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Abstract

This paper presents a Bayesian method to reconstruct the centerline in noisy data using B-spline

curves. The method is illustrated on simulated two- and three dimensional data and is applied to recover

the centerline of the colon in single photon emission computed tomography images.
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1 Introduction

In this paper, we consider the problem of identifying the centerline curve, or skeleton, in noisy data. Skeleton

reconstruction frequently arises in practice and examples can be found in medical imaging [Deschamps and

Cohen, 2001, Caffo et al., 2008], computer vision [Chaudhuri et al., 2004, Ma et al., 2003], and remote sensing

[Banfield and Raftery, 1992]. Mathematically, the interior skeleton of a set A ⊂ R
d is defined as a set of

points having a nonunique projection on the complement of A. Similarly, the exterior skeleton of A is defined

as a set of points having a nonunique projection on A [Delfour and Zolésio, 2001].

A number of existing methods consider a skeleton reconstruction in high-resolution images. For example,

the fast marching algorithm proposed in Cohen and Kimmel [1996] was extended to reconstruct a centerline

of anatomical structures from high resolution 3D images [Deschamps and Cohen, 2001]. An automated 3D

topological thinning was developed to reconstruct the colon skeleton from computed tomographic colonog-

raphy data [Sadleir and Whelan, 2002]. A medial description of neuroanatomical structures was used to

compare ventrical shapes and hippocampi between different subject populations [Styner et al., 2003, Bouix
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et al., 2005].

Here, we consider estimating the interior skeleton given a random sample of points from the set of interest.

That is, given a cloud of points in R
d, we seek to identify a smooth connected curve that passes through the

middle of the data. This paper was motivated by the centerline reconstruction from single photon emission

computed tomography (SPECT) images of the colon column [Caffo et al., 2008]. The reconstruction method

was based on principal curves that were originally introduced as a nonlinear generalization of principal

components [Hastie, 1984, Hastie and Stuetzle, 1989]. The principal curve is defined as follows. Let C be

a smooth curve in R
d parameterized as C(t) : [0, 1] 7→ R

d. Let the projection index tC(y) be the value of

the parameter t for which C(t) is closest to y. If the projection is not unique, we take the projection index

to be the largest one. The curve C is called self-consistent or a principal curve of the random variable

X if E[X |tC(X) = t] = C(t) for almost all t. The principal curve is estimated using the iterative rule

C(k+1)(t) = E[X |tC(k)(X) = t], where C(k) is the kth iterate with parametrization C(k)(t). In practice, the

distribution of X is unknown, and the expectation on the right hand side is estimated from the observed

data. Although, the convergence of the algorithm was never established, the method was found to perform

well on simulated data [Hastie and Stuetzle, 1989].

Since their introduction, principal curves have been adapted to solve a variety of problems. In particular,

they were used to estimate the ice floe outlines in satellite images [Banfield and Raftery, 1992]. The curves

were estimated using a modified algorithm which improves bias and variance of the iterative procedure for

closed curves, but does not apply to open curves. The principal curves were combined with hierarchical

clustering to estimate the fault lines in the earthquake zone [Stanford and Raftery, 1997]. Principal curves

were also used to model the short term spectrum of the signals in the speech recognition problem [Reinhard

and Niranjan, 1998]. In Caffo et al. [2008], the authors employed the original principal curves algorithm

to identify the skeleton of the data but propose some modifications to improve the fit and increase the

convergence speed. In particular, they introduced a warm-up procedure for the initialization step and

resorted to using manually-specified endpoints to improve the fit in the tails. The method was shown to

perform well on a variety of idealized (noise-free) images and was applied to reconstruct the centerline of the

colon from SPECT data. Although presented as an improvement, the manual identification of end points
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clearly is a constraint since such points are often hard to identify, especially in high dimensional data.

