Schema Extraction

Divesh Srivastava (AT&T Labs – Research)

Joint work with Marios Hadjieleftheriou, Beng Chin Ooi, Cecilia M. Procopiuc, Xiaoyan Yang, Meihui Zhang
Motivation

♦ Information extraction
 – Extracting structure (e.g., tables) from unstructured data (e.g., text)

♦ Schema extraction
 – Extracting schema (σχήμα) from structured (e.g., tabular) data
 – Wealth of tabular data, e.g., spreadsheets, web tables, ...
 – Schema includes keys, foreign keys, table spaces, ...
 – Knowledge of database schema enables richer queries (e.g., joins), more sophisticated data analysis
Motivation: TPCE Schema Graph

TPCE

Broker
Customer
Market
Dimension
Outline

♦ Motivation
 – Extracting schema from tabular data

♦ Discovering good foreign keys from tabular data
 – Schema graph = nodes (tables, attributes) + edges (foreign keys)

♦ Discovering good table spaces
 – Clustering tables by topic, identifying important tables
Discovering Foreign Keys: Motivation

- Foreign/primary key relationship is an important constraint in relational databases

- Knowing foreign keys is often a crucial step in understanding and analyzing the data
Discovering Foreign Keys: Motivation

- In practice, foreign keys are often **NOT** specified in the schema

- Reasons
 - Associations not known to DB designers but inherent in data
 - Implicit relationships across multiple databases
 - Data inconsistencies (data integration, database evolution, ...)
 - ...
Existing Work

- Little previous work on discovering **multi-column** foreign keys

- Most focus mainly on identifying **inclusion dependencies** \([1,2,3]\)
 - The only formal requirement (a subset of primary key)
 - Not enough

→ a large number of false positives

Existing Work
Existing Work

- Heuristic rules to reduce the number of false positives [4]
 - The column names of foreign/primary keys should be similar
 - A foreign key should have significant cardinality
 - A foreign key should have good coverage of the primary key
 - The primary key should have only a small percentage of values outside the range of the foreign key
 - The average length of the values in foreign/primary key columns should be similar (mostly for strings)
 - ...

- Counter-examples exist for any rule!

Our Approach

♦ Randomness

– Measuring the likelihood that \((F, P)\) is a useful FK/PK constraint
– Thesis: values in \(F\) form a random sample of (ordered) values in \(P\)
– No correlation between the semantics of the table with the foreign key and the way the primary keys are generated
– In dynamic databases, the distributions change over time
Outline

♦ Motivation
 – Extracting schema from tabular data

♦ Discovering good foreign keys from tabular data
 – Schema graph = nodes (tables, attributes) + edges (foreign keys)
 – Inclusion, randomness

♦ Discovering good table spaces
 – Clustering tables by topic, identifying important tables
Inclusion

- Partial inclusion $\sigma(F,P)$: user defined threshold
 - $\sigma(F,P) = \frac{|F \cap P|}{|F|}$
 - $\sigma(F,P) \geq 0.9$

- For efficiency
 - bottom-k sketch \[^5\]

\[^5\] Edith Cohen, Haim Kaplan: Leveraging discarded samples for tighter estimation of multiple-set aggregates. SIGMETRICS/Performance 2009
Inclusion

♦ Partial inclusion $\sigma(F,P)$: user defined threshold
 - $\sigma(F,P) = |F \cap P|/|F|$
 - $\sigma(F,P) \geq 0.9$

♦ For efficiency
 – bottom-k sketch $[^5]$
 – $\sigma(F,P) = \text{Jacc}(F,P)/\text{Jacc}(F \cup P,F)$
Randomness

♦ Randomness test
 – Given F and P, test if the distinct values (tuples) in F have the same underlying distribution as the values (tuples) in P

♦ Domain order
 – Numerical order: numeric values
 – Lexicographic order: strings
Randomness Measure

- Earth Mover’s Distance (EMD)
 - Standard distance measure between probability distributions
 - EMD measures the amount of work needed to convert 1st distribution into the 2nd
Distance Function

- Normalized distance between ranks
 - Independent of the actual values in any column

- Single-column
 - Absolute difference between the ranks in the underlying ordered space (PK column)
 - Normalize by the number of values

- Multi-column
 - Manhattan distance
 - Normalize by dimensionality
Probability Distribution

