
Evaluating ADELFE Methodology in the Requirements Identification

V.M. B. Werneck1; A. Y. Kano1, L. M. Cysneiros2
1 Instituto de Matemática e Estatística

UERJ - Universidade do Estado do Rio de Janeiro - Brasil
vera@ime.uerj.br,

 2 School of Information Technology
York University – Toronto – Canada

cysneiro@yorku.ca

Abstract

The increasing use of multi-agent systems brings
challenges that have not been studied yet, such as how
should we adapt requirements elicitation to cope with
agent properties like autonomy, sociability and pro-
activeness. Many methodologies were proposed
adopting this new paradigm. However, most of them
are still in their early phases and therefore need to be
adapted. In this work ADELFE, an agent-oriented
methodology is evaluated. We use an exemplar
proposed in 2001 by Yu and Cysneiros [1] to evaluate
both agent/goal orientation and object orientation.
This evaluation aims at analysing the strengths and
weaknesses of ADELFE through the methodologies
questions proposed in the exemplar.

1. Introduction

The agent-oriented modeling is proposed as a
suitable requirement engineering approach for
complex organizational application domains which
have to deals with the proliferation of software
components distributed by a great number of users in a
global scale. Moreover, this new paradigm comes up
as an approach to deal with the need for new
applications such as autonomy and sociability. These
requirements are not broadly considered by current
paradigms. Autonomy and sociability aspects such as
the dependency of an agent on another; and how
critical should this condition be, has to be analyzed
since the early stages of the software development
process.

This research work is included in a project for the
evaluation of agent-oriented methodologies [2], [3],
[4], [5], based on the evaluation framework proposed
by Yu e Cysneiros [1]. Our aim in this paper is to

present an analysis of ADELFE methodology using the
experience in the definition and design of the
requirements of the Guardian Angel System [6]. The
experiment allowed us to evaluate the ADELFE
methodology, considering its potential in identifying
requirements.

This paper is organized in five sections and aims to
present the experience on the agent-oriented
methodologies evaluation framework based in an
exemplar described in the section 2. An overview of
ADELFE methodology is presented in the section 3
and discusses the difference between this methodology
and the object oriented approach of UML/RUP.
Section 4 describes the modeling of Guardian Angel
System in ADELFE focusing in the mains aspects of
agent oriented. The ADELFE methodology evaluation
is discussed in section 5, comparing it with related
works. The section 6 presents the conclusion and the
future works.

2. Evaluation Framework

The evaluation framework [1] used in this research
is based on the Guardian Angel (GA) project [6],
which gives automatic support for chronic disease
patients suffering for example from insulin-dependent
diabetes, hypertension, or undergoing anticoagulation
therapy. This system covers all the aspects from the
health system including prescriptions, gathering a
comprehensive life-long record of the individual's
health-related information. The GA project proposes
developing a group of agents representing the hospital
(GA hospital), home members (GA HOME) and the
patient (GA PDA). The system stores, handles and
interprets personal medical history as well as daily
treatment routine of the patient, suggesting better
options based on his/her preferences. It should be

accessible all the time and for all the health care
institutions.

The Guardian Angel project [6] was chosen as a
base for the exemplar, because of its complexity and
its requirements for all the current systems. By having
such rich and complex example we expect to be able to
deeply evaluate each methodology on complex
properties such as distribution, privacy autonomy, pro-
activity or sociability problems that could be otherwise
not properly judged. Since the GA is an easily
comprehended and open system, it is optimum to
analyze methodologies, identifying its strengths and
weaknesses.

The exemplar is expressed in terms of a set of
numbered scenarios (EA0.0 until EA9.0) such as the
one below: EA2.0- Once the patient and the doctor
establish a treatment plan GA-PDA must help the
patient to keep and monitor the routine.

The process also provides together with the
scenarios, a set of evaluation questions aimed to help
evaluating how well the methodology supported
modeling the set of scenarios. In this work, we used
these methodological questions presented in the
exemplar to evaluate ADELFE methodology that will
be better explained in section 5.

3. The ADELFE Methodology

The ADELFE methodology [7], [8], [9] was

developed to work on some aspects not already
considered by existing methodologies and to
consolidate the AMAS (Adaptative Multi-Agent
Systems) Theory. ADELFE is an acronym that
translated from French means "framework to develop
software with emergent functionality"

ADELFE provides a specific process adapted from
an interpretation of RUP (Rational Unified Process)
[10]. Some additions have been made to consider
AMAS Theory specificities, for example the
environment characterization of the system the
identification of cooperation failures. Each user and
service provider has an individual objective which is to
execute for a required request and does not
comprehend the whole system functionality.

In ADELFE, the developer is not obliged to be
specialized in the AMAS system field. Some additional
notations are provided together with some tools to
guide the developer throughout the process
application. ADELFE provides the analyst a tool to
estimate the AMAS technology adequacy. The
adequacy is studied at two levels: the global (the
system) and the local (the components). Eight
parameters are taken into consideration for the global

level while for the components there are other three
parameters.

ADELFE also uses AUML principle [11] together
with UML [12] and RUP [10] to express agent
interaction protocols. Two other tools (Open Tool and
Interactive Tool) are integrated to the framework. The
Open tool is a graphic modeling tool which gives
support to UML notation and ADELFE notation which
introduces new stereotypes and protocols of AUML
interaction. The Interactive Tool describes the
modeling process and helps guiding the developing
and its application.

