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volvement of lipid neurobiology in the pathology of neuro-
developmental disorders such as autism is compelling and 
opens up an interesting possibility for further investigation 
of this metabolic pathway.  Copyright © 2011 S. Karger AG, Basel 

 Introduction 

 Autistic disorder is a behaviorally defined neurode-
velopmental disorder of childhood characterized by def-
icits in social interaction, language, communication and 
repetitive behaviors that manifest in early postnatal life 
 [1] . It belongs to a spectrum of closely related conditions 
also referred to as autism spectrum disorders (ASDs) 
that also includes pervasive developmental disorder not 
otherwise specified, Asperger’s syndrome, and child-
hood disintegrative disorder. The incidence of ASDs has 
increased significantly over the last decades and is cur-
rently 1 in 150, affecting boys four times more often than 
girls  [2, 3] . A strong genetic component is indicated by 
the high concordance rates in monozygotic twins (70–
95%) versus dizygotic twins (0–23%)  [1, 4–6] . Many genes 
have been implicated in the etiology of the disorder  [4]  
in addition to the contributing environmental factors  [7–
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 Abstract 

 Autism is a neurodevelopmental disorder characterized by 
impairments in communication and reciprocal social inter-
action, coupled with repetitive behavior, which typically 
manifests by 3 years of age. Multiple genes and early expo-
sure to environmental factors are the etiological determi-
nants of the disorder that contribute to variable expression 
of autism-related traits. Increasing evidence indicates that 
altered fatty acid metabolic pathways may affect proper 
function of the nervous system and contribute to autism 
spectrum disorders. This review provides an overview of the 
reported abnormalities associated with the synthesis of 
membrane fatty acids in individuals with autism as a result 
of insufficient dietary supplementation or genetic defects. 
Moreover, we discuss deficits associated with the release of 
arachidonic acid from the membrane phospholipids and its 
subsequent metabolism to bioactive prostaglandins via 
phospholipase A 2 -cyclooxygenase biosynthetic pathway in 
autism spectrum disorders. The existing evidence for the in-
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9] , which together determine the broad severity of autism 
phenotype. 

  The emerging evidence implies that abnormal fatty acid 
metabolism may play a contributing role in the pathology 
of autism  [10–12] . Recent literature suggests that fatty acid 
homeostasis may be altered in autism as a result of insuf-
ficient dietary supplementation, genetic defects, function 
of enzymes involved in their metabolism, or influence of 
various environmental agents such as infections, inflam-
mation or drugs. This review provides an overview of the 
proposed candidate sites along the lipid metabolic pathway 
that have been implicated in the pathology of ASDs.

  Lipid Signaling in the Nervous System 

 Dry human brain, by weight, is composed of approx-
imately 60% lipids with over 20% polyunsaturated fatty 
acids (PUFAs)  [13–15] . PUFAs, predominantly arachi-
donic acid (AA, 20:   4n-6), eicosapentaenoic acid (EPA,
20:   5n-3) and docosahexaenoic acid (DHA, 22:   6n-3), are 
major components of the neural cell membrane phos-
pholipids. AA and EPA/DHA are derived from two ma-
jor types of PUFAs, omega-6 linoleic acid (LA; 18:   2n-6) 
and omega-3  � -linolenic acid (ALA; 18:   3n-3), respective-
ly  [16, 17]  ( fig. 1 ). Proper content of omega-3 and ome-
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  Fig. 1.  Schematic diagram illustrating the most common abnormalities in bioactive lipid signaling pathways 
associated with ASDs.   
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ga-6 fatty acids is important for the integrity and proper 
functioning of the plasma membrane, such as modula-
tion of ion channels, enzymes and receptor activity  [18, 
19] . 

