COURSE CALENDAR DESCRIPTION

Introduces the field of dance kinesiology, and the analysis of movement from a scientific perspective. Correct and efficient movement patterns for dance technique are discussed through the examination of the muscular/skeletal system and its functions. Study includes identification of common muscle imbalances that impede good alignment, and the optimal execution of dance technique. Required of all dance majors seeking the BFA degree. Prerequisite or corequisite: One of SC/NATS 1610 6.00, SC/NATS 1620 6.00, SC/NATS 1650 6.00, HH/KINE 2031 3.00. Open to non-majors.

SPECIAL FEATURES

1. Special Features

Technical requirements for taking the course:

Several platforms will be used in this course, primarily Moodle and Zoom, through which students will interact with the course materials, the course director/TA, as well as with one another. Please review the syllabus to determine how and when the class meets.

Students shall note the following:

• Zoom is hosted on servers in the U.S. This includes recordings done through Zoom.
• If you have privacy concerns about your data, provide only your first name or a nickname when you join a session.
• The system is configured in a way that all participants are automatically notified when a session is being recorded. In other words, a session cannot be recorded without you knowing about it. Technology requirements and FAQs for Moodle can be found here - http://www.yorku.ca/moodle/students/faq/index.html"
Specific technological requirements of this course require:
- participation through video conferencing, in a space that allows for conversation, group interaction, and adequate space to lie on the floor/move in a complete circle for some classes
- appear on video (e.g., for seminar discussion, presentations, group work, etc.)
- a stable, higher-speed Internet connection (To determine Internet connection and speed, run an online test, such as Speedtest – details below)
- a computer with webcam and microphone, and/or a smart device with these features.

A way to determine Internet connection and speed: there are online tests, such as Speedtest, https://www.speedtest.net/ that can be run.

Useful links describing computing information, resources and help for students:
- Computing for Students Website https://student.computing.yorku.ca/
- Student Guide to eLearning at York University http://elearning-guide.apps01.yorku.ca/
- Learning Skills Services https://lss.info.yorku.ca/online-learning/
- Zoom@YorkU User Reference Guide
 http://staff.computing.yorku.ca/wpcontent/uploads/sites/3/2012/02/Zoom@YorkUUser-Reference-Guide.pdf
- Zoom@YorkU Best Practices
 https://staff.computing.yorku.ca/wpcontent/uploads/sites/3/2020/03/Zoom@YorkUBest-Practicesv2.pdf

Information about the delivery and organization of the course

Location:
Please note that this is a course that depends on remote teaching and learning. There will be no in-class interactions or activities on campus.

Organization of the course:
This class will be delivered through a combination of synchronous and asynchronous learning times. Please plan to attend scheduled synchronous meetings as we will be engaging in experiential learning essential to understanding and applying content and themes of this class.

Meeting Day and Time
Lecture Monday 2:30 – 4:30pm
Lectures consist of pre-recorded tutorials, readings, and a quiz or weekly short assignment.
Please access tutorials and other materials via the course Moodle; refer to the schedule of readings and activities for more details.
Lab Wednesday 1pm – 2:30pm
This time includes LIVE seminars/conversations and movement exploration sessions.
The conversation will be recorded, as will the verbal instructions for the experiential. These recordings can be accessed via the course Moodle by the following morning.
Please note that the course instructor’s virtual **office hours** are always scheduled on Thursdays from 9:30 to 10:30 am. Please drop-in to chat [insert Zoom link].

For individual appointments, please email the course instructor.

2. **Topics and Concepts**

SCHEDULE OF LECTURES AND READINGS

Week 1 - Sept 9 Course description/resources

Week 2 - Sept 14 Lecture: Intro, course vocabulary, levers, planes
 Read - Grossman pp 13-28

Sept 16 Lab: Joint play; axial exploration

Week 3 - Sept 21 Lecture: Connective tissues, joints
 Read- Schleip “Fascia as a bodywide tensional network”

Sept 23 Lab: Fascia exploration

Week 4 - Sept 28 Lecture: Muscles and movement analysis principles
 Read Grossman pp 127-140

Sept 30 Lab: Functional Awareness Recuperation and balance

Week 5 - Oct 5 Lecture: Motor control and motor learning
 Reading in Moodle - Wilmerdung & Krasnow; Barnstaple et al 2020