The main objective of the ADELFE method is to
cover all the phases of a classical software process
from the requirements to the deployment based on the
RUP process adapted to AMAS. Only the work
definitions (WD) of requirements, analysis and design
require modifications to be adapted for the AMAS.
The rest of the RUP is applied without modifications.

3.1 Preliminary and Final Requirements (WD1
e WD2)

ADELFE [7], [8], [9] does not add anything to the
preliminary requirements work definition (WD1) as
described by the RUP (Table 1). The aim still consists
of studying the customer's needs to produce a
document on which both the customer and the
developer agree.

The characterization of the environment (A6) is the
first activity of the process of the final requirements
(WD2), aiming at defining the environment. This
activity was added to the RUP because the
environment is very important concept in AMAS
theory thus, the environment has to be studied and
comprehended before the use cases definition. The A6
activity has the following tasks: determine the entities,
define the context and characterize the environment.
The characterization begins by the identification of the
entities which interact with the system and the
restrictions of these interactions (A6-S1). An entity is
an actor just as in UML, but it may be classified in
ADELFE as passive or active. An active entity can act
in an autonomous way and dynamically with the
system. A passive entity is considered as a resource of
the system that can be used or modified by active
entities. The classification of the entities is essential in
AMAS since the agents will be part of the system
treated as active entities.

The context definition (A6-S2) analyses the
environment through the interaction among entities
and the system defining UML sequence and
collaboration diagrams. The information flow of

passive entities and the system are expressed by
collaboration diagrams, while interaction among active
entities and the system are described by sequence
diagrams. The ADELFE methodology defines these

diagrams based on the result of the previous step (A6-
S1) where the entities were pre-defined with the
support of the set of keywords provided (A4).

Table 1. WD1 & WD2 – Preliminary and Final Requirements in ADELFE

WD1: Preliminary Requirements
 A1: Define user requirements
 A2: Validate user requirements
 A3: Define consensual requirements
 A4: Establish keywords-set
 A5: Extract limits constraints

WD2: Final Requirements
A6: Characterize environment

 S1: Determine entities
 S2: Define context
 S3: Characterize environment

A7: Determine use cases
 S1: Draw inventory of use cases
 S2: Identify cooperation failures
 S3: Elaborate sequence diagrams

A8: Elaborate UI (user interface) prototypes
A9: Validate UI prototypes

In the Step A6-S3, the developer has to describe the

environment in terms developed of accessible (as
opposed to "inaccessible"), continuous (as opposed to
"discrete"), deterministic (as opposed to "non-
deterministic"), or dynamic (as opposed to "static").

ADELFE is interested in cooperative agents to be
able to construct AMAS. The developer must think
about all the unexpected and harmful events that could
happen causing non cooperative situations for the
agents. These cooperation failures are exceptions.
Taking this aspect into account, the determination of
the use cases is modified by adding the step (A7-S2) in
which cooperation failures must be identified using
specific notation.

The elaboration of user interface (UI) prototypes
activity (A8) models the graphic users interface (GUI)

specifications used in the interactions defined in A6
and A7. GUI are evaluated in A9 as functional or non
functional (ergonomics, design,etc). Sometimes in this
phase is necessary to go back to activity A8 to improve
UI.

3.2 Analysis (WD3)

In the Analysis phase (Table 2), AMAS adequacy

verification activity (A11) is included to identify
agents and interaction among the entities. The
developer identifies the components of the system
studying use cases and scenarios previously elaborated
in the domain analysis [7], [8], [9].

Table 2. WD3 – Analysis in ADELFE

 A10: Analyze the Domain
 S1: Identify classes
 S2: Study interclass relationships
 S3:Construct preliminary class diagrams

 A11: Verify the AMAS adequacy
 S1: Verify it at the global level
 S2: verify it at the local level.

A12: Identify Agents
 S1: Study entities in the domain context
 S2: Identify potentially cooperative agents
 S3: Determine agents

 A13: Study Interactions between Entities
 S1: Study active/passive entities relationships
 S2: Study active entities relationships
 S3: Study agents relationships

The ADELFE AMAS technology adequacy

verification of the system activity (A11) is to be
performed using an adequacy tool that studies the
system adequacy considering two levels: global (A11-
S1) and components (A11-S2). Globally the study
must answer the question "Is an AMAS technology
implementation to the system necessary? For the local
level the question is "Does any component need to be
implemented as AMAS?" If the tool answers the first

question positive the developer can continue applying
the process. If the second question's answer is also
affirmative the ADELFE methodology should be
applied on the components considered as AMAS since
they require evolution.

The activity of identifying agents (A12) was also
introduced to RUP and has to analyse the entities
defined in A6 that will be considered an agent in the
system. In ADELFE, agents are not previously known

thus the developer must identify them. Entities which
demonstrate properties such as autonomy, local
objective to pursue, interaction with other entities,
partial view of its environment and the ability to
negotiate are the ones to be considered as potential
agents. To effectively turn into a cooperative agent, the
potential cooperative agent must be prone to
cooperation failures. By studying its interactions with
its environments and with other entities, the developer
has to determine if this entity may encounter such
situations that will be considered as non cooperative
situations at the agent level. The entities meet all these
criteria will be identified as agents and the classes
related to them marked as agents.