  DHA and AA play an important role in the nervous 
system, including retinal development and vision  [20, 21] , 
neurogenesis and neuronal differentiation  [22–24] , neu-
ral plasticity and signal transduction  [25, 26] , inflamma-
tion  [27–30] , and learning and memory  [31–33] . These 
functions may be regulated by a number of gene products 
activated by PUFAs during development  [34–39] . The 
plasma membrane phospholipids serve as a supply of sec-
ond messenger molecules important for normal func-
tioning of the brain  [40, 41] . PUFA such as AA or DHA 
can also be released from membrane phospholipids by 
the action of phospholipase A 2  (PLA 2 ) and subsequently 
metabolized into various types of bioactive prostanoids 
( fig. 1 ). Cyclooxygenase-1 enzyme (COX-1), constitutive 
form, or cyclooxygenase-2 (COX-2), inducible form, con-
verts AA to the unstable PGG 2  intermediate and then to 
the prostanoid precursor PGH 2 , which is further metab-
olized by the prostaglandin (PG) or thromboxane syn-
thases into the major lipid signaling messengers (eico-
sanoids) such as PGs (PGE 2 , PGF 2 �  , PGD 2 , PGI 2 ), and 
thromboxane A 2  (TxA 2 ). The five downstream pros-
tanoids are important signaling molecules that exert 
their effects through activation of their respective G-pro-
tein-coupled receptors called EP (E-prostanoid), FP, DP, 
IP, and TP receptors  [42–44] . The released prostanoids 
play important roles in normal neural function including 
sleep induction (PGD 2 ), spatial learning, synaptic plastic-
ity and long-term potentiation or inflammation (PGE 2 ) 
 [13, 45] . Of these, PGE 2  has gained a considerable atten-
tion recently for its involvement in activity-dependent 
synaptic plasticity via four receptor subtypes EP1–EP4 
 [46–48] .

  It is now evident that the brain proper function relies 
on a balance between the constant supply of the omega-3 
and -6 fatty acids in the blood from dietary PUFAs and 
the release of their metabolites from membrane phospho-
lipids via activation of PLA 2  and other key downstream 
enzymes ( fig. 1 )  [31, 35, 49–52] . Therefore, alterations of 
the fatty acids metabolic pathway may affect proper func-
tion of the nervous system. An association between ASDs 
and abnormalities at various sites of the lipid metabolic 
pathway has been reported in various studies and is dis-
cussed in the following sections. 

  Dietary Lipid Imbalances in ASDs 

 During the last trimester of pregnancy and the first 2 
years of life, human brain undergoes an immense growth 
during which unesterified omega-3 and omega-6 fatty 
acid content of the grey and white matters increase con-
siderably  [53, 54] . Because of the increased demand, suf-
ficient supply of the essential PUFAs and proper ratio of 
AA to DHA particularly during early life is critical for 
proper development and function of the nervous system 
 [16, 31, 55–59] . Both human and animal studies have cor-
related the presence of AA and DHA during critical pe-
riod of development to enhanced visual, cognitive and 
motor functions  [23, 60–63] . A link between imbalances 
in the AA to DHA composition and abnormalities of fat-
ty acid metabolism have been shown to play a role in the 
pathology of various psychiatric disorders, including at-
tention deficit hyperactivity disorder, dyslexia, dysprax-
ia, bipolar disorder and schizophrenia  [51, 64–71] .

  Insufficient dietary intake of PUFA during early de-
velopment and abnormal lipid metabolism have been 
shown to occur in ASDs as well. Current literature sug-
gests that altered level of omega-6 fatty acids (i.e. AA) and 
omega-3 fatty acid (i.e. DHA) may result in an imbalance 
in the ratio between these PUFAs in the nervous system 
and potentially contribute to the behavioral outcomes 
seen in autism. A survey study reported that children 
who were not breastfed or fed on infant formula not sup-
plemented with PUFAs were significantly more likely to 
develop autism  [72] . Altered level of LA, DHA and AA 
and significantly higher AA:DHA ratio was reported in 
the blood samples (plasma and red blood cells) of autism 
patients compared to the control group  [15] . Other stud-
ies have reported a significant reduction in AA and DHA 
levels in the plasma of autistic children compared to the 
levels in controls  [73–75] . Decreased level of DHA and 
subsequently higher AA:DHA ratio were also detected in 
the red blood cells of children with regressive autism and 
Asperger’s syndrome compared to typically developing 
controls  [14, 76] . Sliwinski et al.  [77]  observed an increase 
in the plasma omega-3 PUFAs, in particular DHA and an 
increase in the total omega-3 and omega-6 PUFA ratio in 
high-functioning males with autism compared to healthy 
controls. Moreover, other lipid biomarkers such as satu-
rated and polyunsaturated very long-chain fatty acid-
containing phosphatidyl-ethanolamines and DHA-con-
taining ethanolamine plasmalogens (PlsEtns) were also 
elevated in the plasma of subjects with autism  [78] . 