In this paper, we propose a Bayesian method to reconstruct the smooth connected skeleton curve from

noisy data. We model the skeleton as a twice differentiable B-spline curve, without imposing any shape

constraints. In what follows, we describe the statistical model in Section 2 and give a brief overview of the

B-spline curves. The algorithm for sampling from the posterior is given in Section 3. Further, in Section

4, we demonstrate the performance of the method on simulated data and apply the proposed algorithm to

reconstruct the centerline of the colon from SPECT data. Final remarks in Section 4.4 adjourn the paper.

2 The Model

2.1 Likelihood

Let Y = (Y1, . . . , Yn) be the observed data with the unknown skeleton curve C. We assume that C is twice

differentiable and that it is parametrized by a mapping, C : [0, 1] 7→ R
d. In general parametrization, we write

C(t) = (C1(t), C2(t), . . . , Cd(t)) for the position vector along the curve at time t in R
d. Here, we consider

planar and space curves in R
2 and R

3, respectively.

Let C(s) be a natural parametrization of the curve C with arc length s as a parameter [Kreyszig, 1968].

Denote by T (s) = C′(s) the unit tangent vector of C at point C(s), where C′(s) is the gradient vector of

C(s) with respect to s. If T ′(s) 6= 0, then the unit vector N(s) = T ′(s)/||T ′(s)|| is the principal normal

vector N(s) of curve C at C(s). The plane spanned by vectors T (s) and N(s) is known as the osculating

plane of the curve at point C(s). For curves in R
2, the osculating plane, if exists, remains constant for all

values of s, whilst for nonplanar curves, the tilt of the osculating plane changes with s. For curves in R
3,

consider the binormal B(s) given by the vector product B(s) = T (s) × N(s). The triple (T (s), N(s), B(s))

constitutes an orthonormal right basis of C at C(s) and is known as the Frenet frame. More details of the

differential geometry of curves can be found in any standard textbook such as [Kreyszig, 1968].

Denote by δi the projection index of point Yi on curve C, as defined in Hastie and Stuetzle [1989]. For

every point Yi, let Di be its signed distance to the skeleton curve C, so that |Di| = |Yi − C(δi)|. For

planar curves, the sign of Di is determined with respect to the normal to the curve N(δi) at C(δi) as
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sgn{Di} = sgn{cos (Yi − C(δi), N(δi))}. For curves in R
3, the sign of the distance is taken with respect to

the Frenet basis at the corresponding projection, i.e. sgn{Di} = sgn{cos (Yi − C(δi), B(δi))}.

We assume that given the true skeleton curve C, the distances Di to the curve are independent draws

from a centered normal distribution with known variance σ2. Note that under this model, we only need to

know the squared distances, so the sign computations are not required. From the Bayes theorem, we obtain

that π(C| Y ) ∝ L (Y |C)π(C).

2.2 Boundary Prior

In this section, we construct the boundary prior to control the behavior of the curve. We begin with the

planar curves. Recall that for curve C parametrized by C(s), vector T (s) is the unit tangent vector to the

curve at C(s). The direction of the tangent vector depends on the orientation of the curve and points in the

direction of increasing parameter values s. The curvature vector K(s) at point C(s) is the derivative of the

unit tangent vector with respect to s, i.e. K(s) = T ′(s) = C′′(s). The curvature κ(s) of C at point C(s) is

the length of the corresponding curvature vector, i.e. κ(s) = |C′′(s)|.

It follows from the definition that κ(s) measures the rate of change of the tangent vector, or the deviation

of curve C from the tangent line, in a neighbourhood of C(s). In other words, for a relatively straight curve,

the tangent vector remains largerly unchanged and the curvature is small, but a sharp turn/drop in the

direction of the curve gives rise to large changes in the direction of the tangent vector and results in large

curvature values. Thus, the behavior of the curve is characterized by its curvature. To control the global

behavior of the curve in 2D, we consider the following prior based on the integrated squared curvature

π(C) ∝ exp

{

−β1

∫ L

0

|C′(s)|ds − β2

∫ L

0

κ2(s)ds

}

, (1)

where L is the length of the curve, the deformation constant β1 > 0 limits the length of the curve and

β2 > 0 determines its elasticity. The second term of the prior (1) is analogous to the roughness penalty in

nonparametric smoothing and functional regression, where the latter has a form of the integrated squared

second derivative with respect to the argument [Green and Silverman, 1994, Ramsay and Silverman, 2005].