The focus of AMAS system development is on
cooperative agents who come from the previously
defined entities (A6-S1) and the classes elaborated
(A10-S1). The cooperative agents are entities that
satisfy at least the autonomy requirements, the local
objective and the interaction with other entities. After

assessing all the possible agents, the classes are
marked with the cooperative agent stereotype.

The activity of study the interactions between
entities (A13) was also incorporated to the process.
This activity studies the interactions between
active/passive entities, between active entities and
between agents. The interaction between entities is
represented by Collaboration and Sequence Diagrams.
The agents' interactions are described by AUML
Protocol Diagram.

3.3 Design (WD4)

The first activity of the design process (Table 3)
identifies the detailed architecture of the system,
creating packages sub-systems, objects, agents and the
relationships among them, aiming at improving the
class diagrams with the new elements occurring after
the new agents were accepted [7], [8], [9].

Table 3: WD4 – Design in ADELFE

A14: Study detailed architecture and multi-agent model
 S1: Determine packages

 S2: Determine classes

 S3: Use design-patterns

 S4: Elaborate component and class diagrams

A15: Study interaction languages

A16: Design Agents
 S1: Define skills
 S2: Define aptitudes
 S3: Define interaction languages
 S4: Define representations
 S5: Define Non cooperative situations

A17: FAST Prototyping
A18: Complete design diagrams

 S1: Enhance design diagrams
 S2: Design dynamic behaviors

The developer in the new activity A15 studies the

interaction languages to be able to define the protocols
used by agents to communicate between themselves.
This information exchange between agents has to be
described. For each scenario defined in the A7 and
A13 activities we describe these exchanges using
AUML protocol diagrams. The protocols diagrams are
attached to package (not classes) because they are
generic. The language definition is not necessary when
agents' communications is via the environment.

The activity Design Agents (A16) is an ADELFE
methodology specific activity and allows the developer
to refine the CooperativeAgent stereotyped classes
identified in the A12 and A15 activities. The different
modules of an agent must be defined in these activities
by describing its skills, aptitudes, interaction
languages, design representations, design
characteristics and design non-cooperative situations.

Methods and attributes can describe the skills of an
agent with a stereotyped notation <<skill>>. Skills are
the system knowledge that allows the agent to perform
an action. Similar as skills, aptitudes, interaction

languages, design representations and design
characteristics are defined with a stereotyped notation.
Aptitudes are the capability of the agent to reason
about a specific knowledge of the system or about a
real situation.

The developer analyses protocols defined in A15
activity as well as those assigned to an agent are
associated to a state-machine. The methods and
attributes link with an interaction protocol must be
stereotyped <<interaction>>. The methods and
attributes related to perception and action phase are
represented by <<perception>> and <<action>>
respectively in (A16-S3).

The step Design Non Cooperative Situations (NCS)
(A16-S6) is the most important in the activity of
defining agents (A16), because this is a specific ability
of cooperative agents. A model guides the developer in
the definitions of all situations that seem to be
"harmful" for cooperative social attitude of an agent.
Table X? Qual tabela? lists some type of situations like
ambiguity, incompetence, uselessness, conflict. The
developer should fills up the conditions described for

each NCS. Table X contains the state of this agent
when detecting the NCS, a NCS textual description,
conditions permitting local detection of NCS and
actions linked to this NCS.

The Fast Prototyping activity (A17) uses OpenTool
[7], [8] to test the agents behaviour previously defined.
The customized version of OpenTool can
automatically transform a protocol diagram into a
state-chart that can be run to simulate the agents'
behaviour. Some methods can be implemented using a
OTscript language that is a set-based action language
of OpenTool.

The last activity of design is to complete the
detailed architecture enriching the class diagrams
(A18-S1) and developing the state chart diagrams
required to design the dynamic behaviours (A18-S2).
The objective is to reflect the different changes of an
entity state when it is interacting with others.

4. The Guardian Angel ADELFE Modeling

This first version of the system permits that final

users and service providers establish contact when they
can share a common interest in a dynamic and
distributed context. The main requirement of this
scenario is: (i) to give relevant information to final
users for a certain query; (ii) to ensure service
providers can expose their information to relevant
users.

The system has to provide: notification and
guidance to personal users; propagation for request or
inquiry between the system actors; distribute
information for potential users interested on receiving
this information; obtain information from providers
that reflect real users desires.

This first version of the Guardian Angel (GA)
model was developed using the Work Definitions for
the early and final requirements, analysis and design,
the AMAS Adequacy tool and OpenTool [7], [8]. The
development process was lasted three months and the
doubts we had were answered by e-mail by Carole
Bernon, one of ADELFE authors, from IRIT (Institut
de Recherche en Informatique de Toulouse).