  The link between altered brain fatty acid metabolism 
and the occurrence of autism-like behavior has been also 
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demonstrated in animal models. For example, various 
studies reported that exposure to environmental agents 
such as propionic acid (PPA), derived from enteric bacte-
ria or diet, may result in the appearance of autism-like 
behavior in rodents as a result of altered composition of 
brain phospholipids  [79–81] . Intraventricular infusions 
of PPA, reduction in total monounsaturated fatty acids, 
omega-6 fatty acids and PlsEtns, decreased omega-6/
omega-3 ratio, and increased level of total saturated fatty 
acids, which is consistent with reports observed in the 
blood of autistic patients  [79, 82] . 

  Although there are some differences between the re-
ported results, overall these studies show that imbalances 
in omega-3 and omega-6 fatty acids exist in patients with 
autism and likely contribute to the behavioral outcomes 
in some subsets of autistic patients. Interestingly, admin-
istration of supplements containing omega-3 and ome-
ga-6 fatty acids resulted in increased level of these fatty 
acids in the blood, reduced AA:DHA ratio and improve-
ments in several behavioral domains such as eye contact, 
concentration and motor skills in individuals with au-
tism  [15] . Supplementation of omega-3 fatty acids has 
been shown to be effective in ameliorating hyperactivity 
associated with autism  [83] . Moreover, improvements in 
behavior and significant reduction in the elevated DHA 
and very long-chain fatty acid biomarker level were ob-
served in autistic subjects taking carnitine supplements 
 [78] . Previous studies have shown that carnitine, normal-
ly required for fatty acid metabolism, is significantly re-
duced in some children with autism  [84] .

  The molecular mechanisms for the altered PUFA level 
in autistic children are not well understood. Some poten-
tial causes have been proposed, including insufficient di-
etary intake of PUFA precursors, defects associated with 
enzymes involved in the conversion of dietary PUFAs 
into longer and highly unsaturated derivatives or defi-
ciency in the process of incorporation of PUFAs into 
membrane phospholipids  [73] . It has been suggested that 
fatty acid desaturase 1 (FADS1, delta-5-desaturase) and 
fatty acid desaturase 2 (FADS2, delta-6-desaturase), the 
rate-limiting enzymes in the metabolism of LA and ALA 
(precursors of AA and DHA), could contribute to lipid 
imbalances observed in autism. Interestingly, FADS1 and 
FADS2 are located in a close proximity to a linkage peak 
for autism on chromosome 11q22  [85] . This is an appeal-
ing possibility since recent studies have found an associa-
tion between genetic variants in FADS1/FADS2 and at-
tention deficit hyperactivity disorder  [86]  and other com-
plex diseases, including bipolar disorder or atopic 
syndrome  [87, 88] . 