Oct 7 Lab: Imagery, imagination and mental rehearsal

Week 6 - Oct 12 – 16 READING WEEK! **No class.**

Week 7 - Oct 19 Lecture: Upper Extremity
 Read Grossman pp 105-117, 216-234

Oct 21 Lab: Bartenieff Fundamentals Arm Circles

Week 8 - Oct 26 Lecture: Hips
 Read Grossman pp 63-78, 176-204

Oct 28 Lab: Bartenieff Fundamentals Thigh drop

Week 9 - Nov 2 Lecture: Knees
 Read Grossman pp 50-61, 162-174

Nov 4 Lab: Skinner Releasing Technique

Week 10 - Nov 9 Lecture: Foot and Ankle
 Read Grossman pp 29-48, 141-161

Nov 11 Lab: Somatic tango from the feet up

Week 11 - Nov 16 Lecture: Spine/Trunk
 Read Grossman pp 81-103, Muscles of Trunk 185-188

Nov 18 Lab: Feldenkrais Spine session

Week 12 - Nov 23 Lecture: Mechanism of Breathing
 Read Grossman pp 206 - 215

Nov 25 Lab: Functional Awareness breath

Week 13 - Nov 30 Lecture: Time to work on final assignment together

Dec 2 Lab: Putting it all together

Week 14 - Dec 7 In-class presentations and sharing

Course Text / Readings

Additional readings may be assigned or recommended during the course and the topic or content of experientials may shift to reflect student interests and questions raised during the course.
Recommended readings:

3. Learning Outcomes with Examples

(1) Brief statement of the purpose:
The purpose of this course is to assist students in developing critical skills involved in the study of anatomy from the perspective of movement function. Students will be able to analyze dance movement and understand applications of kinesiology to dance practice and teaching. Students will learn to connect anatomical language with movement experiences and deepen their understanding of somatic practices founded in anatomical awareness.

(2) The specific learning objectives of the course are that students will be able to:
• Understand and analyze movement from a scientific perspective
• Apply dance science to technical development in the dance studio
• Develop their abilities to discuss and theorize about movement practices, including understanding the connection between somatic practices and anatomical function
• Apply kinesiology to a wide range of potential fields of study, including medical, athletic, therapeutic and pedagogical careers.

Outcomes
• know and apply common anatomical terms, constructs and concepts to anatomical ideas and texts (including common bones, muscles and anatomical features; relative anatomical terms (proximal/distal, medial/lateral etc.); movement planes and movements (coronal, sagittal, transverse; abduction, adduction).
• explain how the body's structure and form determine human movement potential (differentiating among skeletal, articular, muscular, nervous and fascial systems)
• distinguish among common physical forces acting on the body during dance movements (inertia, friction, gravity, voluntary muscle contractions, and restriction forces of hard and soft tissues)
• apply analytical techniques to determine active muscles during dance practice (fundamental functional movement analysis to determine concentric, eccentric, isometric, passive or stretched muscle action at a given joint)
• support or critique common dance classroom and performance practices based on knowledge of human movement science
• express how common muscular imbalances might impede or alter movement

GRADED ASSESSMENT
Evaluation
Weekly Quizzes and Activities 20% (2% per week over 10 weeks with potential for bonus)
Weekly movement experiential and reflection 50% (5% weekly over 10 weeks)
Final Project %30

Additional Information

QUIZZES
Knowledge of Methodologies and Awareness of Limitations of Knowledge will be assessed through weekly Moodle-based quizzes and activities reviewing material learned in the tutorials. Quizzes are open book and you can take each one multiple times; what is important is to read and review the material and language to become familiar with it, while aiming to increase your knowledge. You will have until one half hour before the movement lab each week to complete the quiz. Each quiz is worth 2% of your final mark towards a cumulative 20%.

MOVEMENT EXPERIENTIALS and REFLECTION
Each week during lab time we will explore embodied anatomy through a movement experiential. Afterwards, you will be invited to reflect on the experience and connect it to the material covered in that week’s tutorial. Reflections may be written, drawn, filmed, spoken or a combination of these; what is important is to connect your experience with anatomical concepts. Each week’s experiential is worth 5% for a cumulative total of 50%.

Breadth and depth of knowledge will be assessed at 3% and clear communication 2% each week.

MOVEMENT ANALYSIS ASSIGNMENT
Application of Knowledge will be assessed through each student’s analysis of a movement phrase using terms, concepts and methods from the course. Students are encouraged to work together, if possible, and help each other with this analysis in small groups of up to 4. To develop and exercise Autonomy and Professional capacity, each student will create a teaching aid demonstrating their understanding of concepts related to their phrase and use this to teach it to other members of the group. A formal rubric for this assignment will be provided separately.

In-class sharing of rehearsal/teaching aids and movement phrases will take place on December 8. All videos and supporting materials must be uploaded to Moodle on December 9 by 1pm.

It is to the student’s advantage to form small study groups that meet each week, review material, and work on practical movement analysis problems. There will be time for this during the Monday Lecture slot, although students are welcome to meet at another time that suits them.
Final course grades may be adjusted to conform to Program or Faculty grades distribution profiles.

Many courses utilize Moodle, York University’s course website system. If your course is using Moodle, click here to access it.

Moodle @ York University