4.1 Preliminary Requirements

During the preliminary requirements phase we
identified the following functional requirements: (i)
allow the user to make different query to databases; (ii)
allow to communicate with others sub-systems
connected in the net; (iii) monitor the progress of the
patient health conditions and the effect of the
treatment; (iv) periodically verify the data integrity to

find violations based on the user expectative and
collateral effects; (v) expose the colleted data from
auxiliary bases to user, offering a maximal context
comprehension to the user involved; (vi) customizable
services allowing the user objectivity, adequacy and
efficiency; (vii) improve education functionalities to
the user such as access to encyclopaedias and
universities researches to find knowledge from their
diseases; (viii) provide alert and agenda functions
remembering the patients of their appointment,
medicienes dosage and contraindications ; (ix) offer to
the patient the possibility to be in contact with support
groups, forums and the main medicines laboratories;
(x) be able to organize illnesses and diseases in a
hierarchal structure using decreasing levels of severity,
in order to make possible to apply together different
techniques to the patients.

The following non-functional requirements were
defined in this phase: (i) to be able to store physical
and logical information using an enormous data
volume; (ii) to make use of visual, sonorous and touch
communication capacity; (iii) the system should be
available 24 hours during the 7 days of the week, 365
days per year; (iv) be multitask and allow to answer to
several data request simultaneous in a certain average
time; (v) to be conceptually distributed (the small parts
inside inhabit (nao entendi) all of the same
environment, however they represent, separately,
concepts and well distinct parts); (vi) to allow
suddenly appearance and the abrupt disappearance of
its components; (vii) to allow the adaptation and
evolution of its components.

The stage of requirements validation and the
definition of agreement requirements were carried out
by the developer with the supervision of an adviser
professor. We have also defined the main key words:
Monitoring, GA, Patient, Communication, Health
Professional, Insuring, and History Information.

One limitation relates to maintenance routines. A
pre-defined agenda has to be followed. During these
maintenance routines the system will not be available.
Another restriction is that the system is not responsible
for operating subnets with which it interacts, which
implies that in case of eventual problems the user will
be unable to access them until they become available
again.

4.2 Final Requirements

The final requirements definition phase started with
the environment characterization activity (A6) where
the following passive entities had been identified:
World Wide Web, Library, Hospital Stay, Illness
Organism Information, Idiopathic Cause and Therapy.

The considered active entities were: Patient, Family,
Support the Patient Group, Government, Health Plan
Insurance, Laboratory, Health Professional, Hospital,
Clinic, Pharmaceutical Industry, Ambient Factors and
the proper Guardian Angel.

The Patient is the central entity of the Guardian
Angel, having the ability to (i) activate any events in
any circumstance at his convenience, dynamically
interacting with the system; (ii) the Family can modify
patient’s treatment routine depending on the treatment
satisfaction degree and its results; (iii) to dynamically
interact with the system.

The Health Professional has the power to trace
treatment plans, to request examinations and to
prescribe medicines, dynamically interacting with the
system. The Guardian Angel can be seen as
“processing cells" of the system that interacts
dynamically in accordance with the recurrently
perceptions of the environment. This was divided into
4 distinct categories, searching specialization: (i)
Analyzer - GA directed towards the tasks which
require analyses, interpretation and understanding of
data under one determined context; (ii) Inspector - GA
directed towards the monitoring/inspection of specific
states in the system; (iii) Diplomat - GA geared
towards the reduction and treatment of Non
Cooperative Situations. The GA Diplomat is
responsible to use its "diplomacy" together with a GA
Analyzer that helps it to determine the priorities of the
Gas (?) in execution, and (IV) Worker - the GA
worker is the basic processing cell with the physical
operations required to modify data/state of the system.

From the entities identification and classification
(A6-S1) we built the Collaboration Diagrams for
passive entities and the Sequence Diagrams for the
active entities (A6-S2). In this context definition we
modeled 12 Sequence Diagrams related the patient
entity and figure 1 presents an example.

During the characterize environment (A6-S3) step
the Guardian Angel system environment was classified
as: (i) inaccessible because several users can be logged
and they can modify data at anytime; (ii) continuous
because the users are free to make their own actions;
(iii) non-deterministic because the prescription of a
treatment can be different in the same disease in
different patients, and (iv) dynamic because the system
depends on the environment and that can not be
predicted by the system.

After the environment definition we define use case
diagrams (A7-S1) divided in five groups: GA Domain,
Patient, Institutions, Administrative and Service. For
each group we designed one Use Case Diagram

involving several use cases and then for each Diagram
(each diagram ? e ditto que designed ONE Use case
diagram ?)we identified some NCS (A7-S2) as we
show in Figure 2. We defined 16 User Interface
prototypes and an example is presented in Figure 3.

Figure 1 – Sequence Diagram: Customize Setting to

Adapt Treatment to Patient’s Reality

4.3 Analysis

In the Analysis phase we developed the Class
Diagram, identified agents and refined interactions
through the Collaboration and Sequence diagrams. We
also developed the Agents Protocols Diagrams.

In the Domain Analysis we found four new passive
entities (Idiopathic Cause, Therapy, Hospital Stay e
Disease-Causing Organism), and we had to modify
some diagrams and documents developed during
previous steps.

The classes identified were: User, People, Patient,
Family, Health Care Professional, Doctor, Guardian
Angel (Analyzer, Diplomat, Inspector and Worker),
Data Source, Clinic, Insurer, World Wide Web,
Library, Government, Laboratory, Pharmacy Industry,
Hospital, Patient Support Group, Environmental
Factor, Idiopathic Cause, Therapy and Hospital Stay.