The integrated squared curvature is also used as a penalty term in active contour models [Blake and Isard,

1998, Kass et al., 1988, Rueckert and Burger, 1997, Tauber et al., 2004, Terzopoulos et al., 1987]. Note
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that the prior in (1) is improper because it is invariant with respect to translations and rotations within the

domain of interest.

For curves in R
3, the prior (1) requires some modifications since it does not account for deviations of the

curve from the plane. Recall that vectors T (s) and N(s) span an osculating plane at point C(s). For curves

in R
2, the osculating plane, if exists, remains constant for all values of s. For nonplanar curves, the tilt of

the osculating plane changes with s. These changes, however, are not captured by the curvature.

To capture the behavior of the curve in R
3, we consider another characteristic of the curve known as

torstion. The torsion τ(s) of C at C(s) is a function that satisfies B′(s) = −τ(s)N(s). The torsion is

independent of the curvature and represents an additional parameter that measures the departure of the

curve from the plane in the neighborhood of C(s). In fact, the shape of the curve is completely determined

by its curvature κ and torsion τ . The torsion of the curve measures the rate of the change of the binormal

vector. Clearly, for planar curves, the binormal remains unchanged and the torsion is zero, the reverse is also

true. On the other hand, for nonplanar curves, the direction of the binormal vector is no longer constant

and abrupt deviations from the plane lead to large absolute values of τ(s).

Analogously to the 2D case, we consider the integrated squared torsion and define the following prior for

curves in R
3

π(C) ∝ exp

{

−β1

∫ L

0

|C′(s)|ds − β2

∫ L

0

κ2(s)ds − β3

∫ L

0

τ2(s)ds

}

, (2)

where, as before, L is the length of the curve and βi, i = 1, 2, 3, are non-negative constants. The first two

terms are similar to the prior in (1), whilst the last term gives higher probability to planar curves. Note

that this prior is also invariant with respect to translations and rotations in R
3 and hence is imporper.

For computational reasons, we prefer an arbitrary parametrization C(t) with parameter t, in which case

the squared curvature and the torsion are given by

κ2(t) = {|C′(t)|2|C′′(t)|2 − 〈C′(t), C′′(t)〉2} / |C′(t)|6, (3)

τ(t) = |C′(t) C′′(t) C′′′(t)|/|C′(t) × C′′(t)|2, (4)

where 0 ≤ t ≤ 1, the numerator of τ(t) is the scalar triple product and C′(t) × C′′(t) in the denominator

stands for the cross product.
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2.3 B-spline Curves

We use a class of B-spline curves to model the centerline of the data. In this section, we briefly describe

B-spline curves and some of their properties and refer for more details to Piegl and Tiller [1997].

Consider a set V = {V0, . . . ,VM} of M + 1 points in R
d, where Vi = (Vi1, . . . , Vid) is the vector of

coordinates of the ith point. A B-spline curve C of degree p, 1 ≤ p ≤ M, is defined as a weighted linear

combination of points V as

C(t;V) =

M
∑

i=0

Vi Qi,p(t), 0 ≤ t ≤ 1. (5)

where the weight for the ith control vertex is given by the value of the ith B-spline basis function, Qi,p(t),

of degree p. The points V are referred to as the control points, or vertices, of the curve. The B-spline basis

functions are computed recursively, starting from the unit step functions, as

Qi,0(t) =















1, if ui ≤ t < ui+1

0, otherwise

Qi,p(t) =
t − ui

ui+p − ui
Qi,p−1(t) +

ui+p+1 − t

ui+p+1 − ui+1
Qi+1,p−1(t).

