

Agenda

- Introduction to course
- High level language versus Assembly language versus Machine Language
- Categorization of Software: Applications, Systems, Hardware
- Components of a Computer: Input, Output, Memory, Control, and Datapath
- Integrated Circuits (IC's)

Reading: Patterson, Sections 1.1-1.3.

CSE 2021: Computer Organization Section E

Course Instructor: Hugh Chesser
Teaching Assistants: TBA
Contact Information: Instructor
Office: CSB 1012U
chesser@yorku.ca

Teaching Assistants TBA

Course URL:
Text: D. A. Patterson and J. L. Hassey, Computer Organization and Design,
http://www.cse.yorku.ca/course archive/2009-10/F/2021/ San Francisco, CA: Morgan Kaufmann Publishers, Inc., $4^{\text {th }}$ edition (2008)

Class Schedule: MW 17:30 - 19:00, Room R S203
Office Hours: Instructor: CSEB 1012U, By appointment Teaching Assistants: TBA

Laboratory: CSE 2004, SPIM simulator is freeware, downloadable to PC's.
Assessment: \quad Quizzes: 10% (Best 2 out of 3 counted)
Lab Exercises: 35\% (Your higher scoring 7 out of 8 labs at 5\% each)
Mid-term Exam: 20\%
Final Exam: 35\%

Course Overview

"Had the transport industry kept pace with the computer industry, today we would travel coast to coast in 5 seconds for about 50 cents !" (Patterson, 1998)

What is CSE 2021 about?

The course explains what is inside a computer, describing its hardware (HW), and introducing the assembly language representation of a program compiled from a high level language such as ANSI C.
You will learn:

1. How computers work?
2. How to analyze their performance?
3. How to code directly in MIPS?
4. What are the issues affecting modern processors (e.g. caches, pipelines)?

Why do I learn this stuff?

1. To build better software people use (improved performance)
2. To offer expert advice in applications, purchasing, etc.

Typical Schedule (Fall 09)

WEEK OF Mon	Wed	Lab	Topic	
Sep 07	-	$=$	-	Overview of the course
Sep 14	$=$	$=$	-	Performance and Data Translation
Sep 21	$=$	-	A	Code Translation
Sep 28	$=$	Quiz \#1	B	Translating Utility Classes
Oct 05	$=$	$=$	C	Translating Objects
Oct 12	-	-	-	READING WEEK - No Classes
Oct 19	$=$	Mid-term in TEL 0014	D	Introduction to Hardware
Oct 26	$=$	$=$	Make-up Labs	Machine Language + Floating-Point
Nov 02	$=$	$=$	K	The CPU Datapath
Nov 09	$=$	Quiz \#2	L	The Single-Cycle Control
Nov 16	$=$	$=$	M	
Nov 23	$=$	$=$	Nipelining	
Nov 30	$=$	Quiz \#3	Make-up Labs	
Dec 07	$=$	-	-	Naches lecture on Wednesday