In the AMAS technology adequacy activity, the
system got the following reply from the tool in relation
to the first criterion,; "Your application possesses, with
a high degree, almost all the characteristics that can
justify - without any ambiguity- using AMAS". In the
components evaluation the tool reply was: "Even if
your application needs using AMAS some of its
components must also be designed using this
technology. We recommend you to apply as many
times as necessary the methodology to specify all those
components".

Figure 2 - Non Cooperation Situations: User (patient)

Figure 3 - UI Examples of Query Exams Repository" and "Adds new record to patient's history

The identify agents activity (A12) studied active
entities and for each entity a form was defined as
shown in Table 4 (without the two last lines). Thus
four cooperative agents had been identified.

4.4 Design

The Design phase defined the packages and classes

by elaborating the class and collaboration diagrams.
No design pattern was applied and the activity A17 of
Fast prototype was not carried out because the JAVA
version do not work in the project computer due to
some incompatibility that we could not fix with a new
JAVA version.

Table 4 - Form for identification of agents in potential

Guardian Angel
Autonomy: Has autonomy because can make

decisions base only in his knowledge

Local Goal: The local goal is to perform a task that was
assigned to him.

Interactions with
others Entities:

Interact with other entities like others
Guardian Angels and Patient.

 Environment
Partial Overview: Limited overview of the system

Negotiation
Abilities: Capable to Negotiation with others entities

Potential agent: An agent in potential according to
ADELFE´s definition

Dynamic
environment:

Yes – it is not possible to prevent in which
circumstances its action are taken.

Face NCS Yes - can request a service that is not
available

Treat NCS Yes- For example when a GA do not
receive an answer for a feedback request.

During activity A15 we studied the interactions
between the agents and we defined some AUML
Protocol Diagram as the one shown in the figure 4. For
each Guardian Angel we identified the abilities,
aptitudes, representations and characteristics. We also
defined the protocols used in A15 activity which will
be used by the agents. Finally we defined the NCS in a
form (Table 6).

Figure 4. Protocol Diagram 2.

The diagrams in the last activity (A18) were
detailed and we also completed the dynamic behaviour
by designing the State Chart Diagram where the
attributes and methods were specified to express the
agents' state, conditions and actions.

Table 5 - The Identification of NCS Form

Name Permission denied
State Execute the activity
Description An agent faces this situation when the activity

that it intends to execute cannot be
accomplished with the permissions of the user
in question

Conditions User with no knowledge with the system.

Actions The agent must supply to the user a list of all
the users who have connection with this and
that they have permission to execute the task.

5. The Evaluation of ADELFE

The Evaluation Framework proposed in Yu and

Cysneiros [1] was fundamental for ADELFE
evaluation because of the practical, real and complex
example to test and to verify the methodology
simulating real situations for modeling. Some of these
scenarios were incomplete, intentionally omitted to test
how the methodology directs and supports the
requirements findings. The evaluation questions
complete these scenarios, identifying situations where
the methodology must also guide in the requirements
elicitation and analysis and specific cases of modeling
that the methodology should attend. Previous works of
methodologies evaluation of Tropos [22], Gaia [23],
MESSAGE [24] and UML/RUP [2], [3], [4], [5], using
this framework showed its efficiency for analysing the
strengths, the weakness and the potentialities of each
methodology.

Table 6 presents a general analysis of ADELFE
methodology, showing answers for the main aspects
addressed by the evaluation questions. Table 6 shows
the concepts addressed by these questions and the
answers rated as “S”, “N” or “W”. “S” means that the
question is strongly supported by the approach, i.e., the
methodology provide enough constructs, mechanisms
and guidance. “N” means that, although the approach
supports the aspect addressed by this question, it does
so only up to some extent and therefore, only partially
provides ways to model this aspect. “W” means that
the approach either does not provide any constructs,
mechanisms and guidance or provide very few, hence
the requirements engineer would hardly be able to deal
with the aspect raised by this question.

We also show others evaluations approaches found
in literature and compare the results of these
approaches with ours.

5.1 General Evaluation

ADELFE is a methodology originated from object

orientation based on UML and RUP which are
sufficiently well known in software development. In
this methodology, the AUML protocols diagram was
also incorporated. Although the process is well defined
in [8], the documentation many times was superficial.
In general, the concepts are shown in very simple case
studies. Thus we attribute the neutral degree for
learning curve (QA32) and strong for the support of
tools (QA31). Support was received by email (Carole
Bernon <carole.bernon@irit.fr) which were
fundamental for understanding the methodology.