  Abnormalities in PG Metabolic Pathway Associated 

with ASDs 

 Phospholipase A 2  
 PLA 2  is an enzyme involved in the maintenance of 

membrane phospholipids. There are three major types of 
PLA 2  enzyme: the calcium-dependent group IV cytosol-
ic PLA 2 , the group II secretory PLA 2  and the group VI 
calcium-independent PLA 2   [40, 89] . PLA 2  releases AA 
from the  sn-2  position of phospholipids, a precursor of 
key lipid mediators such as PGs ( fig. 1 )  [89, 90] , and it has 
been shown to play a key role in neuronal plasticity  [91] . 
Stimulation with various neurotransmitters such as glu-
tamate  [92] ,  N -methyl- D -aspartic acid  [93] , or  � -amino-
3-hydroxy-5-methyl-4-isoxazole PPA  [94]  can lead to 
PLA 2  activation and release of AA and its metabolites. 
Additionally, AA and DHA can be released in the pres-
ence of stimuli such as cytokines during the inflamma-
tory response  [95] . 

  Elevated level of PLA 2  in red blood cells has been as-
sociated with neuropsychiatric disorders such as schizo-
phrenia, depression, bipolar disorder, dyslexia and au-
tism  [14, 96] . A substantial amount of evidence has accu-
mulated on elevated plasma levels of PLA 2  in 
schizophrenia patients compared to healthy controls  [14, 
97–99] . Three single nucleotide polymorphisms in the 
gene encoding for cytosolic PLA 2  have been linked to 
schizophrenia and found to play a possible role in the eti-
ology of this disorder  [100–103] . Interestingly, the genes 
encoding human calcium-independent PLA 2  and secre-
tory PLA 2  map to regions on chromosome 8q23–24 and 
7q31, respectively  [104, 105] , which have been previously 
linked to autism  [106–108] . It has been suggested that the 
altered levels of AA and DHA in individuals with autism 
described above may be attributed to abnormalities in 
PLA 2 . Indeed, significantly increased activity of type IV 
PLA 2  has been reported in red blood cells of patients with 
autism and Asperger’s syndrome compared to the con-
trols, strengthening the hypothesis that abnormal lipid 
metabolism occurs in autism  [14, 109] . It has been pro-
posed that the observed increased PLA 2  activity in indi-
viduals with autism may be the cause for elevated break-
down of PUFAs and their subsequent reduced incorpora-
tion into membrane phospholipids. Overall, the literature 
suggests a link between abnormalities in PLA 2  enzymes 
and some psychiatric disorders including autism spec-
trum, which substantiates the importance of downstream 
lipid signaling molecules in the proper functioning of the 
nervous system.
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  COX Enzymes 
 COX is the key enzyme that converts AA to   PGs  [45]  

( fig.  1 ).   COX-1 mediates ‘housekeeping’ functions in 
most tissues, and COX-2 is the inducible form and par-
ticipates in the inflammatory responses.   Growing evi-
dence shows that COX-2 plays an important role in the 
nervous system via production of downstream signaling 
molecules such as PGs  [41] . The COX-2/PGE2 pathway 
plays an important function in synaptic plasticity and 
refining of mature neuronal connections  [110–112]  in 
addition to its role during inflammatory response and 
oxidative stress  [113–115] . It has been shown that selec-
tive COX-2 inhibitors can cause a reduction in long-term 
potentiation, which in turn can be reversed by addition 
of exogenous PGE 2 , but not PGD 2  or PGF 2 �  , indicating 
an important role for COX-2 and its downstream me-
tabolites in the nervous system  [112] . Interestingly, it has 
been shown that PGE 2  can stimulate glutamate release 
from astrocytes and modulate the activity of neighbor-
ing neurons  [116–118] .

  Altered COX-2 level has been reported in neurological 
disorders, such as stroke and Alzheimer’s disease or psy-
chiatric disorders, indicating that it may contribute to ab-
normalities in the nervous system  [119–122] . The evi-
dence for the involvement of the COX-2/PGE 2  pathway in 
ASDs is now emerging. COX-2 activity and production of 
PGs is normally induced by cytokines or proinflamma-
tory molecules  [119]  and altered immune responses have 
been reported in cases of ASD  [123, 124] , suggesting the 
possible involvement of COX-2 in some cases of autism. 
More recently, an association between PTGS2 polymor-
phism (the gene encoding COX-2 enzyme) and ASDs has 
been reported  [125] . Furthermore, altered laminar pat-
tern of COX-2 immunoreactivity in the cortex has been 
shown in individuals with Rett syndrome, a form of ASD, 
further strengthening the evidence for the involvement 
of abnormal COX-2 signaling in the pathology of the au-
tism disorders  [126] .

