CENTRAL LIMIT THEOREM FOR ZERO-RANGE PROCESSES
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ABSTRACT. We consider additive functionals fg’ V(ns)ds of symmetric zero-range processes,
where V is a mean zero local function. In dimensions 1 and 2 we obtain a central limit theorem
for a=1(t) f(f V (ns)ds with a(t) = /tlogt in d = 2 and a(t) = t3/* in d = 1 and an explicit form
for the asymptotic variance o2. The transient case d > 3 can be handled by standard arguments
[KV, SX,S]. We also obtain corresponding invariance principles. This generalizes results obtained
by Port (see [CG]) for noninteracting random walks and Kipnis [K] for the symmetric simple
exclusion process. Our main tools are the martingale method together with L? decay estimates
[JLQY] for the process semigroup.

0. Introduction.

In a system of interacting random walks on Z¢ one may consider a local function V
and its time integral fg V(ns)ds. The total number of particles is a conserved quantity
and correspondingly such a system will typically have a one parameter family of invariant
measures v, parametrized by the average particle density p. If particle number is the only
conserved quantity the system is ergodic and, if we start with density p then the time integral
fg V(ns)ds will converge to the appropriate expectation E, [V].

Next it is natural to ask about the fluctuations of fg (V(ns) — E,,[V])ds. We observe them
under the stationary process P, obtained by starting the process with the invariant measure
v, with density p. A computation (see [CG]) shows that for independent symmetric nearest
neighbour random walks, with each particle jumping at rate 2d, and V' = (0), the number
of particles at the origin,

1

m/o (n5(0) — p)ds

converges in law to a normal distribution with mean zero and variance o2(d, p) where

d=1 : a(t,d) =34

d=2 : a(t,d) = +/tlogt (0.1)
>3 : a(t,d) =Vt
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and 02(1,p) = 4p/3y/7, 0%(2,p) = p/2m, and *(d, p) = 2p [y p(0,0)dt in d > 3, where
pt(z,y) are the transition probabilities of the corresponding continuous time random walk.
The recurrence of the individual particles is responsible for the unusual scaling in one and
two dimensions.

Kipnis [K] showed that the analogous results hold for symmetric random walks with simple
exclusion, with a new variance given by o2(1, p) = 4p(1 — p)/3\/7, 02(2,p) = p(1 — p) /27 if
d =2, and o?(d, p) = 2p(1 — p) J; p:(0,0)dt in d > 3. However, these results are somewhat
special as they rely on explicit calculations. In particular, they rely heavily on the special
self-duality of symmetric simple exlusions from which the equation (A=L)Gx(n) =n(0) —p
is explicity solved by Gx(n) = >, gx(@)(n(z) — p) where gx(z) = [;° e *py(0,2)dt solves
(A—=A)gx = 6(0) for the lattice Laplacian Af(x) = 3°, ., (f(y) —f( )). For more complicated
V one can in principle use duality to obtain analogous results. However, these are still very
special exact computations and one can ask whether something more general is available.
Here we are interested in the zero-range models; systems of continuous-time random walks
where each particle’s jump rate is affected by the total number of particles at its site. No
duality is available, and unless special assumptions are imposed, the models are not attractive.
However they do have an explicit family v, of (product) invariant measures.

In the transient case, d > 3, one can appeal to general results of Kipnis and Varadhan
[KV] for additive functionals of reversible Markov processes which apply whenever we have a
bound E|( fo (ns)ds)?] < Ct, V mean zero. More precisely, they show that the central limit

theorem holds for ¢ ~1/2 fo (ns)ds whenever the asymptotic variance, —2E[V L~!V], is finite.
In d > 3 this holds for any bounded local function. This still leaves open the cases d = 1,2
where typically —2E[V L~1V] = co. For symmetric simple exclusion and zero-range models,
it is known [SX] that under mild conditions, —2E[V L~'V] < oo if and only if V(") (p) = 0
forn=0,1,2ind=1,n=0,1ind=2and n=0in d > 3 where

V(p) = By, [V] (0.2)

and V(™ denotes the nth derivative.
Recently it was shown [JQLY] that under mild assumptions, the L? decay of a mean zero
function V to equilibrium is at rate t~%?2 for the symmetric zero-range dynamics. More

precisely, B
E,,[(PV)?] = C(p,d)[V'(p))*t™ 2 + o(t~%?) (0.3)

with an explicit constant C(p,d). P; here denotes the semigroup e’ of the dynamics. In
other words, up to leading order, the only contribution of a local function V is through its
(formal) projection onto ) (1, — p), and all other details are lost.