Table 6. Exemplar Evaluation Questions Graded for
ADELFE
 ADELFE

QA1 - Proactiveness S
QA2- Human Autonomy vs software autonomy S

QA3 - Autonomy reasoning S
QA4 - Different levels of Abstraction N

QA5 - Identifying participants in the domain N
QA6 - Capturing, understanding and registering

terminology N
QA7 - Domain analysis N

QA8 - Finding requirements S
QA9 -Human-machine cooperation S

QA10 - Database design N
Q11 - Database evolution N

QA12 - Database design and legacy N
QA13 - Reasoning about different non-functional

aspects S
QA14 - Mobility W

QA15 - User interface design N
QA16 - Generating test cases N

QA17 - User interface design (usability) N
QA18 - Architectural design and reasoning N
QA19 - Eliciting and reasoning about Non-

Functional aspects N
QA20 - Architectural design and reasoning

(flexibility) N
QA21 - Architectural design and reasoning

(cost and confidence) N
QA22 - Validating specification over the life cycle S
QA23 -Tracing changes in the requirements into

design W
QA24 - Tracing changes from design to code N

QA25 - Concurrency S
QA26 - Tracing back to requirements W

QA27 - Software Modularity N
QA28 - Formal Verification and Validation N

QA29 - Project Management W
QA30 - Working in distributed teams N

QA31 - Tool support S
QA32 - Learning curve N

QA33 - Integration with other methodologies N
QB7 - Lightweight versions of

methodology(simpler problems) N

ADELFE allows to easily modelling cooperative
agents who have autonomy (QA1) to take decisions
that perceive the environment. Moreover, it is possible
to define situations involving autonomy in both the
knowledge level, (in execution time) and the
modeling/implementation level (time of design) where
we can analyze the human autonomy versus the
software autonomy (QA2). QA3 the question
addresses the agent autonomy reasoning and this
situation can be modeled in ADELFE as a stereotyped
cooperative agent class that uses the methodology
concepts of cooperation. The GA_home_computer can
execute a perception method to verify if some
appointment in a next period can be schedulled without
urgency (a routine examination appointment) for

example. After that, a method of priority decision
analysis of the commitments would be executed, and
finally it would promote the change in the patient
schedule, if there was an evidenced possibility of
agenda reorganization (called the methods action to
update patient calendar, to update medical calendar,
etc.).

ADELFE methodology works with the
identification of Non Cooperative Situations or fails in
several ocasions, where the cooperative work is weak.
Therefore, the analyst has the opportunity to anticipate
the analysis of machine-user cooperation problems
(QA9) by identifying and analysing possible points of
ambiguity and lack of understanding leading to create
more efficient models.

Although ADELFE allows modeling in different
levels with 18 activities where the software engineer
can model from the abstract level to the design level,
we rated neutral as for the support for navigating
through different abstraction levels (QA4) because the
methodology is not complete. For the same reason we
also rated neutral for design traceability to the code
(QA24) since this aspect is not explicitly defined. Our
experience suggests that there should not be any major
problem regarding packages and class identification
for incorporating new behaviors However, in the
requirements traceability (QA23 and QA26) ADELFE
is weak in situations requiring different steps not
explicitly defined and "traces-back" is not very
trustworthy.

The domain participants' identification (QA5) was
considered neutral. ADELFE only adopts diagrams
based on UML or AUML. In steps A4 (identify key-
words), A6 (Characterize environment) and A7
(identify use-you marry) we can identify the
participants but we have a mixed list with actors and
resources. We consider that ADELFE lacks a diagram
with a general organization overview as we can have
in the Tropos (actor diagrams) or MESSAGE
(organization diagram) methodologies.

ADELFE identifies the set of keywords (QA6), but
does not consider any domain glossary or ontology.

In the domain analysis (QA7) the modeling and the
reasoning of the social relations can be only partially
done. We rated this characteristic as neutral because
we can only represent the communication between
parts.

ADELFE adopts a process with preliminary and
final requirements definition that introduces a
requirements revision activity and consensual
requirements definition. Moreover, an elaboration
activity of keywords exists that improves the emphasis
in the system, although for preliminary requirements
ADELFE do not propose any diagram.

The reasoning of the different non functional
aspects (QA13) can easily be modeled in ADELFE as
a typical situation of Non Cooperative Situation. Thus,
once identified the possibility of one determined
scenario to happen, the involved agents in the
communication must have the intelligence to identify
such circumstances and to look alternative routes for
this communication when possible, or to try to attend
to a request based on the most recent transactions with
this data. However in the non functional requirements
elicitation and reasoning (QA19) we consider the
methodology neutral. ADELFE considers a revision of
the non functional requirements elicitation in activity
9, when it validates the user interfaces elaborated in
terms of functional and non functional requirements
however, it does not allow us to analyze the influence
of the different non functional requirements as it is
possible in TROPOS [22].

ADELFE proposes to frequently carry out
specifications validation (QA22) during the software
development life cycle, as for example through the
diagramming of the system interactions and messages
exchange. However, the methodology is only
developed up to the design phase thus this validation is
incomplete. ADELFE also adopts revisions of
immediately previous steps during the process
activities, such as in the requirements elicitation and
modeling. The OpenTool tool at the end of the process
can verify and validate some artefacts. However the
methodology does not define any formal verification
so neutral degree was attributed in the QA28.

Another interesting observation is related to
answering QA33 “Integration with other
methodologies”. We couldn’t find any guidance to
integrate ADELFE with other methodologies although
the notations are all based on UML and AUML
diagrams. For example, it is not clear how we could
implement part of the exemplar using object-oriented
approach since there is no guideline on how to
integrate ADELFE and UML models. The same issues
we found answering QB7 - Lightweight versions of
methodology for simpler problems. We presume that
this is probably possible but ADELFE does not
mention these situations.