  PGE 2  Signaling Pathway and Early Development 
 PGE 2  is a signaling molecule that diffuses rapidly 

through the membranes and exerts its diverse effects in 
the nervous system through four G-protein coupled EP 
receptors: EP1, EP2, EP3 and EP4  [127–129] . The role of 
PGE 2  in mediating physiologically important functions 
such as modulation of pain, fever, and inflammatory re-
sponse in the nervous system is well established  [130–
135] . In addition, the involvement of PGE 2  signaling in 
early development including formation of dendritic 
spines and neuronal plasticity is also emerging  [112, 136] . 

  Clinical studies reported that prenatal exposure to the 
drug misoprostol, a prostaglandin type E analogue, dur-
ing the first trimester of pregnancy may contribute to 
neurodevelopmental defects, including Möbius syn-
drome, a disorder associated with damage to the sixth 
and seventh cranial nerves, and ASD  [137–144] . This in-
dicates that early embryonic exposure to misoprostol 
may interfere with the PGE 2  signaling and have neuro-
toxic effects on the developing nervous system. Misopro-
stol is commonly used as a drug in treating stomach ul-
cers  [145] , inducing labor  [146]  or in medical termination 
of pregnancy  [147] . It has been suggested that the embryo 
is most vulnerable to misoprostol during early stages of 
pregnancy, 5–6 weeks after fertilization  [148] . Some evi-
dence for the molecular effects of misoprostol action on 
cell function comes from a recent study on Neuro-2a 
cells. Misoprostol and PGE 2  can elevate intracellular cal-
cium level and the amplitude of calcium fluctuations in 
growth cones, as well as reduce the number and length of 
the neurite extensions in a dose-dependent manner via 
EP receptors  [149, 150] . Interestingly, it has been previ-
ously shown that dysfunction in calcium regulation may 
play a role in the pathogenesis of ASDs  [151–157] . These 
studies suggest that misoprostol may contribute to the 
neurotoxic effects on neuronal development and com-
munication via PGE 2  pathway. 

  Various studies have reported a crosstalk between 
COX-2/PGE 2  signaling pathway and morphogen mole-
cules such as Wnt (wingless) or BMPs (bone morphoge-
netic proteins) and their cooperative regulation in neuro-
nal differentiation  [158–163] . This is interesting because 
Wnt and BMP signaling normally play a key role in early 
patterning of the nervous system, neural tube formation, 
neuronal migration and differentiation, as well as synap-
togenesis, synaptic plasticity and synaptic differentiation 
 [164–168] .  Wnt-2 , one of many  wingless  genes regulating 
cell fate and patterning during early neuronal develop-
ment  [169] , is located in the region of chromosome 7q31–
33 linked to autism  [108, 170, 171] . Interestingly, muta-
tions and polymorphism in  Wnt-2  were found in indi-
viduals with autism and severe language abnormalities, 
respectively, indicating its potential involvement in the 
pathogenesis of ASDs  [172] . Wnt signaling pathways also 
play an important role in axon guidance and synapse for-
mation, which involves the release of calcium from intra-
cellular stores for growth cone remodeling and synapto-
genesis  [173] . PGE 2 - or misoprostol-induced alteration of 
calcium fluctuation in growth cones as shown by Tamiji 
and Crawford  [174, 175]  may potentially interfere with 
Wnt signaling pathway and affect differentiation. It has 
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been shown that Ca 2+  signaling triggered by neuronal ac-
tivity mediates synthesis and secretion of CREB-depen-
dent transcription  Wnt-2  and contributes to proper den-
dritic outgrowth and branching, suggesting the impor-
tance of the protein in neuronal development  [176] . 
Moreover, infections associated with the development of 
gastric cancer can induce the COX-2/PGE 2  signaling 
pathway by significantly increasing the level of PGE 2  
through induction of COX-2 and mPGES-1, membrane-
associated PGE synthase-1, and subsequent activation of 
Wnt and inhibition of BMP signaling pathways  [158] . It 
has also been reported that increased transcription of 
COX-2 gene and PGE 2  level was induced by Wnt signal-
ing pathway in epithelial cells and cancer stem cells, fur-
ther strengthening the cooperative interaction between 
these pathways  [160, 163, 177] . 