(6)

The nondecreasing sequence of knots u0 ≤ . . . ≤ ul in equations (6) partitions the interval [0, 1]. Here,

we use a parametrization corresponding to a non-uniform open knot vector with u0 = . . . = up = 0 and

ul−p = . . . = ul = 1 with the remaining knots equally spaced in the interval (0, 1). The knot assignment

ensures that C(0;V) = V0 and C(1;V) = VM . For brevity, in what follows, we write C(t) for C(t;V).

Definition (6) implies that the knot vector (u0, . . . , ul) and the degree p of the curve determine the form

of the basis functions. In turn, the curve is identified by p,V and (u0, . . . , ul); note that l = M + p + 1.

Equations (6) show that B-spline basis functions have local support, since the ith basis function is zero

outside the interval [ui, ui+p+1). Consequently, changing the position of the ith vertex affects the curve only

locally in [ui, ui+p+1).

As the definition shows, the complexity of the curve of a given degree depends on the number of its

polynomial segments, or equivalently, on the number of control points defining the curve. Because the

optimal number of control points is unknown, it is often desirable to estimate it as opposed to fitting the

curve with a fixed number of control points. To accomplish this, we modify the prior choosing a penalty
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similar to the one described in Pievatolo and Green [1998]. The modified prior for the planar B-spline curves

is now given by

π(C) ∝ exp

{

−β0(M + 1)γ − β1

∫ L

0

|C′(s)|ds − β2

∫ L

0

κ2(s)ds

}

. (7)

Similarly, the prior for the curves in R
3 becomes

π(C) ∝ exp

{

−β0(M + 1)γ − β1

∫ L

0

|C′(s)|ds − β2

∫ L

0

κ2(s)ds − β3

∫ L

0

τ2(s)ds

}

. (8)

In (7) and (8), β0 and γ are positive constants, so that the magnitude of the first term increases in M and

the priors penalize curves with a large number of control points.

2.4 Posterior Distribution

Combining the likelihood and the prior, we obtain the posterior distribution of the skeleton curve given the

data Y , which for curves in 3D, becomes

π(C| Y ) ∝
(

1

σ2

)n/2

exp

{

− 1

2σ2

n
∑

i=1

d2
i

}

× (9)

× exp

{

−β0(M + 1)γ − β1

∫ L

0

|C′(s)|ds − β2

∫ L

0

κ2(s)ds − β3

∫ L

0

τ2(s)ds

}

.

For 2D curves, the torsion term vanishes.

3 MCMC Sampler

Because the posterior density of C is not available in closed-form, we use Monte Carlo methods to generate

samples from π(C| σ2, Y ) in (9). Denote by (V(k), C(k)), k = 1, . . . , K, the successive sweeps of the Markov

chain Monte Carlo sampler initialized at (V(0), C(0)).

To update the curve we construct a sampler similar to the one used for updating polygons in stochastic

boundary reconstruction problem [Pievatolo and Green, 1998]. The idea is to modify the curve by updating

the position of its vertices. The latter are updated using three different move types: moving, adding or

deleting a vertex. The vertex move is a fixed-dimension random walk Metropolis algorithm. In turn, vertex

addition and deletion change the dimensionality of the vertex state space, so we resort to a reversible jump

MCMC method [Green, 1995].
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1. Move a vertex. With probability mk, replace randomly chosen vertex V
(k)
i from the current set of

control vertices V
(k) with V

∗
i = V

(k)
i +Zi, where Zi has a d-variate centered normal distribution with

covariance Σm. For the proposal V
∗, identify the corresponding curve C∗ and compute an approxima-

tion of the Metropolis ratio rm(C, C∗|σ(k), Y ) = π(C∗|σ(k), ID)/π(C(k)|σ(k), Y ). Set V
(k+1) = V

∗ and

C(k+1) = C∗ with probability min (1, rm) and maintain V
(k+1) = V

(k), C(k+1) = C(k), otherwise.