- Exact distribution
 - let each value in $F (P)$ have a probability of $1/|F| \ (1/|P|)$

Computing EMD is **too expensive** over large $F (P)$
(Hungarian algorithm has cubic complexity)
Probability Distribution

- Quantile histogram
 - ℓ-quantiles of PK

- One dimension
 - Equi-depth
Probability Distribution

- Quantile histogram
 - ℓ-quantiles of PK
 - Probability distribution of FK is defined w.r.t quantiles of PK

- Multi-dimension
 - Compute quantiles separately on each dimension
 - Construct a grid
Overall Algorithm

1. **Inclusion**
 - bottom-k sketch

2. **Randomness**
 - quantile summary

<table>
<thead>
<tr>
<th>Function</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1.id -> P1.cid</td>
<td>0.001</td>
</tr>
<tr>
<td>F2.id -> P3.tid</td>
<td>0.002</td>
</tr>
<tr>
<td>F3.id -> P1.cid</td>
<td>0.002</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Outline

♦ Motivation
 – Extracting schema from tabular data

♦ Discovering good foreign keys from tabular data
 – Schema graph = nodes (tables, attributes) + edges (foreign keys)
 – Inclusion, randomness
 – Experimental results

♦ Discovering good table spaces
 – Clustering tables by topic, identifying important tables
Experiments

♦ Datasets
 – Benchmark databases: TPC-E, TPC-H
 – Real databases: Wikipedia, IMDB

♦ Evaluation
 – Accuracy
 – Scalability
 – Comparison
Experiments

- Number of candidates after inclusion test

<table>
<thead>
<tr>
<th>Dataset</th>
<th>TPC-H</th>
<th>TPC-E</th>
<th>Wikipedia</th>
<th>IMDB</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC-FK</td>
<td>9</td>
<td>44</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>MC-FK</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>θ =</td>
<td>0.9</td>
<td>1</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>SC-Candidates</td>
<td>38</td>
<td>304</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>MC-Candidates</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

© 2010 AT&T Intellectual Property. All rights reserved. AT&T and the AT&T logo are trademarks of AT&T Intellectual Property.
Accuracy

TPC-H

Wikipedia
Accuracy

TPC-E

IMDB
Scalability

- TPC-H: 1M, 10M, 100M, 1G, 10G

![Graph showing scalability with TPC-H benchmarks and time in hours]
Comparison

♦ Machine learning approach [4]
 – Use 7 heuristic rules
 – Need learning phase to train 4 classifiers
 – Need known foreign/primary key pairs for training
 – Discover single-column keys only
 – TPC-H: F-measure = 0.95 (best classifier J48)
 F-measure = 0.915 (average all classifiers)

♦ Our approach
 – TPC-H: F-measure = 0.95

Summary

♦ Introduce randomness and show it can discover meaningful foreign keys, including multi-column foreign keys

♦ Provide efficient algorithm for evaluating randomness

♦ Present I/O efficient algorithm for discovering good foreign keys

♦ Experiments show the efficacy of our techniques
Outline

- Motivation
 - Extracting schema from tabular data

- Discovering good foreign keys from tabular data
 - Schema graph = nodes (tables, attributes) + edges (foreign keys)

- Discovering good table spaces
 - Clustering tables by topic, identifying important tables
Discovering Table Spaces: Motivation

- Complex databases are challenging to explore and query
 - Consisting of hundreds of inter-linked tables
 - Users unfamiliar with the schema
 - Insufficient or unavailable schema information

- Propose a principled approach to discover table spaces
 - Cluster similar tables
 - Label each cluster by its most important table
Discovering Table Spaces: Motivation

TPCE

Broker
Customer
Market
Dimension
Outline

♦ Motivation
 – Extracting schema from tabular data

♦ Discovering good foreign keys from tabular data
 – Schema graph = nodes (tables, attributes) + edges (foreign keys)

♦ Discovering good table spaces
 – Clustering tables by topic, identifying important tables
 – Table importance, weighted k-center clustering
Table Importance

- Depends on
 - Internal information content
 - External connectivity
 - Join behavior
 - Taxrate: 1 join
 - Customer: 5 joins
Table Importance (cont’d)

♦ Entropy of Attribute A in table R is defined as

$$H(R, A) = \sum_{i=1}^{k} p_i \log(1/p_i)$$

- $R.A = \{a_1, ..., a_k\}$
- p_i is the fraction of tuples in R that have value a_i on attribute A

