γ. We show that d∗(α, β) ≤
max{F (α), F (β)} for all α ∈ A, β 6∈ A. If β < γ, then

d∗(α, β) < max{G(α), G(β)} ≤ max{F (α), F (β)}.

If β = γ, then

d∗(α, β) < d(α, β) ≤ F (α).

If β > γ, assume towards a contradiction that d∗(α, β) > max{F (α), F (β)}. In
particular, this assumption implies that d∗(α, β) > d(α, γ), d(γ, β), so fα(d∗(α, β)−
1) < fγ(d∗(α, β)− 1) < fβ(d∗(α, β)− 1), contradicting the definition of d∗. �

Starting from a continuous tree-like scale, we will force so that every subset of
κ+ is careful. We will see below that this poset is c.c.c., and therefore 〈fα : α < κ+〉
remains a scale in V [G].

Theorem 1. Let 〈fα : α < κ+〉 be a continuous tree-like scale and A ⊆ κ+. Then
there is a c.c.c. forcing extension in which A is careful.

Remark 3.2. In fact, the proof will show that the poset is ω1-Knaster.
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Proof. Given A, define QA to be the forcing of finite functions p : κ+ → ω such that
d∗(α, β) ≤ max{p(α), p(β)} for any α ∈ dom(p) ∩ A and β ∈ dom(p) \ A, ordered
by extension.

Now we will show that QA is c.c.c. Towards a contradiction, suppose {pξ : ξ <
ω1} is an uncountable antichain. Using the ∆-system lemma, we may assume that
the domains of the pξ form a ∆-system. The strategy of the proof is to repeatedly
thin the antichain by choosing an uncountable subset with certain nice properties,
and without loss of generality renaming the thinned antichain by {pξ : ξ < ω1}. At
the end we will have thinned enough to see that certain members of the antichain
were actually compatible.

For any condition p ∈ QA, let the type of p be the ordered pair (m,n), where
m = |dom(p) ∩ A| and n = |dom(p) ∩ (κ+ \ A)|. Thin to assume that all members
have the same type (m,n), and that the pξ agree on the root of the ∆-system. By
throwing away the root from the domain of each condition, we may assume the pξ
have disjoint domains.

Enumerate dom(pξ) ∩ A as {αiξ : i < m} and dom(pξ) \ A as {βiξ : i < n}. By

thinning further we may assume that for every i < m, j < n, there is kij < ω (not

depending on ξ) such that ∀ξ < ω1(d∗(αiξ, β
j
ξ) = kij). By thinning yet further we

can assume that for every i < m, j < n, either

∀ξ < ω1(pξ(α
i
ξ) ≥ kij)

or

∀ξ < ω1(pξ(β
j
ξ) ≥ kij)

(i.e., whether it is αi or βj that satisfies this does not depend on ξ).
The goal is to thin the antichain further so that we can find some i0 < m (or j0 <

n) such that pξ(α
i0
ξ ) ≥ d∗(αi0ξ , β

j
ζ) for all ξ, ζ < ω1, j < n (or pξ(β

j0
ξ ) ≥ d∗(αiζ , β

j0
ξ )

for all ζ < ω1, i < m). Thus the incompatibility between different members of

the antichain cannot come from the elements αi0ξ (or βj0ξ ) of the domain of each
condition, so the property of being an antichain is preserved if we remove these
elements from the domain of each condition. Repeating this process, we eventually
reach an uncountable antichain where every member is of the same type (m, 0) or
(0, n), a contradiction since these would all be compatible in QA.

Choose i0 < m and j0 < n so that ki0j0 = maxi<m,j<n kij , and let M = ki0j0 .

We handle the case ∀ξ < ω1(pξ(α
i0
ξ ) ≥ M), the case with β is similar. To avoid a

mess of sub- and superscripts, we denote αi0ξ by αξ.
We will perform the thinning one j at a time, so fix j < n. It suffices to show that

there is an uncountable set Z ⊂ ω1 such that for all ξ, ζ ∈ Z, pξ(αξ) ≥ d∗(αξ, βjζ).

Claim 3.3. For every ξ, ζ < ω1, either

(1) d∗(αξ, β
j
ζ) ≤ ki0j and d∗(αζ , β

j
ξ) ≤ ki0j

or

(2) d∗(αξ, αζ) = ki0j and the first case fails.

Proof. Suppose the first case fails. Without loss of generality, d∗(αξ, β
j
ζ) > ki0j .

Since d∗(αζ , β
j
ζ) = ki0j , Lemma 2.11 implies that d∗(αξ, αζ) = ki0j . �
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Color [ω1]2 in two colors, where {ξ, ζ} is colored according to which case of
Claim 3.3 holds. Now apply the Dushnik–Miller theorem, ω1 → (ω1, ω)2. In the
first possibility, there is an uncountable set X such that (1) holds between every
ξ, ζ ∈ X. Then we are done, since by choice of i0, for all ξ ∈ X,

pξ(α
i0
ξ ) ≥M ≥ ki0j .