2. Add a vertex. With probability ak, for randomly chosen i, add a new vertex V
∗
i = 0.5(V

(k)
i + V

(k)
i−1) +

Z, i = 0, . . . , M +1, where V−1 ≡ V0,VM+1 ≡ VM and Z is a centered d-variate normal variable with

covariance Σa. For a new set V
∗ = {V(k)

0 , . . . ,V
(k)
i−1,V

∗
i ,V

(k)
i , . . . ,V

(k)
M }, compute the corresponding

curve C∗ and calculate the acceptance ratio

ra(C, C∗|σ(k), Y ) = min

{

1,
π(C∗)(M + 1)dk

π(Ck)φd(z)(M + 2)ak

∣

∣

∣

∣

∂V
∗

∂V∂Z

∣

∣

∣

∣

}

.

Set V
(k+1) = V

∗, C(k+1) = C∗ with probability min (1, ra) and maintain V
(k+1) = V

(k), C(k+1) = C(k),

otherwise.

3. Delete a vertex. For n > 3, with probability dk, delete a randomly chosen vertex V
(k)
i , compute curve

C∗, and calculate the acceptance ratio

rd(C, C∗|σ(k), Y ) = min

{

1,
π(Ck)φd(z)(M + 2)ak

π(C∗)(M + 1)dk

∣

∣

∣

∣

∂V
∗

∂V∂Z

∣

∣

∣

∣

−1
}

.

Set V
(k+1) = V

∗, C(k+1) = C∗ with probability min (1, rd) and maintain V
(k+1) = V

(k), C(k+1) = C(k),

otherwise.

The acceptance ratios rm, ra, rd are computed using a fine partition of [0, 1] in (7) and (8) and a trapezoidal

integration in (3) or (4).

4 Results and Discussion

4.1 2D Example

Here we consider a function with oscillations of exponentially varying maginitude and a power trend given

by f(x) = 5e−.07t cos (.7t) +
√

t, x ∈ [2, 30]. Data points were generated according to Yi = f(xi) + εi, i =
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1, . . . , 100, where xi are chosen uniformly at random on [2, 30] and εi are independent samples from the

centered normal distribution with variance σ = 0.05. Figure 1, left, shows the simulated data with the true

centerline overlayed in red.

The skleleton curve was modeled as a cubic B-spline curve, i.e. p = 3. To initialize the sampler, six

vertices were randomly positioned about the horizontal midline of the data. The prior parameters were set to

γ = 3, β0 = 0.1, β1 = 0.1, β2 = 0.001, Σa = Σm = 0.5I2, mk = ak = dk = 1/3. The first 5K realizations of the

Markov chain are discarded as burn-in. The following 25K sweeps of the chain were acquired. The algorithm

was implemented in Matlab 7.6.0 (R2008a, The MathWorks) using the C++ NURBS library (ARIA). The

computations were performed on a MacBookPro with 2.2.GHz Inter Core 2 Duo processor and 2GB of RAM

with 30K sweeps completed in approximately 1.4 minutes. To monitor the convergence, we compute the

number of points within distance 3σ from a sample curve for every sweep (Figure 2, right).

Figure 1, right, shows a realization from the posterior with the true curve overlayed in red. Figure 2 (left)

shows the number of control points for every sweep. The estimated number of vertices needed to model the

curve is 10.

Figure 1: (Left) Simulated data and (right) the fitted curve (black). The red curve is the true curve.
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Figure 2: The number of control points (left) and the number of points within 3σ distance from the sample

curve (right) for every sweep, for the 2D example. Both statistics are plotted on the log10 scale.