5.2 Comparing with Correlated Works

In the agents orientation literature we can found

works comparing methodologies, as Sturm and
Shehory [13] that defines one framework of
quantitative and qualitative evaluation and uses it in
the evaluation of GAIA, Adept and Desire
methodologies using a auction case study. Another
interesting evaluation work was the one developed by

Dam and Winikoff [14] that uses a framework based
on attributes and a questionnaire sent and answered for
the researchers, for methodologies authors and
students who had modeled the Planning of Personal
Itinerary case study. This evaluation tackled GAIA,
MaSE, Message, Prometheus and Tropos
methodologies. Iglesias and González [15] describe a
survey of methodologies analysing its extensions in the
objects and knowledge paradigms

Ceruzzi and Rossi [16] consider another evaluation
that uses metric and quantitative methods, showing the
framework utility by comparing the MAS-
CommonKADS and Agent Modelling Technique for
Systems of BDI Agents methodologies. This
evaluation was based on previously defined criteria
and through the results quantification and arithmetic
average application.

ADELFE evaluation was proposed by Tran, Low
and Williams [17]. In their proposal there were 50
criteria for evaluation grouped in process-related,
technique-related, model-related and supportive-
feature criteria. In Tran and Low's [18] evaluation
table they consider ADELFE medium for ease of
understanding and usability for defining interactions
protocols but ADELFE uses the same AUML protocol
as TROPOS and MAS-CommonKADS that is consider
high. However some of these criteria are not analyzed,
mainly the techniques relative ones. The article
mentions that a deeper analysis must be carried
through in a future.

In the designing of Gaia, PASSI and ADELFE
meta-models, Bernon Bernon, Conssentino, Gleizes,
Turci and Zambonelli [19] compare the methodologies
regarding agent structure, agent interactions, agent
society, organization structure, and agent
implementation. One weakness pointed out in the
paper is the concept of goal and plan in the agent
structure because ADELFE considers that in a
complex and open systems a plan can be built during
system execution. Although we agree with it,
ADELFE uses this goal notion when defining the skills
of an agent but only in the Design phase when you can
define skills and attitudes. During requirements and
analysis phases these goals and plan identified could
help agent identification. We also agree that one of
ADELFE strengths is the definition of agent
interaction abilities. They explain the lack of
organization structures by the open societies that are
modeled in ADELFE. The organization is only showed
by the interactions between the agents.

Based on previous works [2], [3], [4], [5] we can
conclude that ADELFE is a powerful methodology in
terms of cooperative agents' concepts allowing the
definition of autonomy, proactivity and autonomy

reason, centered in a Non Cooperative Situations.
However this methodology is not completely defined,
needing to incorporate new models or to modify some
diagrams to give more general overview of the system
with its environment and most of all to support goal
and plan definition during the requirements phase. It
also needs to better define some steps as well as to
improve the implementation phase as well as to
improve traceability mechanisms.

6. Conclusion

This work is part of a broader project which aims at

analyzing important aspects of requirements
identification and modeling in multi-agents systems. In
this particular work the goal was to establish a
qualitatively evaluation of ADELFE methodology
using the exemplar framework proposed Yu and
Cysneiros [1].

ADELFE has a strong set of concepts to model
cooperative agents and Non cooperative Situations
covering the requirements, analysis and project phases
with a well defined process. However, the
methodology needs to improve some aspects of
requirements traceability and participations
identification. The characterize environment can be
improved by adding new diagrams that can model
goals, plan and organization aspects during early
requirements.

Future work will be twofold. At one hand we will
continue to evaluate the methodologies implementing
the models we have obtained so far using an agent
platform as JADE [20] or OpenCybelle [21]. On the
other hand we intend to build a specialized version of
the Guardian Angel for Diabetes Disease
implementing in different platforms (PDA, cellular
telephone...).

Finally we intend to compile the experiences we
gathered from all the methodologies we evaluated to
try and understand where most methodologies need to
improve and where most of them are well developed

7. References

[1] Yu, E. and Cysneiros, L.M), “Agent-Oriented
Methodologies-Towards a Challenge Exemplar”, in Proc of
the 4th Intl. Bi-Conference Workshop on Agent-Oriented
Information Systems (AOIS 2002), Toronto, 2002, pp.47-63.
[2] Cysneiros, L. M., Werneck, V. M. B.; Yu, Eric,
“Evaluating Methodologies: A Requirements Engineering
Approach Through the Use of an Exemplar”. Journal of
Computer Science & Technology, USA, v. 5, n. 2, 205, pp.
71-79.