  The expression of four EP receptors’ transcripts (EP1, 
EP2, EP3  �   and EP4) significantly increases in the mouse 
during embryonic day 11–15 (early neurogenesis), indi-
cating that the PGE 2  signaling pathway may have an im-
portant role during early development  [174] . Many brain 
structures, such as medulla, pons and cerebellum, start to 
develop at the early stages of the neurogenesis (embry-
onic day 12) and others, such as, hippocampus, hypo-
thalamus, thalamus and entorhinal cortex that begin de-
veloping at around day 15  [178] . The early brain pathol-
ogy in many of these regions has been reported in autism 
 [179–181] . A direct involvement of COX-2/PGE 2  signal-
ing pathway in the development of these structures still 
remains to be established.

  Contribution of Oxidative Stress and Lipid 

Peroxidation in the Etiology of ASDs 

 Membrane phospholipids are primary targets of oxi-
dative stress, a state in which there is an imbalance be-
tween the production of reactive oxygen species and the 
antioxidant capacity of the cells, including enzymatic 
and nonenzymatic mechanisms  [182] . Reactive oxygen 
species may induce lipid peroxidation, the oxidative 
breakdown of lipids, which can disrupt the composition 
of membrane phospholipids and alter neuronal function 
 [183, 184] . Presence of double bonds in membrane phos-
pholipids makes them particularly susceptible to oxida-
tive damage  [185, 186] . The brain is considered vulnerable 
to oxidative stress particularly during its early develop-
ment because of high lipid content and limited antioxi-
dant capacity making children more susceptible to in-
sults  [187, 188] . Purkinje cells in the cerebellum, for in-

stance, are particularly vulnerable to oxidative stress 
 [189, 190] . Interestingly, significant loss of Purkinje cells 
accompanied by gliosis was determined in some children 
with autism  [191, 192] . 

  Various studies have reported elevation of lipid per-
oxidation markers accompanied by a reduction in anti-
oxidant enzymes in individuals with autism, suggesting 
a contribution of altered lipid signaling to the pathogen-
esis of the disorder  [11, 12, 193, 194] . Glutathione (GSH) 
is one of the main antioxidants that protect against lipid 
peroxidation and oxidative stress in the neurons  [195] . 
Lower levels of reduced GSH (active form) during early 
postnatal life indicate that the developing brain might be 
more susceptible to oxidative damage  [196] . It has been 
shown that children with autism have lower levels of the 
reduced form of GSH, and therefore a decreased ratio of 
GSH to the oxidized form disulfide GSH. Additionally, a 
deficiency in methionine and cysteine (precursors in the 
production of GSH) has been detected in these patients, 
suggesting that they might be more prone to oxidative 
stress and at a greater risk of developing brain disorders 
 [12, 78, 197–199] . Several polymorphisms affecting me-
thionine and GSH metabolism have also been reported in 
cases of autism, suggesting a possibility of genetic influ-
ences  [197, 200] . 

  Interestingly, children with autism exposed to mercu-
ry showed significantly decreased level of GSH  [201] . Two 
studies of children in the San Francisco area and Texas 
found that children living in close proximity to indus-
trial power plant sources of mercury had significantly 
higher prevalence of autism  [202, 203] . Evidence of expo-
sure to mercury due to maternal dental amalgam or vac-
cination has been also reported in some cases of autism 
 [201] . Pre- or postnatal exposure to toxic metals such as 
mercury has been shown to contribute to increased oxi-
dative stress and toxic effects on the developing nervous 
system  [204] . 