♦ The Information Content of a table R is defined as

$$IC(R) = \log|R| + \sum_{R.A} H(R, A)$$

- Create a primary key $R.Key$ to table R
- Add a self-loop $R.Key - R.Key$

R.Key consists of all attributes
Table Importance (cont’d)

- **Entropy transfer matrix** Π associated with schema graph G is defined as:
 - For a join edge $e = R.A - S.B$
 \[
 Pr(R.A \rightarrow S.B) = \frac{H(R.A)}{\log|R| + \sum_{R.A'} q_{A'} \cdot H(R.A')} \cdot \frac{H(R.A)}{IC(R) + \sum_{R.A'} (q_{A'} - 1) \cdot H(R.A')}
 \]
 q_A: number of join edges involving $R.A'$ (including self-join)

- For a pair of tables R and S, define
 \[
 \Pi[R, S] = \sum_{R.A - S.B} Pr(R.A \rightarrow S.B), \quad \Pi[R, R] = 1 - \sum_{S \neq R} \Pi[R, S]
 \]
The importance of table R is defined as the stable-state value of a random walk on G, using probability matrix Π.

- Vector \mathcal{I}, s.t. $\mathcal{I} \times \Pi = \mathcal{I}$
- Importance $\mathcal{I}(R)$, $R \in G$

Example
Table Similarity

- Distance = 1 - similarity
- Goal: define metric distance
 - Enables meaningful clustering over relational databases
- Table similarity depends on how *join edges* and *join paths* are instantiated

\[R.A = S.B \]
Table Similarity (cont’d)

- Consider a join edge \(e = R.A - S.B \)
 - Tuples \(t_1, t_2 \) instantiate \(e \)
 - \(\text{fanout}_e(t_i) \) is the fanout of \(t_i \) along \(e \)
 - \(\text{fanout}_e(t_1) = 3 \)
 - Let \(q \) be the number of tuples in \(R \) s.t. \(\text{fanout}_e(t_i) > 0 \), define the matching fraction of \(R \) w.r.t. \(e \) as \(f_e(R) = q/n, |R| = n \)
 - \(f_e(R) = 2/3 \leq 1; \quad f_e(S) = 5/5 = 1 \leq 1 \)
 - Define the matched average fanout of \(R \) w.r.t. \(e \) as
 \[
 maf_e(R) = \frac{\sum_{i=1}^{n} \text{fanout}_e(t_i)}{q}
 \]
 - \(maf_e(R) = (3+2)/2 = 2.5 \geq 1; maf_e(S) = 5/5 = 1 \geq 1 \)
Table Similarity (cont’d)

- The similarity of tables R and S (w.r.t. $e_{(R,S)}$) must satisfy:
 - Property 1: Proportional to the matching fractions $f_{e(R)}$ and $f_{e(S)}$.
 - Property 2: Inverse proportional to the matched average fanouts $maf_{e}(R)$ and $maf_{e}(S)$.

- Define the strength of tables R and S (w.r.t. $e_{(R,S)}$) as

 - Property 2: Inverse proportional to the matched average fanouts $maf_{e}(R)$ and $maf_{e}(S)$.
Table Similarity (cont’d)

- Let $\pi : R = R_0 - R_1 - \ldots - R_\alpha = S$ be a path in G, define

 $\text{Strength}_\pi(R, S) = \prod_{i=1}^{\alpha} \text{Strength}_{e_i}(R_{i-1}, R_i)$

- Table similarity (R, S):

 $\text{Strength}(R, S) = \max_{\pi} \text{Strength}_\pi(R, S)$

- Distance (R, S)

 - $\text{dist}_s(R, S) = 1 - \text{strength}(R, S)$

 - (R, dist_s) is a metric space
Clustering: Weighted k-Center

- **Clustering Criteria:**
 - Minimize the maximum *distance* between a cluster center and a table in that cluster
 - Take table *importance* into consideration, avoid grouping top important tables into one cluster

- **Weighted k-Center clustering**
 - Weights: table importance
 - Given k clusters $C = \{C_1, C_2, ..., C_k\}$, minimize

 $$
 \mu(C) = \max_{i=1}^{k} \max_{R \in C_i} \mathcal{I}(R) \text{dist}(R, \text{center}(C_i))
 $$