4.2 3D Example

Here, we use the method to estimate the centerline of three dimensional data. We take the true skeleton to

be a helix curve C(t) = (cos t, sin t, t). We simulate M = 100 data points as Yi = C(ti) + N(ti)εi, where ti

are chosen uniformly at random on [0, 1], vector N(ti) = (− cos t,− sin t, 0) is the unit normal to the curve

at C(ti), and εi are random realizations from the centered normal distribution with variance σ = 0.5. Figure

3 shows the simulated data in R
3 at three different view angles relative to the true skeleton curve (red).

The cubic curve was initialized by positioning six control vertices to be approximately evenly spaced in

the x direction and choosing y and z coordinates from the standard normal distribution. The constants for

the 3D prior (8) were set to γ = 2, β0 = 0.05, β1 = β2 = β3 = 0.02, Σa = Σm = I3, mk = ak = dk = 1/3.

The first 5K realizations of the Markov chain were discarded as burn-in and the chain was run for 25K more

sweeps. The run time for the helix example was about 1.9 min. The acceptance rate was approximately 4%.

The convergence was assessed by monitoring the number of points within 3σ distance from the curve.

Figure 4 shows a good agreement between the true curve (red) and the sample from the posterior (black).

Figure 5 (left) shows the number of control points for every sweep. The number of vertices needed to model

the curve is approximately ten. The convergence is achieved by 5K iterations as shown in Figure 5 (right).
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Figure 3: Simulated data for 3D example at three different view angles; the true skeleton curve C(t) =

(cos t, sin t, t) is shown in red.
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Figure 4: A comparison between a sample from the posterior (black) after the chain convergence and the

true helix skeleton curve (red) at three different view angles.
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Figure 5: The number of control points (left) and the number of points within 3σ distance from the sample

curve (right) for every sweep, for the 3D example. Both statistics are plotted on the log10 scale.
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4.3 Application to SPECT Imaging

In this example, we use SPECT data acquired on a single subject who was administered a dose of radiolabeled

lubricant through the intracolonic injection. The subject then underwent an experimental procedure designed

to mimic the distribution of the lubricant in the colon. SPECT images were acquired using a dual-head VG

SPECT-CT imaging system (GE Medical Systems, Waukesha, WI). X-ray computed tomography images

were also collected for anatomical reference. The study was approved by the Johns Hopkins Institutional

Review Board. The reconstructed SPECT data represent a three-dimensional array of 1283 voxels. The

acquired images were thresholded to remove the background noise. The final data set consists of 1000

voxels sampled uniformly at random after the thresholding. More details on the data acquisition and image

preprocessing can be found in Caffo et al. [2008].

To estimate the skeleton of the SPECT data, we initialize a cubic curve with six control vertices spaced

approximately evenly in the x direction and with y and z coordinates given by independent random samples

from the normal distribution with mean 60 and variance 2. The constants for the prior (8) were set to

γ = 2, β0 = 0.1, β1 = β2 = β3 = 0.004, Σm = Σa = 20I2, mk = ak = dk = 1/3, σ = 10. Note that the

variance in the likelihood model was determined from the data as a pooled variance estimator based on 100

nearest neighbors of 200 randomly chosen data points. The first 5K realizations of the Markov chain were

discarded as burn-in and the chain was run for 25K sweeps. The run time was about 41.9 min.

Figure 6 shows the fitted curve overlayed on the original data at three view angles. The curve reflects

basic features of the colon anatomy and is in agreement with the reconstruction results reported in Caffo

et al. [2008].

4.4 Concluding Remarks

In this paper, we describe a Bayesian method based on B-spline curves to estimate the skeleton from the

noisy data. The recursive definition of the basis functions ensures efficient computation of B-spline curves,

while the piecewise polynomial structure provides the desired flexibility to model complex contours. In

addition, the affine equivariance property of B-spline curves allows to modify the position of the curve by

manipulating only a small number of its control vertices. The method does not require a user-specified end
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Figure 6: The fitted curve (black) at three view angles.

points, which is advantageous, especially when dealing with highdimensional data.