  Junaid et al.  [205]  characterized a single nucleotide 
polymorphism (C419A) in another antioxidant enzyme 
glyoxalase 1 (Glo1) and showed significantly higher fre-
quency for the A419 allele in patients with autism, sug-
gesting that it might be a predisposing factor in the etiol-
ogy of the disorder. In addition, a reduced Glo1 enzyme 
activity has been also reported in the brain of autism 
subjects  [205] . Interestingly, Glo1 is located in close prox-
imity to an autism locus on chromosome 6p identified 
by linkage and association studies, strengthening a pos-
sible involvement of Glo1 in autism  [206, 207] . Further-
more, the level of malonyldialdehyde, the end products 
of lipid peroxidation, as well as antioxidant proteins ce-
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ruloplasmin and transferrin, have been shown to be sig-
nificantly elevated in the plasma or urine samples of au-
tistic children compared to healthy controls  [10, 11, 194, 
208] . 

  In general, evidence for altered antioxidant capacity 
and increased oxidative stress in individuals with autism 
is compelling. Emerging evidence in the recent reports 
also shows a role played by prostanoid metabolites in the 
increased oxidative damage in some patients with au-
tism. The levels of a lipid peroxidation biomarker 2,3-
dinor-thromboxane (TxB 2 ), the metabolite of the TxA 2  
derived from platelets, and 6-ketoprostaglandin PGF 1 �   
(6-keto-PGF 1 �  ), the metabolite of the endothelium pros-
tacyclin (or PGI 2 ;  fig. 1 ) have been significantly elevated 
in children with autism  [209] . Moreover, 8-isoprostane-
F 2 �   (8-iso-PGF 2 �  ) and isoprostane F 2 �  -VI (iPF 2 �  -VI), 
by-products of prostaglandin F 2 �   (PGF 2 �  ) peroxidation 
produced in a nonenzymatic oxidation of AA ( fig.  1 ), 
have also been shown to be significantly higher in red 
blood cells or urine sample of children with autism com-
pared to the healthy controls  [10, 209] . Elevated level of 
iPF 2 �   was also found in plasma of children with autism 
 [74]  and Rett syndrome patients  [210] . The increased ac-
cumulation of F 2 -isoprostanes, which normally pro-
motes platelet aggregation and vasoconstriction  [211] , 
might explain the altered platelet reactivity in children 
with autism and may contribute to the vascular abnor-
malities in these patients  [212, 213] . Although the effects 
of the elevated level of PG metabolites in the nervous 
system need to be elucidated, the reported findings fur-
ther support the presence of altered lipid biogenesis in 
ASDs.

  Involvement of Immunological Factors  

 Emerging evidence suggests that immunological fac-
tors might have an effect on brain development through 
modification of COX-2/PG signaling, and play a role in 
the pathology of some mental disorders  [214–217] . COX-
derived lipid mediators such as PGE 2  or PGF 2 �   have been 
shown to be significantly increased following infections 
 [218–220]  or inflammations, especially during pregnan-
cy  [221–223] . Several clinical studies and case reports 
have shown possible contributions of viral infections and 
abnormal immune response in some cases of autism 
 [224] . It has been shown that prenatal and postnatal in-
fections may trigger autoimmune responses in autism 
 [225–227]  or stimulate immune responses in the mother 
or offspring  [228–233] . 