From (0.3) one obtains immediately that the asymptotic variance E [(ﬁ f(f V(ns)ds)?]

— C(p,d)[V'(p)]? in d = 1 and 2 with a(t,d) as before; the unusual factors a(t) = t3/4
in d =1 and a(t) = y/tlogt in d = 2 simply compensate for the non-integrability of the
correlations t~%2. But also the fact that most of the details of V' are lost means that one can
replace V' by more or less any local function, and a central limit theorem for one would imply
the same for the other. Hence our strategy is to find a nice local function f for which the
martingale method used by Kipnis goes through, i.e. for which we can solve (A — L)G) = f
more or less explicitly, and then use (0.3) to extend it to a general local function V.

In Section 6 we consider the symmetric simple exclusion process. Because of the special
self-duality property, (0.3) can be obtained easily. In fact one can compute the next order



term. Hence for symmetric simple exclusion in one dimension we can study the fluctuations
of fo (ns)ds under P, when V(p) = V'(p) = 0. The scaling turns out to be a(¢,2) and the
limit is normal with variance C[V"(p)]? with an explicit constant C. An interesting open
problem is whether the corresponding result can be obtained for the zero-range models.

Although one expects a result analogous to (0.3) for a large class of systems, at present
it is only known for symmetric zero-range and simple exclusion processes (where one can
use duality to give a complete expansion). For the important case of the Ising model with
Kawasaki dynamics, even under strong mixing conditions, (0.3) is open and the best that is
available at at this time is a bound of the form ¢t~%2(log¢)® for some a > 0 [LQY]. It would
also be very interesting to obtain related results for asymmetric systems. Only partial results
are available [S].

Finally, we note that our methods give full invariance principles, i.e., process limits of

XN = = aND N ) f V(ns)ds. Of course X} by itself is not a Markov process. Using the mar-
tingale method we can obtain that the limit is Gaussian. Since
1 Nty Ntq
M N Tog N /0 /0 (1+ |s2 — s1]) " dsidsy = 2min(ty, ta) (0.4)

and

Nty Ntq 4
. 3 2
lim N3/2/ / (Ut |52 = 1)) " Pdsidsy = 5[5 + 6% — [ =01, (05)

N—oco

we see from (0.3) that the asymptotic covariance is 4C(p, d)[V’(p)]? min(ty,t2) in d = 2 and
Y20 (p,d) [V (p))2[ty* + 3> — |ta — t1/3/2] in d = 1. Hence in d = 2 (and d > 3 ) the limit
is Brownian motion, while in d = 1 the limit is a fractional Brownian motion with exponent
3/2. In particular, the Markov property is recovered in the limit in d > 2 but not in d = 1.

1. Notation and Results.

Zero-range model. Particles are distributed on the lattice Z%, with n(z) denoting the
number of particles at site x € Z?. Configurations will be called 1 and the state space
is the set NZ° of such configurations. We also choose jump rates ¢:N — R, such that
¢(0) = 0 < ¢(k) for k > 1. The dynamics of the process is described as follows. If there are
n(x) particles at site x then the rate at which a particle jumps from x to nearest neighbour
site y is ¢(n(x)). In other words, each particle at x jumps at rate 2de(n(z))/n(x). When it
jumps it chooses at random from its 2d neighbours. This takes place independently of all
the other particles, and the new configuration n*¥ obtained from 7 in this way is given by
n*Y(z) =n(z) + é(x,y) — d(x, z) where 6(z,y) =1 if z = y and 0 otherwise.