In the second possibility, there is an infinite set Y such that (2) holds between
every ξ, ζ ∈ Y . In particular, (1) fails for every ξ, ζ ∈ Y , so by Ramsey’s theorem
there is an infinite Y ′ such that either

d∗(αξ, β
j
ζ) > ki0j for all ξ < ζ in Y ′,

or

d∗(αζ , β
j
ξ) > ki0j for all ξ < ζ in Y ′.

Assume that d∗(αξ, β
j
ζ) > ki0j for ξ < ζ in Y ′; the other possibility of Ramsey’s

theorem would proceed similarly.
Fix ξ < ζ < ν ∈ Y ′. Then d∗(αξ, β

j
ν) > ki0j and d∗(αζ , β

j
ν) > ki0j . By Lemma

2.11, we have d(αξ, αζ) > ki0j , but this contradicts (2). Theorem 1 is proved. �

Corollary 3.4. There is a c.c.c. forcing extension in which every subset of κ+ is
careful.

Proof. Iterate the forcing from Theorem 1 using finite support, with the usual
bookkeeping to take care of any sets that were added in the construction. �

The proof of Theorem 1 relied heavily on the fact that cf(κ) = ω (and that P
used finite conditions). We can generalize Theorem 1 to singular cardinals with
measurable cofinality, and Corollary 3.4 to singular cardinals with supercompact
cofinality.

Theorem 2. Let κ be a singular cardinal with cf(κ) = θ and θ < κ be an inde-
structibly supercompact cardinal. Let 〈κi : i < θ〉 be a sequence of regular cardinals
cofinal in κ and 〈fα : α < κ+〉 be a continuous tree-like scale on

∏
i κi. Then there

is poset which is < θ-directed closed and θ+-c.c. forcing that every subset of κ+ is
careful.

Proof. Given A ⊆ κ+, define QA to be the forcing of partial functions p : κ+ → θ
with |dom(p)| < θ such that d∗(α, β) ≤ max{p(α), p(β)} for any α ∈ dom(p) ∩ A
and β ∈ dom(p) \ A, ordered by extension. The poset QA is clearly < θ-directed
closed.

Iterate the posets QA with supports of size < θ, using a suitable bookkeeping
to ensure that for each A in the final model, QA was used at some stage. The
indestructibility of the supercompactness of θ is used in order to ensure that θ is
supercompact in all of the models along the iteration. Let P denote the iteration
poset, and Q̇γ name QAγ , where Aγ ∈ V P�γ is the set being made careful at stage γ.
It is clear that P is < θ-directed closed, so it remains to check that P is θ+-c.c. Since
it is not true in general that an iteration of θ+-c.c. posets using < θ supports is
θ+-c.c., we will argue for the whole iteration poset instead of the individual factors.

For contradiction, fix an antichain {pξ : ξ < θ+}. By θ-distributivity, there
is a dense set of conditions p in the iteration where for each γ ∈ dom(p), p�γ
forces the values of p(γ) and {α ∈ dom(p(γ)) : α ∈ Aγ} (these are in the ground
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model). We will assume that the elements of the antichain were taken from this
dense set. For ξ < θ+, let the type of pξ at γ be the ordered pair (m,n), where
m = |dom(p(γ))∩Aγ | and n = |dom(p(γ))\Aγ | (by restricting to the dense set, this
can be computed in V ). By judicious thinning, we may assume that the supports
of the pξ form a ∆-system with root S, and for each γ ∈ S,

• all of the pξ(γ) have the same type, so we can enumerate dom(pξ(γ)) ∩Aγ
as {αiξ : i < m} and dom(pξ) \Aγ as {βiξ : i < n},
• the domains of the pξ(γ) form a ∆-system, the pξ(γ) agree on the root, and

the pξ�γ force the same members of the root into Aγ .
• for every i < m, j < n, there is kij < θ (not depending on ξ) such that

∀ξ < ω1(d∗(αiξ, β
j
ξ) = kij),

• for every i < m, j < n, either

∀ξ < θ+(pξ(γ)(αiξ) ≥ kij)
or

∀ξ < θ+(pξ(γ)(βjξ) ≥ kij)
(i.e., whether it is αi or βj that satisfies this does not depend on ξ).

These assumptions are analogous to ones we made in the proof of Theorem 1.
For distinct ξ, ζ < θ+, let γ(ξ, ζ) be the least γ such that pξ(γ) and pζ(γ) are

incompatible. Note that γ(ξ, ζ) ∈ S for every ξ, ζ. By Rowbottom’s theorem
θ → (θ)2<θ, there is a subset C ⊆ θ+ of size θ and some γ such that γ(ξ, ζ) = γ
for all ξ, ζ ∈ C. By relabeling the elements of the antichain, we may assume that
C = θ. Fix i < m and j < n. A version of Claim 3.3 holds in this case.

Claim 3.5. For every ξ, ζ < θ, either

(3) d∗(αiξ, β
j
ζ) ≤ kij and d∗(αiζ , β

j
ξ) ≤ kij

or

(4) d∗(αiξ, α
i
ζ) = kij and the first case fails.

Color [θ]2 in two colors, where {ξ, ζ} is colored according to which case of Claim
3.5 holds. Let U be a θ-complete normal ultrafilter on θ. By Rowbottom’s theorem,
there is Ai,j ∈ U such that either (3) holds for all ξ, ζ ∈ Ai,j , or (4) holds for all
ξ, ζ ∈ Ai,j .