 - NP-Hard
Weighted k-Center: Greedy Algorithm

$\text{GREEDYCLUS}(G = (R, E), k)$

$\mathcal{C} = \{C_1\}$: current clustering;
1. $\text{center}(C_1) = R_1$ s.t. $I(R_1) = \max_{R \in R} I(R)$;
2. $\text{cluster}(R) = C_1, \forall R \in R$: assign all tables to C_1;
3. for $i = 2$ to k

 /* $\Delta(R) = I(R) \text{dist}(R, \text{center}($cluster$(R)))$*/
 4. $\text{center}(C_i) = R_i$ s.t. $\Delta(R_i) = \max_{R} \Delta(R)$;
 5. for each $R \in R$
 6. if $\text{dist}(R, \text{center}($cluster$(R))) > \text{dist}(R, R_i))$
 7. $\text{cluster}(R) = C_i$;
 8. endfor
 9. $\mathcal{C} = \mathcal{C} \cup \{C_i\}$
10. endfor
11. return $(\mathcal{C}, \text{cluster}(\cdot))$

- Start with one cluster, whose center is the **top-1 important table**.
- Iteratively chooses the table R_i whose **weighted distance** from its cluster center is largest, and creates a new cluster with R_i as its center.
- All tables that are closer to R_i than to their current cluster center are reassigned to cluster C_i.
Outline

♦ Motivation
 – Extracting schema from tabular data

♦ Discovering good foreign keys from tabular data
 – Schema graph = nodes (tables, attributes) + edges (foreign keys)

♦ Discovering good table spaces
 – Clustering tables by topic, identifying important tables
 – Table importance, weighted k-center clustering
 – Experimental results
Experimental Results

- Validate the proposed three components in our approach
 - Model for table importance I_E (Entropy-based)
 - Distance function $dist_s$ (Strength-based)
 - Clustering: Weighted k-Center

- Other methods

<table>
<thead>
<tr>
<th>Table Importance</th>
<th>Distance</th>
<th>Clustering</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_E</td>
<td>$dist_s$</td>
<td>Weighted k-Center</td>
</tr>
<tr>
<td>$I_c^{[1]}$</td>
<td>$dist_c^{[1]}$</td>
<td>Balanced-Summary$^{[1]}$</td>
</tr>
<tr>
<td></td>
<td>$dist_p^{[2]}$</td>
<td></td>
</tr>
</tbody>
</table>

- l_c: Cardinality-initialized
- $dist_c = 1 - \text{coverage}$
- $dist_p = 1 - \text{proximity}$

Experimental Results (cont’d)

- **Data Sets: TPCE schema**
 - Benchmark database simulating OLTP workload
 - 33 tables pre-classified into 4 categories
 - Two database instances: TPCE-1 / TPCE-2

<table>
<thead>
<tr>
<th>Parameters</th>
<th>TPCE-1</th>
<th>TPCE-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of customers</td>
<td>1,000</td>
<td>5,000</td>
</tr>
<tr>
<td>Initial Trade Days</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Scale Factor</td>
<td>1,000</td>
<td>36,000</td>
</tr>
</tbody>
</table>

- Affect the size of the majority of tables
- Affect $Pr(R.A \rightarrow S.B)$, $strength(R,S)$ for most pairs and maf_e for 1/3 of edges
Table Importance

- Comparison of I_E and I_C models

- Top-5 Important Tables in I_E and their ranks in I_C

I_E more accurate than I_C

- Top-5 Important Tables in I_C and their ranks in I_E

<table>
<thead>
<tr>
<th>Rank</th>
<th>Table</th>
<th>Info. Content</th>
<th>I_E</th>
<th>I_C Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Trade</td>
<td>39.730</td>
<td>57.798</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Security</td>
<td>37.350</td>
<td>41.405</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Customer</td>
<td>45.781</td>
<td>36.202</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>Financial</td>
<td>43.575</td>
<td>30.647</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>Holding</td>
<td>26.112</td>
<td>28.866</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rank</th>
<th>Table</th>
<th>Card.</th>
<th>I_C</th>
<th>I_E Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Trade</td>
<td>576000</td>
<td>1805787.6</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Trade_History</td>
<td>1382621</td>
<td>659751.7</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>Status_Type</td>
<td>5</td>
<td>503280.9</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>Security</td>
<td>685</td>
<td>487461.5</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>Holding_History</td>
<td>722143</td>
<td>321415.2</td>
<td>9</td>
</tr>
</tbody>
</table>
Table Importance (cont’d)