The dynamics we have described is a Markov process on the state space N Z* whose gener-
ator acts on functions that depend only on a finite number of coordinates as

Lf(n) = Y en(@)[f(n"") = f(n)] (1.1)

r~y

where = ~ y denotes (ordered) nearest neighbours.
To ensure that the process is well defined and also to guarantee that the system on a box
of side length N has spectral gap of order N2 (see [LSV]), we assume that for some B < oo



—B <c¢n+1)—c(n) < Bforaln=0,1,... and that there exists § > 0 and ko > 1 such
that ¢(m) — ¢(n) > 6 for all m — n > kg. Note that it follows from the assumptions that for
some K < 0o, for alln =0,1,..., K tn < c(n) < kn.

Denote by Z: R, — R, the partition function defined by Z(p) = >, ¢"/c(k)! where
c(k)! = ¢(1)---c(k). Note that from x~1n < ¢(n) the radius of convergence of Z is infinite.
The dynamics we have described conserves the total number of particles and the product
measure v on NZ° with marginals

v(ne =j) = [Z(9)]7'¢’ [e(h)! (1.2)
for j € N, z € Z%, for 0 < ¢ < oo represent a full set of extremal translation invariant,
invariant measures [A]. Let p(¢) = Ep_[no] be the density of particles for the measure v,,.
p:[0,00) — [0, 00) is a smooth strictly increasing bijection. Since p(y) has a physical meaning
as the density of particles, instead of parameterizing the above family of measures by ¢, we
use the density p as parameter and we write v,, p € [0,00) for the corresponding product
measures. Note ¢ is a smooth function whose derivative is bounded above and below by a
strictly positive constant on each compact set of Ry (cf. [KL]). Note that p = E, [n(0)] =
pZ'(#)/Z(p) and

Ey,[c(n2)] = ¢(p)- (1.3)

The process is reversible with respect to each v,, i.e. the generator L is symmetric on L2(1/p).
Fix a density p > 0 and denote by P, the corresponding stationary process with marginals
V.

A function V : NZ° — R is called local if it only depends on 7n(x), x € A where A is a finite
subset of Z¢.

We will say that a local function V| depending on 7,, |z| < R, has a polynomial bound if
for some N, Cq,Cs < 00,

V()| < Cr+Co Y n(@)]™. (1.4)
|z|<R
In [JLQY] it is shown that (0.3) holds for bounded local functions with
C(d, p) = x(p)(87¢'(p)) =%, (1.5)

We will prove below it holds for any local function with polynomial bound. Note that in our
model

x(p) = Var,,(n(0)) = ¢(p)/¢'(p)- (1.6)

Theorem 1.1 . Consider zero-range models satisfying the above conditions. Let V' be a mean
zero local function with polynomial bound, and consider

N 1 Nt
X' = V(ns)ds, 1.7
Y- ors | Vs (17)
where a(t,d) is given by (0.1). Under P,, XN = X, where X, is
. : : 2¢(p) S0 \121,3/2 | ,3)2 3/2
d =1: fractional Brownian motion, cov. V' (D)2t + 1,7 — |t — 112/,
3V ¢ (p)]3/2 2
d = 2 : Brownian motion, covariance %)2[‘7’(,0)]2 min(tq, ta),
2|’ (p)]

d > 3 : Brownian motion, covariance 2 <V(—L)_1V> min(ty, ta).



The case d > 3 follows from the general central limit theorem for additive functionals of
reversible Markov processes [KV] together with the fact [SX] that in d > 3 every mean zero
local function with polynomial bound has (V(—L)~'V') < oo (which also follows easily from
the decay estimate). The d = 2 case will be proved in sections 2 and 3 and the d = 1 case
will be proved in sections 2 and 4.

Symmetric simple exclusion. Particles are performing symmetric continuous time
random walks on the lattice Z¢ with the exclusion rule that jumps to already occupied sites
are suppressed. If we start with at most one particle per site then it remains so for all time.
The state space is then {0, 1}Zd and the generator acts on local functions as

Lf(n) =Y (f(n™) = f(n)) (1.8)

T~y

where n*™¥ denotes the configuration obtained from 7 by switching the occupation numbers
at ¢ and y. For simplicity we have considered the nearest neighbour case with jump rate one
to each nearest neighbour site: The results will all have straightforward generalizations to
any symmetric finite range jump law. The invariant measures of the process are the product
measures v, with v,(n, = 1) = p, p € [0,1]. These are also reversible. Let P, denote the
stationary process with initial distribution v,,.