By the same reasoning as in Theorem 1, the second possibility cannot occur. Let
A =

⋂
i,j Ai,j . For any distinct ξ, ζ ∈ A,

d∗(αiξ, β
j
ζ) ≤ kij and d∗(αiζ , β

j
ξ) ≤ kij

for all i < m, j < n. By our thinning assumptions, for any i < m, j < n, either

pξ(γ)(αiξ), pζ(γ)(αiζ) ≥ kij
or

pξ(γ)(βjξ), pζ(γ)(βjζ) ≥ kij .

In either case, it follows that d∗(αiξ, β
j
ζ) ≤ max{pξ(γ)(βjξ), pζ(γ)(βjζ)} and that

d∗(αiζ , β
j
ξ) ≤ max{pξ(γ)(βjξ), pζ(γ)(αiζ)}. By the minimality of γ, pξ�γ and pζ�γ are

compatible and any common extension forces that pξ(γ) and pζ(γ) are compatible.
�
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Remark 3.6. To prove that the individual posets PA as above are θ+-c.c., it is
enough for θ to be measurable.

4. All sets careful and κ strong limit

In the model produced by the forcing of Theorem 1, 2ω > κ. However, in singular
cardinal combinatorics, the case where the singular cardinal κ is strong limit is of
particular interest. Large cardinals are required to obtain a model where every set
is careful and κ is strong limit, as the SCH would fail at κ in such a model. Using
a supercompact cardinal, we have the following:

Theorem 3. Let κ be an indestructibly supercompact cardinal and µ = κ+κ+1.
Then there is a forcing poset which preserves cardinals below κ and above µ, and
adds no bounded subsets of κ, such that in the extension:

• κ is a singular strong limit cardinal with countable cofinality, and µ = κ+,
• there is a continuous scale on κ of length µ for which every subset of µ is

careful.

For simplicity of our arguments, assume GCH holds above κ in the ground
model. By some preliminary forcing using slight modifications of Theorem 1 of
Cummings [1], we arrange so that there is a continuous tree-like scale 〈Gα : α < µ〉
on

∏
ξ<κ κ

+ξ+1 (modulo the bounded ideal on κ). Using Theorem 17 of [3], we can

also arrange that 〈Gα : α < µ〉 is a good scale.
Our plan is to make every subset of µ careful relative to 〈Gα : α < µ〉, and

then use a diagonal Prikry forcing technique from Gitik–Sharon [9] to singularize
κ while reflecting the scale down to κ (as in Cummings–Foreman [2]). Let Xξ be
the set of x ∈ [κ+ξ+1]<κ with κx := x ∩ κ an inaccessible cardinal less than κ and
ot(x ∩ κ+ζ+1) = κ+ζ+1

x for all ζ ≤ ξ. Then define LP to be the set of all finite
sequences 〈x0, . . . , xn−1〉 satisfying:

• x0 ∈ X0.
• For each i < n, xi+1 ∈ Xκxi

.

• xi ⊆ xi+1 and ot(xi) < κxi+1
(we abbreviate this condition as xi ⊂∼ xi+1).

This will be the set of all “lower parts” of conditions in a future Prikry forcing. The
posets we define below will be κ-distributive and therefore all models will compute
LP in the same way.

4.1. Carefulizing forcing. To make every subset of µ careful, we will define a
poset P akin to those of Theorems 1 and 2. One challenge is that in addition to
making ground model subsets of µ careful, we must also anticipate subsets added
by the Prikry forcing.

For each family ~A = 〈As : s ∈ LP〉, As ⊆ µ, define Q ~A to be the poset of partial
functions P : LP× µ→ κ such that:

(1) |dom(P )| < κ, and if t extends s and (t, α) ∈ dom(P ), then also (s, α) ∈
dom(P ).

(2) If (s, α) and (s, β) are in dom(P ) with α ∈ As and β 6∈ As, then d∗G(α, β) ≤
max{P (s, α), P (s, β)}. (Here d∗G is just the d∗ function on the scale ~G.)

(3) If (t, α) ∈ dom(P ), s ⊆ t, and α ∈ Au for all s ⊆ u ⊆ t, then P (t, α) =
P (s, α).

(4) If (t, α) ∈ dom(P ), s ⊆ t, and α 6∈ Au for all s ⊆ u ⊆ t, then P (t, α) =
P (s, α).
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The ordering on Q ~A is function extension.
By the usual bookkeeping argument, we can define P, an iteration of posets Q ~A

using supports of size < κ so that in the generic extension by P, for each family
~A = 〈As : s ∈ LP〉 of subsets of µ indexed by LP, there is a function F : LP×µ→ κ
such that:

• If (s, α) and (s, β) are in dom(F ) with α ∈ As and β 6∈ As, then d∗G(α, β) ≤
max{F (s, α), F (s, β)}.
• If (t, α) ∈ dom(F ), s ⊆ t, and α ∈ Au for all s ⊆ u ⊆ t, then F (t, α) =
F (s, α).
• If (t, α) ∈ dom(F ), s ⊆ t, and α 6∈ Au for all s ⊆ u ⊆ t, then F (t, α) =
F (s, α).