- **Consistency of I_E and I_C models**

Top-7 Important Tables in I_E and I_C for TPCE-1 and TPCE-2

<table>
<thead>
<tr>
<th>Rank</th>
<th>I_E/TPCE-1</th>
<th>I_E/TPCE-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Trade</td>
<td>Trade</td>
</tr>
<tr>
<td>2</td>
<td>Security</td>
<td>Security</td>
</tr>
<tr>
<td>3</td>
<td>Customer</td>
<td>Customer</td>
</tr>
<tr>
<td>4</td>
<td>Financial</td>
<td>Financial</td>
</tr>
<tr>
<td>5</td>
<td>Holding</td>
<td>Company</td>
</tr>
<tr>
<td>6</td>
<td>Company</td>
<td>Customer_Account</td>
</tr>
<tr>
<td>7</td>
<td>Customer_Account</td>
<td>Holding</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rank</th>
<th>I_C/TPCE-1</th>
<th>I_C/TPCE-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Trade</td>
<td>Security</td>
</tr>
<tr>
<td>2</td>
<td>Trade_History</td>
<td>Daily_Market</td>
</tr>
<tr>
<td>3</td>
<td>Status_Type</td>
<td>Watch_Item</td>
</tr>
<tr>
<td>4</td>
<td>Security</td>
<td>Watch_List</td>
</tr>
<tr>
<td>5</td>
<td>Holding_History</td>
<td>Trade</td>
</tr>
<tr>
<td>6</td>
<td>Daily_Market</td>
<td>Trade_History</td>
</tr>
<tr>
<td>7</td>
<td>Customer_Account</td>
<td>Customer_Account</td>
</tr>
</tbody>
</table>

I_E more consistent than I_C
Distance Between Tables

- **Accuracy of distance functions**
 - Observation: for each table R, its distances to tables within the same category (*pre-defined*) should be smaller than its distances to tables in different categories
 - $n(R)$: # top-q nbrs (NN_R) of R under dist. d ($dist_s, dist_c, dist_p$)
 - $m(R)$: # tables ($\in NN_R$) in the same category as R under dist. d
 - Calculate:

\[
acc(d) = \frac{\sum_R m(R)}{n} \frac{n(R)}{n}
\]

<table>
<thead>
<tr>
<th>$q=5$</th>
<th>All tables</th>
<th>No Dimension tables</th>
</tr>
</thead>
<tbody>
<tr>
<td>$dist_s$</td>
<td>0.659</td>
<td>0.649</td>
</tr>
<tr>
<td>$dist_c$</td>
<td>0.589</td>
<td>0.621</td>
</tr>
<tr>
<td>$dist_p$</td>
<td>0.5</td>
<td>0.557</td>
</tr>
</tbody>
</table>

$dist_s$ most accurate
Table Space Discovery Algorithms

- Weighted k-Center over three distance functions

<table>
<thead>
<tr>
<th>k</th>
<th>C_i</th>
<th>$dist_n$</th>
<th>$n(C_i)$</th>
<th>$m(C_i)$</th>
<th>acc(C_i)</th>
<th>$dist_c$</th>
<th>$n(C_i)$</th>
<th>$m(C_i)$</th>
<th>acc(C_i)</th>
<th>$dist_p$</th>
<th>$n(C_i)$</th>
<th>$m(C_i)$</th>
<th>acc(C_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Trade</td>
<td>9</td>
<td>6</td>
<td>0.67</td>
<td>Trade</td>
<td>19</td>
<td>8</td>
<td>0.42</td>
<td>Trade</td>
<td>21</td>
<td>8</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Security</td>
<td>13</td>
<td>11</td>
<td>0.85</td>
<td>Financial</td>
<td>7</td>
<td>7</td>
<td>1.0</td>
<td>Security</td>
<td>6</td>
<td>4</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Customer</td>
<td>10</td>
<td>6</td>
<td>0.6</td>
<td>Customer</td>
<td>6</td>
<td>3</td>
<td>0.5</td>
<td>Customer</td>
<td>5</td>
<td>2</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Trade</td>
<td>9</td>
<td>6</td>
<td>0.67</td>
<td>Trade</td>
<td>13</td>
<td>7</td>
<td>0.54</td>
<td>Trade</td>
<td>14</td>
<td>8</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Security</td>
<td>12</td>
<td>10</td>
<td>0.83</td>
<td>Financial</td>
<td>7</td>
<td>7</td>
<td>1.0</td>
<td>Security</td>
<td>6</td>
<td>4</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Customer</td>
<td>10</td>
<td>6</td>
<td>0.6</td>
<td>Customer</td>
<td>6</td>
<td>3</td>
<td>0.5</td>
<td>Customer</td>
<td>5</td>
<td>2</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Financial</td>
<td>1</td>
<td>1</td>
<td>1.0</td>
<td>Security</td>
<td>4</td>
<td>6</td>
<td>0.67</td>
<td>Financial</td>
<td>7</td>
<td>7</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