  Prenatal and postnatal exposure to viral infections 
such as measles  [234] , rubella  [235] , herpes viruses  [236] , 
and cytomegalovirus  [237, 238]  has been associated with 
autism. Moreover, polyomavirus genome was detected in 
postmortem brain tissues from individuals with autism, 
indicating the presence of infection in the brain of these 
patients  [239] . Although the molecular mechanisms by 
which viral infections contribute to the pathology of au-
tism via PGE 2  signaling are still largely unknown and 
often inconclusive, the animal models provide some in-
direct evidence that altered immune responses due to in-
fections might contribute to the development of autism. 
In animal models, pre- and postnatal infections have 
been shown to lead to immunological changes in off-
spring, gene alterations in the brain and specific behav-
ioral changes similar to those found in autism spectrum 
 [216, 217, 240–243] . Prenatal exposure of pregnant mice 
to viral infections also results in increased pyramidal cell 
density, reduced size of the Purkinje cells of the cerebel-
lum and brain enlargement in the embryos  [244] . Similar 
changes were observed in the brain of individuals with 
autism  [179, 245, 246] .

  The immune system, including its inflammatory com-
ponents, is essential in defense against pathogens. Ome-
ga-6 and omega-3 PUFA eicosanoids play a central role in 
regulating immune and inflammatory responses  [247, 
248] . Eicosanoids derived from omega-6 PUFAs (AA) 
have proinflammatory and immunoactive role, whereas 
eicosanoids derived from omega-3 PUFAs (EPA and 
DHA) have anti-inflammatory properties. PGE 2 , the 
most abundant eicosanoid produced predominantly 
from AA, induces cytokine expression  [249–252] . A num-
ber of case studies provide evidence that dysfunction of 
the immune system such as generation of antibodies or 
stimulation of cytokine production may result in pathol-
ogies of autism  [123] . Elevated levels of plasma immuno-
globin classes have been reported in some children with 
autism, indicating altered susceptibility to infections 
 [229, 253, 254] . Production of proinflammatory cyto-
kines such as tumor necrosis factor- � , interleukin-6 and 
interferon- � , have been elevated in the blood of autistic 
children compared to healthy controls  [255–261] . Immu-
nocytochemical studies using brain tissues from individ-
uals with autism showed that neuroglia-derived macro-
phage chemoattractant protein-1 and tumor growth fac-
tor-1 were the most prevalent cytokines, indicating that 
immune dysfunction may result in CNS pathology and 
contribute to the development of autism  [262] . Elevated 
cytokine production can alter CNS function and devel-
opment  [224] . For example, in cultured rat embryonic 
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hippocampal neurons interferon- �  inhibits dendritic 
outgrowths, thereby decreasing synaptic formation  [263] . 
Interestingly, reduced dendritic branching has been 
shown in the hippocampus of autistic patients  [264] . Re-
cent studies indicate that gastrointestinal inflammation 
can also affect CNS via cytokines and contribute to the 
development of ASDs  [265–267] . In animals, intracere-
broventricular injections of PPA (the metabolic end prod-
uct of enteric bacteria) result in astrogliosis in the brain 
of the animals, suggesting neuroinflammation as a result 
of activation of CNS innate immune cells  [81] . These 
models of infection in developing animals provide evi-
dence that viral infections and the resulting immune re-
sponse may alter neuronal development and lead to be-
havioral abnormalities seen in autism. Further studies 
are required to provide a direct link for the effect of im-
munological factors on the function of the COX-2/PG 
pathway and their contribution to the pathology of au-
tism. 

  Conclusions 

 Autism is a complex neurodevelopmental disorder 
caused by interaction between genetic and environmen-
tal factors. Although autism is behaviorally defined and 
its biochemical defects are still not well understood, sev-
eral lines of research support the hypothesis that children 
with autism show higher rates of in vivo lipid metabolism 
than healthy controls. The provided evidence shows that 
impairment at various steps of the lipid metabolic path-
ways may contribute to the development of autism. These 
studies collectively suggest that lipid signaling may play 
an important role in the pre- and postnatal period, and 
alterations of this pathway can negatively impact the de-
velopment of the nervous system and lead to autism. 
Identification of various genetic or environmental factors 
contributing to deficits in these lipid signaling pathways 
in individuals with autism will likely be important for 
understanding the molecular mechanisms of the disor-
der and the development of novel therapeutic and preven-
tion strategies early in life. 
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