We now check that P does not collapse cardinals. It is easy to see that P is
< κ-directed closed.

Lemma 4.1. P is κ+-c.c.

Proof of Lemma 4.1. Suppose Pξ : ξ < κ+ is an antichain. As in the proof of
Theorem 2, we will assume that the supports of the conditions form a ∆-system
with root S, and that for each γ, P �γ decides the values of P (γ) and {(α, t) ∈
dom(P (γ)) : α ∈ Aγt }, where 〈Aγt : t ∈ LP〉 is the family used at stage γ. We
will assume that the elements of the antichain were taken from this dense set. We
may also assume that for each γ ∈ S the domains of the Pξ(γ) form a ∆-system,
and furthermore that the sets Dγ

ξ = {s ∈ LP : ∃α (s, α) ∈ dom(Pξ)(γ)} form a

∆-system. Let Rγ denote the root of the Dγ
ξ system. For any condition P ∈ P

and s ∈ LP, define the s-type of P at γ to be the ordered pair (m,n), where
m = |{α ∈ As : (s, α) ∈ dom(P (γ))}| and n = |{α 6∈ As : (s, α) ∈ dom(P (γ))}|. By
thinning the antichain, we may assume that for each γ ∈ S:

• If s ∈ Rγ , then all of the Pξ have the same s-type (ms, ns) at γ, so we

can enumerate {α ∈ As : (s, α) ∈ dom(P (γ))} as {αs,iξ : i < ms} and

{α 6∈ As : (s, α) ∈ dom(P )} as {βs,iξ : i < ns},
• the Pξ(γ) agree on the common parts of their domains,
• for every s ∈ Rγ , and every i < ms, j < ns, there is ksij < κ (not depending

on ξ) such that ∀ξ < κ+(d∗(αs,iξ , βs,jξ ) = kij),
• for every s ∈ Rγ , i < ms, j < ns, either

∀ξ < κ+(Pξ(γ)(s, αs,iξ ) ≥ kij)

or

∀ξ < κ+(Pξ(γ)(s, βs,jξ ) ≥ kij)

(i.e., whether it is αs,i or βs,j that satisfies this does not depend on ξ).

For distinct ξ, ζ < κ+, let γ(ξ, ζ) be the least γ such that Pξ(γ) and Pξ(γ) are
incompatible. Note that γ(ξ, ζ) ∈ S for every ξ, ζ. By Rowbottom’s theorem, there
is a subset C ⊆ κ+ of size κ and some γ such that γ(ξ, ζ) = γ for all ξ, ζ ∈ C.

For ξ 6= ζ < κ+ and every γ ∈ S, Pξ(γ) ∪ Pζ(γ) can only fail to be a valid
condition in the poset Q ~Aγ by (2) of the definition of the poset: one can check that
conditions (3) and (4) are satisfied by using conditions (3) and (4) for Pξ(γ) and
Pζ(γ), together with condition (1) and the fact that the elements of the antichain
agree on the common parts of their domains. Therefore we have proven
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Claim 4.2. For ξ 6= ζ < κ+, there is an s ∈ R and α, β < µ such that exactly
one of α, β is in As, (s, α) ∈ dom(Pξ(γ)), (s, β) ∈ dom(Pζ(γ)), and d∗G(α, β) >
max{Pξ(γ)(s, α), Pζ(γ)(s, β)}.

Using Rowbottom’s theorem, we have a subset of C of size κ for which there is a
single s that sees the incompatibility between its elements. The proof of the lemma
is completed exactly as in Theorem 2. �

4.2. Diagonal Prikry forcing. Let G be P-generic, and work in V [G]. We now
define a version of the supercompact diagonal Prikry forcing R. In V [G], κ remains
supercompact, so let U be a κ+κ+1-supercompactness measure, i.e., a normal, fine,
κ-complete measure on [µ]<κ. For ξ < κ, define a κ+ξ+1-supercompactness measure
Uξ by

X ∈ Uξ iff {x ∈ [µ]<κ : x ∩ κ+ξ+1 ∈ X} ∈ U.
The measure Uξ concentrates on the set Xξ.

Conditions in R are sequences of the form

p = 〈xp0, . . . , x
p
n−1〉

_〈Y pξ : κxpn−1
≤ ξ < κ〉

for some n < ω (the length of p), where 〈x0, . . . , xn−1〉 ∈ LP, ξp = 0 if n = 0 and
ξp = κxpn−1

if n > 0, and Yξ ∈ Uξ for each ξp ≤ ξ < κ. When p is clear from the

context, we will omit the superscript p and use the abbreviation κi for κxi . We will
call 〈x0, . . . , xn−1〉 the lower part, and 〈Yξ : κn−1 ≤ ξ < κ〉 the upper part of p.

A condition q = 〈xq0, . . . , x
q
m−1〉

_〈Y qξ : ξq ≤ ξ < κ〉 extends p (written q ≤ p) if
and only if

• m ≥ n, and xqi = xpi for all i < n.
• For each n ≤ i < m, xqi ∈ Y

p
ξi

, where ξi = κxqi−1
.