✓ Summary Accuracy

$acc(C) = \sum_{i=1}^{k} \frac{m(C_i)}{n}$

$dist_5$: most balanced and accurate
Summary

♦ Novel approach for discovering good table spaces
 – A new model for table importance
 – A metric distance over schema tables
 – A summarization algorithm

♦ Ongoing work
 – Summarizing schema graphs for at-a-glance understanding
Parting Thoughts

- Schema extraction is critical for automatically creating databases from collections of tables
 - We focused on discovering good foreign keys, tables spaces

- Other work on discovering good primary keys, good FDs:
 - P. Andritsos, R. Miller, and P. Tsaparas. Information-theoretic tools for mining database structure from large data sets. SIGMOD 2004

- Exciting research area with a lot of practical utility!
Discovering Foreign Keys: Motivation

♦ In practice, foreign keys are often NOT specified in the schema

♦ What if this happens in enterprise databases?
 – Thousands of tables
 – Tens of thousands of columns
 – Insufficient (missing/out-of-date) documentation
Objective

- To efficiently discover FK/PK relationships in relational databases
 - Single-column
 - Multi-column
Randomness

• Randomness measure
 – How close are the (multi-dimensional) distributions of F and P?
Our Approach

- Counter-examples exist for randomness rule as well
 - Table P contains all NUS graduate students
 - SID is generated according to the year, e.g. g10xxxxx
 - Table F references only the students who enrolled in NUS in 2010
 - $F.SID$ is not a random sample of $P.SID$
 - Foreign key table is correlated to the way keys are generated
Our Approach

♦ Counter-examples exist for randomness rule as well
 – Table P contains all NUS graduate students
 – SID is generated according to the year, e.g. g10xxxxxx
 – Table F references the students who come from China
 – $F.SID$ is a random sample of $P.SID$

♦ No solution with 100% precision/recall

♦ Experiments on real databases show randomness rule can effectively eliminate false positives and achieve high recall!
Overall Algorithm

♦ Two passes over data

♦ Phase 1
 – Read all columns in table-wise order
 – Build bottom-k sketches for all single columns and all multi-column PKs
 – Build quantile summaries for all single/multi-column PKs
 – Evaluate single-column inclusions
Overall Algorithm

♦ Two passes over data

♦ Phase 2
 – Compute multi-column candidate FKs
 – For each single-column candidate FK, scan it, compute distribution histograms w.r.t all relevant PKs
 – For each multi-column candidate FK, scan it, compute bottom-k sketch and distribution histograms w.r.t all PKs
 – Evaluate randomness
Clustering Algorithms

- **Accuracy of a summary**
 - TPCE is pre-classified into 4 categories: *Broker, Customer, Market* and *Dimension*
 - \(m(C_i) \): # tables in \(C_i \) with the same category as \(center(C_i) \)
 - Given a summary \(C = \{C_1, C_2, \ldots, C_k\} \), calculate \(\text{acc}(C) = \frac{\sum_{i=1}^{k} m(C_i)}{n} \)
 - Balanced-Summary (BS) [1]
 - Weighted \(k \)-Center (WKC)

Based on \(I_C \) and \(\text{dist}_C \) (coverage)

WKC is more accurate
Related Work

♦ C. Yu and H. V. Jagadish. *Schema summarization*. VLDB’06
♦ H. Tong, C. Faloutsos and Y. Koren. *Fast direction-aware proximity for graph mining*. KDD’07
♦ W. Wu, B. Reinwald, Y. Sismanis and R. Manjrekar. *Discovering topical structures of databases*. SIGMOD’08