[3] Cysneiros, L. M., Werneck, V. M. B., Amaral, J. and Yu,
E., “Agent/Goal Orientation versus Object Orientation for
Requirements Engineering: A Practical Evaluation Using an
Exemplar”, In: Proc. of VIII Workshop in Requirements
Engineering, Porto, 2005, pp.123-134, ISBN 972-752-079-0.
[4] Coppieters, A. M., Marzulo, L.A.J., Kinder, E. and
Werneck, V.M.. “Modelagem Orientada a Agentes utilizando
MESSAGE”, Cadernos do IME-Série Informática, Rio de
Janeiro, v.18, 2005, pp. 38-46 in portuguese.
[5] Werneck, V. M.; Pereira, L. F.; Silva, T. S.; Almentero,
E. K.; Cysneiros, L. M.; . "Uma Avaliação da Metodologia
MAS-CommonKADS", In: Proceedings of the Second
Workshop on Software Engineering for Agent-oriented
Systems, (SEAS´06), Florianópolis, 2006, pp. 13-24.
[6] Szolovits, P., Doyle, J., Long, W.J., Kohane, I. e Pauker,
S. G., “Guardian Angel: Patient-Centered Health Information
Systems”, Technical Report MIT/LCS/TR-604, 2004 at
http://groups.csail.mit.edu/medg/projects/ga/manifesto/GAtr.
html
[7] Bernon, C., Camps, V., Gleizes, M. P. and Piscard, G.,
"Engineering Adaptive Multi-Agent Systems: The ADELFE
Methodology"; IN: Agent-Oriented Methodologies, Brian
Henderson-Sellers e Paolo Giorgini (ed.), IDEA Group
Publishing, 2005, pp. 172-202.
[8] ADELFE (Atelier de Développement de Logiciels à
Fonctionnalité Emergente) at http://www.irit.fr/ADELFE.
[9] Bernon, C., Camps, V., Gleizes, M. P. and Piscard, G.,
"ADELFE: A Methodology for Adaptive Multi-agent
Systems Engineering"; In: Third International Workshop
Engineering Societies in the Agent (ESAW 2002, Lecture
Notes in Computer Science, Volume 2577/2003, Springer
Berlin Heidelberg, 2003, pp. 156-169.
[10] Krutchen, P., The Rational Unified Process: An
Introduction, Reading, MA, Addison Wesley, 2000.
[11] Odell, J., Parunak, H. and Bauer, B., "Representing
agent interaction protocols in UML," In Agent-Oriented
Software Engineering, First International Workshop (AOSE
2000), Ciancarini, P., Wooldridge, M., Eds., LNCS 1957
Springer, Limerick, Ireland, 2001, pp. 121-140.
[12] Rumbaugh, J., Jacobson, I. e Booch, G., “The Unified
Modeling Language Reference Manual”; Addison-Wesley,
1999.
[13] Sturm, A. e Shehory, O., “A Framework for Evaluating
Agent-Oriented Methodologies”, In: Proc of 5th
International Workshop on Agent-Oriented Information
Systems (AOIS’03), 2003, pp. 60-67.
[14] Iglesias, C.A. e González, J.C., “A Survey of Agent-
Oriented Methodologies”, In: Proceedings of the 5th
International Workshop on Agent Theories, Architectures
and Languages (ATAL'98), LNAI n1555 - Springer Verlag,
Paris, France, 1998, pp.317-330.
[15] Dam K. H. e Winikoff, M.; “Comparing Agent-Oriented
Methodologies”, In: Proc. of 5th International Workshop on
Agent-Oriented Information Systems (AOIS’03), 2003,
pp.52-59.

[16] Ceruzzi, L. and Rossi, G. “On the Evaluation of Agent-
Oriented Methods”, Agent Oriented Methodology Workshop,
November 2002.
[17] Tran, Q.N., Low, G. and Williams, M., “A Preliminary
Comparative Feature Analysis of Multi-agent Systems
Developments Methodologies”, In: Agent-Oriented
Information Systems (AOIS-2004) Lecture Notes in
Computer Science, Volume 3508, 2004, pp. 157-168.
[18] Tran, Q.N. and Low, “Comparison of Ten Agent-
Oriented Methodologies”, IN: Agent-Oriented
Methodologies, Brian Henderson-Sellers e Paolo Giorgini
(ed.), IDEA Group Publishing, 2005, pp. 341-367.
[19] Bernon, C., Massimo C., Gleizes M.P., Turci P., and
Zambonelli, F. "A Study of Some Multi-agent Meta-models",
In: Agent-Oriented Software Engineering (AOSE-2004)
Lecture Notes in Computer Science. Volume 3382, Odell et
al. (Eds,), Springer-Verlag Berlin Heidelberg 2005, pp. 93–
108.
[20] JADE Java Agent Development Framework, at
http://jade.tilab.com/.

[21] Open Cybelle Platform, at http://www.opencybele.org.
[22] Bresciani, P. Giorgini, P., Giunchiglia, F. Mylopoulos J.
and Perini. A., TROPOS: An Agent-Oriented Software
Development Methodology. Journal of Autonomous Agents
and Multi-Agent Systems. Kluwer Academic Publishers,
2003.
[23] Zambonelli, F., Jennings, N. R. and Wooldridge, M.,
Developing Multiagent Systems: The Gaia Methodology, In
ACM Transaction on Software Engineering and
Methodology, Vol. 12, No. 3, July 2003, pp 317-370.
[24] Caire, G., Coulier, W., Garijo, F., Gómez-Sanz, J.,
Pavón, J., Kearney, P.and Massonet. P., Message: A
Methodology for Development of Agent-Based Applications,
To appear at Methodologies And Software Engineering For
Agent Systems, edited by Federico Bergenti, Marie-Pierre
Gleizes and Franco Zambonelli, to be published by Kluwer
Academic Publishing (New York), 2004.