• Y qξ ⊆ Y
p
ξ for each ξ ≥ ξq.

As usual in Prikry-type forcings, q directly extends p (written q ≤∗ p) in case q ≤ p
and q has the same length as p. The underlying set of R equipped with the ≤∗
ordering is < κ-closed, by the completeness of the ultrafilters.

Lemma 4.3 (Diagonal intersection). Let 〈~Y s : s ∈ LP〉 be a family of upper parts

so that s_~Y s ∈ R. Then there is a sequence 〈Zξ : ξ < κ〉 such that for every s ∈ LP,

every extension of s_〈Zξ : ξs ≤ ξ < κ〉 is compatible with s_~Ys.

Proof. For each s ∈ LP, write ~Y s = {Y sξ : ξs ≤ ξ < κ}. For each x ∈ [κ+κ]<κ and

ξ ≥ κx, define W x
ξ :=

⋂
{Y sξ :

⋃
s ⊆ x}. Since there are fewer than κ many s ∈ LP

with
⋃
s ⊆ x for a given x ∈ Xξ, all of the W x

ξ are in Uξ. Now for each ξ < κ let

Zξ = {y ∈ [κ+ξ+1]<κ : ∀x ∈ Xξ (x ⊂∼ y → y ∈ W x
ξ )}, the diagonal intersection of

the W x
ξ , x ∈ Xξ. By normality of Uξ, Zξ ∈ Uξ.

We now check that this works. Suppose t = {x0, . . . , xm−1} is the lower part of
an extension of s_〈Zξ : ξ < κ〉 for some s ∈ LP. For any i < m greater than the
length of s,

⋃
s ⊂∼ xi, so xi ∈ Y sξi . �

In the situation of the lemma, we will call 〈Zξ : ξ < κ〉 the diagonal intersection

of 〈~Y s : s ∈ LP〉.
Let H = 〈x0, x1, . . .〉 be the generic sequence added by R. Note that xn ∈ Xξn ,

where ξ0 = 0 and ξn = κn−1 if n > 0. The following facts are analogues of the
basic properties of the forcing in [9].



14 WILLIAM CHEN

Fact 4.4. (1) R is µ-c.c., and hence preserves all cardinals ≥ µ.
(2) R has the Prikry property: if p ∈ R and σ is a sentence in the forcing

language, then there is q ≤∗ p which decides σ, i.e., forces σ or ¬σ.
(3) R adds no bounded subsets of κ.
(4) For any 〈Yξ : ξ < κ〉, a sequence of sets with Y ∈ U and Yξ ∈ Uξ for all ξ,

xn ∈ Yξn for all sufficiently large n < ω.
(5) Forcing with R changes the cofinality of κ+ξ to ω for all ξ < κ, and therefore

µ = κ+ in the generic extension by R.

Proof. (1) follows from the fact that any two conditions with the same lower part
are compatible, and there are fewer than µ many lower parts.

(2) For simplicity, assume that p has length 0. Partition LP into

B0 = {s ∈ LP : there is ~Y s such that s_~Y s 
 σ},

B1 = {s ∈ LP : there is ~Y s such that s_~Y s 
 ¬σ},
and B2 = LP \ (B0 ∪B1).

We will define a family of LP-indexed upper parts ~Y s. If s ∈ B0∪B1, take ~Y s to

be an upper part such that s_~Y s decides σ. Otherwise, let Y sξs = {x ∈ Xξs : s_x ∈
B2} ∈ Uξs for all ξ and Yξ = Xξ for ξs < ξ < κ. We check that if s ∈ B2, then
Y sξs ∈ Uξs , since otherwise there is i ∈ {0, 1} so that {x ∈ Xξs : s_x ∈ Bi} ∈ Uξs ,
which would imply s ∈ Bi.

Take r to be the diagonal intersection of the ~Y s. If the empty lower part is in
B0 ∪ B1, then we are done. Otherwise, assume H = 〈x0, x1, . . .〉 was obtained by
forcing below r, so by induction H�n ∈ B2 for all n, contradicting the genericity of
H.

(3) is immediate from (2) and the < κ-closure of the ≤∗ ordering, and (4) is a
straightforward density argument.

(5) By a density argument, κ+ξ =
⋃
n<ω(xn ∩ κ+ξ) for all ξ < κ. �

4.3. The final model. For each ξ < κ and γ < κ+ξ+1, let F γξ : Xξ → κ be a

function representing γ in the ultrapower by Uξ with F γξ (y) < κξ+1
y for all y ∈ Xξ.

Define a sequence of functions 〈fα : α < µ〉 of
∏
n<ω κ

+ξn+1
n by

fα(n) = F
Gα(ξn)
ξn

(xn).

Following Cummings–Foreman [2], we prove the following claim:

Claim 4.5. In V [G ∗H], the sequence 〈fα : α < µ〉 is a scale on
∏
n<ω κ

+ξn+1
n .

