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I would like to congratulate the authors on an important and thought-provoking
paper. This work will certainly be a catalyst for further research in the area of shape-
constrained estimation, and the authors themselves suggest several open problems
towards the end of the paper. I will restrict my discussion to adding another question
to this list.

One of the identifying features of nonparametric shape-constrained estimators are
their rates of convergence, which are slower than the typical n1/2 rate achieved by
parametric estimators. In one dimension, the Grenander estimator of the decreasing
density converges at a local rate of n1/3 while the estimator of a convex decreasing
density converges locally at rate n2/5 [PR, Gro2, GJW]. A similar rate is seen for
the one dimensional nonparametric maximum likelihood estimator (NPMLE) of a log-
concave density, which was recently proved to be n2/5, as long as the density is strictly
log-concave [BRW]. A heuristic justification of how different local rates arise is given
in [KP]. The global convergence rates, on the other hand, can be quite different. For

the Grenander estimator, the convergence rate for functionals ϕ(f̂n− f0) is known to
be

n1/6
{
n1/3ϕ(f̂n − f0)− µϕ(f0)

}
⇒ σϕ(f0)Z,

where Z is a standard normal random variable [Gro1, GHL, KL]. Here, f0 denotes
the true underlying monotone density. Thus, smooth functionals with µϕ(f0) = 0
(such as plug-in estimators of the moments) converge at rate n1/2 and recover the
faster rate characteristic of parametric estimators.

Global and local convergence rates for the log-concave NPMLE are sure to be of
much interest in the near future. Indeed, it is already conjectured in [SW] that the

local convergence rate for the estimator f̂n introduced here is n2/(4+d) when d =
2, 3. In Section 7, the authors consider plug-in estimators of the moments or the

differential entropy for f̂n. What would the convergence rate be for these functionals?
Preliminary simulations for d = 1 indicate that the n1/2 rate may continue to hold for
the log-concave maximum likelihood estimators (see Figure 1). Further investigation
is needed in higher dimensions. A rate of n1/2 would, naturally, be very attractive in
the application of these methods.
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Figure 1. (Top) n1/2 re-scaled functional vs. sample size (in 1000s):
the NPMLE of a Gamma(2,1) random variable was computed (using
[RD]) and the centered mean functional was calculated based on the
estimated density. Each boxplot consists of B = 100 simulations. (Bot-
tom) Quantiles vs. sample size (in 1000s): quantiles of the un-scaled
and centered functionals (0.05 and 0.95 dashed, 0.25 and 0.75 solid,
median in bold). A regression of the logarithm on the 0.05 and 0.95
quantiles on the logarithm of sample size yields a highly significant
slope estimate of −0.48968.
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