The resulting estimates naturally depend on the parameters of the prior distribution. In particular, large

values of βi, i = 1, 2, 3 result in a rigid skeleton curve with a small number of control points which captures

the overall trend, but does not reflect important features. In turn, small values of the parameters lead to

erratic centerlines. The parameter value also depends on the variance of the proposal densities, i.e. larger

variance will require smaller parameters and vice versa. Similarly, choosing values for β0 and γ leads to stiff

curves with small number of vertices. The prior parameters in our examples were determined experimentally

by monitoring the behavior of the curve.

With respect to the reversible jump MCMC, from our experiments we found that we gain no advantages

when using unequal variances in the proposals. Also, the parameter values βi, i = 1, 2, 3 depend on the

variance of the proposal densities, i.e. larger variance will require smaller parameters and vice versa. The

covariance matrix Σa in RJMCMC was determined experimentally by monitoring the behavior of the curve.

Given that the curve is controlled through its vertices, large variance values tend to substantially affect

the shape of the curve. This is advantageous at the beginning of the run, but once the shape of the curve

is learned, large jumps make it harder to expose local details of the curve. Our simulations indicate that

the shape of the curve is mainly learned through repositioning of the vertices. In the 2D example, the

vertices are added and deleted mainly at the beginning of the cycle, while in 3D the number of vertices

fluctuates throughout the run; see Figures 2 and 5, left panels. This could be explained by larger variability

of the 3D data, more complicated helix curve, and an extra dimension that gives more leeway for the vertix
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repositioning.

In this paper, we considered estimating the number of control points and the skeleton curve simultane-

ously. In practice, it might be advantageous to use a curve with a fixed number of vertices, for example

when dealing with relatively simple contours. The sampler in this case contains only a move step and the

updates take less time. A similar approach was used to reconstruct the boundary of an object in a noisy

image [Stanberry and Besag, in preparation] .

We should also note that the execution time of 41.9 min is longer for the SPECT data as compared to

the simulated examples. This is due to larger number of points in the data set which leads to increased

computation time for the distances in the likelihood function. The coding, however, was not optimized and

most certainly the adjustments can be made to speed it up.

Another important issue to mention is the acceptance rate which is considerably lower than commonly

accepted 20-50%. This, however, is not surprising given the number of coordinates of the control points on

which the sampler is based.

In our examples, we focused on modeling open skeleton curves. As an example we consider recon-

structing a closed curve by simulating 100 data points uniformly scattered about the unit circle, i.e. Y =

(R cosΘ, R sin Θ), R ∼ U [0.8, 1.2], Θ ∼ U [−π, π]. The cubic curve was initialized as a straight line with 6

control points positioned horizontally about the midline of the data. The reconstruction parameters were

γ = 2, β0 = 1, β1 = 0.1, β2 = 0.05, σ2 = var(R), σ2
m = .05, σ2

a = .1, mk = ak = bk = 1/3 for all k. Figure

7 shows the MCMC samples from three independent runs of the Markov chain. The reconstructed curve is

not closed, because of the prior that gives higher probability to shorter and “less curvy” curves. Not that

in case of the closed curve reconstruction, the original principal curve algorithm exhibits similar behavior

Hastie and Stuetzle [1989].

This example shows that in its present form, the method prohibits the transition of the curve from open

to closed. Certainly, if the underlying curve is known to be closed, it ought to be modeled as such, e.g. closed

principal curves were used to identify the outline of ice floes in Banfield and Raftery [1992]. In particular,

the closed cubic B-spline curves are constructed by simply wrapping the first three and the last three control

points. However, in practice the exact geometry of the curve is unknown and it would be of interest to
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develop a method that would allow for changes in the “topology” of the curves.

Figure 7: Curve samples from the three independent runs of the Markov Chain.
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