Proof of Claim 4.5. It is easy to see that 〈fα : α < µ〉 is <∗-increasing.
Suppose g ∈

∏
n<ω κ

+ξn+1
n . Working in V [G], let ġ be a R-name for g, and let

p ∈ R be arbitrary. We will find q ≤ p and α < µ such that q 
 g <∗ fα.
For simplicity, assume that p is the trivial condition and forces ġ ∈

∏
n<ω κ

+ξn+1
n

(otherwise, we would just work below such a condition extending p). A lower part
t of length n+ 1 determines the value of κn < κ, hence using the Prikry property,

we can find an upper part ~Y t such that t_~Y t determines the value of ġ(n), and call
this value h(t). Let q be the element of R with empty lower part and upper part

equal to the diagonal intersection of the family 〈~Y t〉, t ∈ LP, so any condition of
length n + 1 compatible with q with lower part t determines the value of ġ(n) as
h(t).
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For each ξ < κ and x ∈ Xξ, let

Hξ(x) = sup{h(t) + 1 : t is a lower part with last coordinate x}.

Subclaim. For each ξ < κ, Hξ represents an ordinal γξ which is less than κ+ξ+1 in
the ultrapower by Uξ.

It suffices to show that for any ξ < κ and Uξ-almost every x ∈ Xξ, there are fewer
than κ+ξ+1

x many lower parts with last coordinate x, and therefore Hξ(x) < κ+ξ+1
x .

First note that {x ∈ Xξ : (∀ζ ≤ ξ) (κ+ζ+1
x )<κx = κ+ζ+1

x } ∈ Uξ by a reflection
argument since the GCH holds above κ in V and P does not add new sets of
ordinals of size < κ. Now suppose x is in this set, and y ∈ Xζ appears before x in
some lower part, so ζ < ξ. Then y is a subset of x ∩ κ+ζ+1

x , which has order-type
κ+ζ+1
x by the definition of Xξ. The number of subsets of κ+ζ+1

x of size κ+ζ+1
y is

equal to κ+ζ+1
x < κ+ξ+1

x , proving the subclaim.
Since 〈Gα : α < µ〉 is a scale, there is α < µ such that γξ < Gα(ξ) for large

ξ. Therefore, Bξ := {x ∈ Xξ : Hξ(x) < F
Gα(ξ)
ξ (x)} ∈ Uξ for large enough ξ. Let

H = 〈x0, x1, . . .〉 be the R-generic sequence obtained by forcing below q. Using Fact
4.4 part (4), for sufficiently large n, xn ∈ Bξn and therefore:

g(n) = h(H�n+ 1) < Hξ(xn) < F
Gα(ξn)
ξn

(xn) = fα(n).

�

Claim 4.6. In V [G ∗H], the scale 〈fα : α < µ〉 is continuous.

Proof of Claim 4.6. Let β < µ be a limit ordinal. We will check that fβ is an
exact upper bound for 〈fα : α < β〉. We can assume that ω < cf(β)V < κ,
since all other points have cofinality ω in V [G ∗ H]. Working in V [G] and using
that 〈Gα : α < µ〉 is a good scale, we can find A unbounded in β with order-
type cf(β) and some ξ0 < ω so that 〈Gα(ξ) : α ∈ A〉 is strictly increasing for
each ξ > ξ0. Therefore, ξ 7→ sup{Gα(ξ) : α ∈ A} is an exact upper bound for
〈Gα : α < β〉. Using continuity of 〈Gα : α < µ〉, we can pick ξ0 large enough so
that Gβ(ξ) = sup{Gα(ξ) : α ∈ A} for all ξ > ξ0. For each ξ > ξ0,

{x ∈ Xξ : 〈FGα(ξ)ξ (x) : α ∈ A〉 is increasing with supremum F
Gβ(ξ)
ξ (x)} ∈ Uξ.

In V [G∗H], Fact 4.4 part (4) then implies that there is n0 < ω so that for every
n ≥ n0, 〈fα(n) : α ∈ A〉 is strictly increasing with supremum fβ(n). For any h < fβ
and any n0 < n < ω, there is αn ∈ A so that h(n) < fαn(n). Let α∗ < β be greater
than supn αn. Then h <∗ fα∗ , so fβ is an exact upper bound for 〈fα : α < β〉. �

It remains to check that every A ⊆ µ is careful in V [G ∗H]. Working in V [G],

let Ȧ be a R-name for A. For each s ∈ LP, let

As = {α ∈ µ : there exists an upper part ~Y s such that s_~Y s 
 α ∈ Ȧ}.
By 4.1, there is in V [G] a function E : LP× µ→ κ such that:

(1) If (s, α) and (s, β) are in dom(E) with α ∈ As and β 6∈ As, then d∗G(α, β) ≤
max{E(s, α), E(s, β)}.

(2) If (t, α) ∈ dom(E), s ⊆ t, and α ∈ Au for all s ⊆ u ⊆ t, then E(t, α) =
E(s, α).

(3) If (t, α) ∈ dom(E), s ⊆ t, and α 6∈ Au for all s ⊆ u ⊆ t, then E(t, α) =
E(s, α).
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In V [G ∗ H], we will find a function F as in Lemma 2.13 which shows that A is

careful. For any given α < µ, there is p ∈ R that either forces α ∈ Ȧ or α 6∈ Ȧ. If
s is the lower part of p, then set F0(α) to be the length of s. Now either

α ∈ At for all t ⊆ H extending s,

or

α 6∈ At for all t ⊆ H extending s,

where the measure 1 sets that witness membership (or nonmembership) in At come
from the upper part of s. In either case, the value of E(t, α) is constant for s ⊆ t ⊆
H, and let F1(α) be the least n such that ξn is greater than this constant value.

For each t ∈ LP, ξ < κ, define Stξ = {Gβ(ξ) : β ∈ At and E(t, β) ≤ ξ} (the

sequence 〈Stξ : ξ < κ〉 witnesses that At is careful on the scale 〈Gα : α < µ〉). Then

Stξ is a subset of κ+ξ+1, and since the Uξ ultrapower is closed under κ+ξ+1 sequences,

Stξ is a member of this ultrapower, and hence is represented in the ultrapower by a

function stξ with domain Xξ.
If α ∈ At, then define

Y α,tξ = {y ∈ Xξ : F
Gα(ξ)
ξ (y) ∈ stξ(y)}

if ξ ≥ E(t, α), and Xξ otherwise. Then Y α,tξ ∈ Uξ for each ξ < κ, since Gα(ξ) ∈ Stξ
in the first case of the definition and it is trivial in the second. If α 6∈ At, define

Y α,tξ = {y ∈ Xξ : F
Gα(ξ)
ξ (y) 6∈ stξ(y)} if ξ ≥ E(t, α), and Xξ otherwise. In the

first case of the definition, property (1) of E guarantees that Gα(ξ) 6∈ Stξ, so again

Y α,tξ ∈ Uξ for each ξ < κ.

Let 〈Y αξ : ξ < κ〉 be the diagonal intersection of the Y α,tξ . By Fact 4.4 part (4),

there is N < ω such that xn ∈ Yξn for all n ≥ N ; let F2(α) be such an N .
Finally, define F (α) to be the maximum of F0(α), F1(α), F2(α). Now if α ∈ A

and β 6∈ A, we must verify that d∗(α, β) < max{F (α), F (β)} (here d∗ denotes the
d∗ function for the scale 〈fα : α < µ〉). In other words, we must show that for
any n ≥ max{F (α), F (β)}, fα(n) 6= fβ(n). Let t = 〈x0, x1, . . . , xn−1) be the initial
segment of H of length n. Since n ≥ F0(α), F0(β), α ∈ At and β 6∈ At. Since

n ≥ F2(α), F2(β), xn ∈ Y αξn ∩ Y
β
ξn

, and since n ≥ F1(α), F1(β) both Y αξn and Y βξn
were defined using the first cases of their respective definitions. Therefore,

fα(n) = F
Gα(ξn)
ξn

(xn) ∈ stξ(xn) and fβ(n) = F
Gβ(ξn)
ξn

(xn) 6∈ stξ(xn)

and hence fα(n) 6= fβ(n).

4.4. Making κ into the least cardinal fixed point. Using techniques origi-
nating in Magidor [10], collapses can be interleaved into the forcing of Theorem
3 so that κ becomes the least cardinal with κ = ℵκ in the final model. (In [9],
interleaving collapses in diagonal Prikry forcing was used to turn κ into ℵω2).
We will roughly sketch this construction. Working in V [G], for each ξ < κ let
iξ : V [G] → Nξ be the ultrapower by Uξ. In Nξ, Col(κ+κ+2, iξ(κ))Nξ has car-

dinality iξ(κ) and iξ(κ)-c.c. Back in V [G], |iξ(κ)| ≤ κκ
ξ+1

= κξ+2, so using the
< κξ+2-closure of the poset and Nξ, we can find Kξ which is Col(κ+κ+2, iξ(κ))Nξ -
generic over Nξ. Then we can replace R in the construction of Theorem 3 by the
forcing whose conditions are of the form

p = 〈cp, xp0, f
p
0 , . . . , x

p
n−1, f

p
n−1〉

_〈Yξ, Fξ : ξ < κ〉
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where

• 〈x0, . . . , xn−1〉_〈Yξ : ξ < κ〉 is a condition from the diagonal Prikry forcing
defined above.
• c ∈ Col(ω,< κ0).
• For all i < n− 1, fi ∈ Col(κ+κi+2

i , < κi+1).

• fn−1 ∈ Col(κ
+κn−1+2
n−1 , κ).

• For ξ ≥ κn−1, Fξ is a function with domain Yξ such that Fξ(x) ∈ Col(κκx+2
x , κ)

and Fξ represents an element of Kξ in the Uξ ultrapower.

A condition q = 〈cq, xq0, f
q
0 , . . . , x

q
m−1, f

q
m−1〉

_〈Y qξ , F
q
ξ : ξ < κ〉 extends p if

• 〈xq0, . . . , x
q
n−1〉

_〈Y qξ : ξ < κ〉 ≤ 〈xp0, . . . , x
p
n−1〉

_〈Y pξ : ξ < κ〉 as conditions
from R.
• cq ≤ cp and fqi ≤ f

p
i for all i < n.

• For all n ≥ i < m, fqi ≤ F
p
i (xqi ).

• For all ξ ≥ κm−1 and all x ∈ Y qξ , F qξ (x) ≤ F pξ (x).

The restriction on the Fξ is needed to prove the µ-c.c. and the Prikry property.
In the extension, if η < κ, then η < κn for some n, and therefore ℵη < ℵκn ≤

κn+1 < κ, so κ = ℵκ. Furthermore, κ0 is collapsed to be ω1 and for n > 0, κn is
the nth iteration of the map η 7→ η+η+3 evaluated at κ0, so κ must be the least
cardinal fixed point.

5. A stationary A with ν(A) = ∅

Suppose that B ⊆ κ+ is careful. Let ~T = 〈Tn : n < ω〉 be any careful sequence for

B, and ~T ∗ = 〈T ∗n : n < ω〉 be any sequence with µ(~T ∗) = B. Then ν(〈Tn \ T ∗n〉) =

∅, that is, ~T is the minimum sequence with µ(~T ) = B, up to sequences which

evaluate to ∅ under ν. We would like ~T to be the minimum such sequence modulo

nonstationary sequences. This is equivalent to asking that any ~S with ν(~S) = ∅
has Sn nonstationary for all but finitely many n.

Investigating this question from another angle, notice that

• The unboundedness property of a scale says that for any unbounded A ⊆ κ+
and ~S with µ(~S) = A, Sn is unbounded in κn for all but finitely many n.
• Proposition 2.6 says that for stationary A, the Sn must be stationary for

all but finitely many n.

The original question can be rephrased: if A is club (or even equal to the whole

of κ+) and µ(~S) = A, must Sn be club in κn for all but finitely many n? We will
give a negative answer under the assumption of a continuous tree-like scale. This
result, and its proof, are similar to Theorem 3 of [6].

Theorem 4. Let 〈fα : α < κ+〉 be continuous and tree-like, and let η < κ0 be a

regular cardinal. There is a sequence 〈Sn : n < ω〉, Sn ⊆ κn, such that ν(~S) = ∅
(equivalently µ(〈κn \ Sn〉) = κ+) and Sn is stationary in κn ∩ Cof(η) for all n.

Proof. Consider the tree T of initial segments of members of ~f . So a node on level
n is a sequence of ordinals of length n where the mth term is < κm, but because
~f is tree-like there is no ambiguity to identify the node by its last (i.e., (n − 1)st)
term, so if β ∈ κn−1 is a node on the nth level of the tree, let sn(β) be sequence
identified with it. Let <T denote the tree order.
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The main point of the proof is that this tree can be thinned to be stationarily
branching after some point, a general fact about continuous tree-like scales which
may be of independent interest.

Lemma 5.1. There is a subtree T ′ of T such that there is some γ ∈ T ′ compatible
with every element of T ′ (γ is called the stem), and for every α on the nth level of
T ′, where n ≥ level(γ), the set {β ∈ κn : α <T ′ β} ∩ Cof(η) is stationary.

Proof. We first define a game. On the nth turn, player I plays An ⊂ κn nonsta-
tionary and player II plays αn ∈ κn. In addition player II plays N ∈ ω on the 0th
turn. Player II wins if αn <T αn+1 for all n and αn ∈ Cof(η) \ An for all n > N .
Otherwise player I wins.

We will show that II has a winning strategy. This game is open, hence deter-
mined, so towards a contradiction assume that I has a winning strategy σ. Let
M ≺ (H(κ+), σ), where M is internally approachable of length η. Then χM =∗ fα
for some α ∈ κ+, and set αn = fα(n). Choose N so that χM (n) = fα(n) has
cofinality η for all n > N . We show that II can play the αn and N against σ and
win, a contradiction. For each n > N , let Bn =

⋃
β∈κn−1

σ(sn−1(β)) be the union

of all possible plays of I according to σ, where the union ranges over all β on the nth
level of T . Each σ(s) is a nonstationary subset of κn, so this union is nonstationary
in κn. Furthermore, since σ ∈ M , we have that Bn ∈ M , so its complement is a
club Cn in κn which is a member of M . Therefore αn ∈ Cn for all n > N . By the
definition of Cn, αn 6∈ σ(sn−1(αn−1)).

Let τ be a winning strategy for II. We may assume that II’s 0th move according
to τ does not depend on I’s, since by the definition of the game, I’s 0th move is
meaningless. So let N be the 0th move that II plays. We may also assume that II’s
first N moves according to τ do not depend on I’s moves. Then the subtree of plays
according to τ in T is stationarily branching in cofinality η with stem of length N ,
since otherwise at a nonstationarily branching play, I could block by playing all
successors. This completes the proof of the lemma. �

Now we fix ordinals 〈βn : N < n < ω〉 such that βn ∈ Cof(η) is on the (n− 1)st
level of T ′ and the βn form an antichain in T ′. Then let Sn ⊆ κn be the successors of
βn for each n < ω. By stationary branching, Sn is stationary in κn ∩Cof(η). Since
the scale is tree-like, for any α ∈ κ+ there is at most one n such that fa(n) ∈ Sn,

so ν(~S) = ∅. Thus, the theorem is proved. �
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