Theorem 1.2 . Consider the symmetric simple exclusion process described above. i. Let V
be a mean zero local function, and consider

N 1 Nt
X' = ———= V(ns)d 1.9
Y- org | Vs (19
where a(t,d) is given by (0.1). Under P,, X} = X; where X; is

2p(1 — _
d = 1: fractional Brownian motion, cov. = p) [V’(p)]2[t§/2 + tzl)’/2 — |ty — t1 /7],

3T
p(1

d = 2 : Brownian motion, covariance 27_'0)[‘/’(,0)]2 min(tq,t2),
7T

d > 3 : Brownian motion, covariance 2(V(—L)™'V)min(t1, ).
ii. Ind =1, let V be a local function with V(p) = V'(p) = 0. Let

N

= — Vins)ds. 1.10
t \/W/O (77) S ( )

N : : : P> (A=p)> 1711 ( V12 i
Under P,, X;' = Brownian motion, covariance =—g>~|V"(p)|* min(ty,t).

Part ¢ was proved in [K] for V(n) = 1y — p (note that our process has been sped up by
a factor 2d relative to his). The case d > 3 follows from [KV] and [SX] as before. d < 2 is
proved in an analogous way to Theorem 1.1, using the analogous decay estimate (0.3) which
can be obtained easily for symmetric simple exclusion using duality. Part i: is proved in
Section 6 by using duality to obtain the next term in the decay estimate.



2. L? decay to equilibrium.
The main tool used to prove Theorem 1.1 is the following result adapted from [JLQY]. Let
P, denote the semigroup e*”.

Theorem 2.1 . LetV be a local function with polynomial bound (1.4) and E,, |[V] = 0. Then
there exists v > 0 and R < 0 and depending only on d and C1,Cs, N appearing in (1.4) such
that

t2E,, [(PV)?] = Clp, ) [V'(p)*| < Rt~ (2.1)

holds with C(p,d) given by (1.5).

Proof. As stated in [JLQY], (0.3) holds only for bounded V. Keeping careful track through
that proof of the dependence of the o(t~%2) term on ||V ||« We obtain the following statement:
There exists an € > 0 and a constant K (d, p) < oo such that for any local function V| for all
t>1,

12, [(PV)2] = C(d, p) [V!(0)]”| < K(d, p) [IIVIIZ] 17 (2.2)
For V satisfying (1.4) we write V' = W, + X, where W, = V At/* and X, = (V -V At/*). By
the contractivity in L? of P, and |X;| < fW s/ where f = C1+Co[3 1< n(z)]Y, and by

the Schwarz inequality, we have B, [(P.X;)?] < ||f|]1L/42[P(f > t¢/4)]'/2 which is exponentially

small in ¢t. Also [W/(p) —V'(p)| < Ey, [f¥ jstera >p(e — p)] < ¢t for some ¢ < oo and

a > 0 depending only on C1,Cy and N. Applying (2.2) to W; the result follows. O
The proof of the following lemma can be found in [SV].

Lemma 2.2 . (Garsia, Rodemich, Rumsey) Let p and ¥ be continuous, strictly in-
creasing functions on [0,00) such that p(0) = ¥(0) =0 and lim;_,» ¥(t) = co. Given T >0
and X; € C([0,T],R), then for0 <71 <T —§,

sz Lo ([ [ (B )

Corollary 2.3 . Let Py be probability measures on C([0,T],R) satisfying
Epy[(Xe — X)?] = C(N)|t — s|'™ (2.3)

fort,s € [0,T] with C(N) < C < oo and independent of t and s, and v > 0. Then Py are
tight. If C(N) — 0 as N — oo, then Py converge weakly to the trivial process concentrated
on X; = 0.

Proof. We apply the lemma of Garsia, Rodemich, and Rumsey with ¥(z) = x2. After an
application of Schwarz’s inequality we obtain

TEP |Xt |2} 1/2
Epy| sup \Xt—XSH§16/ / / 5 dsdt|
t—s|<6 p(t —s])?

From (2.3) if we choose p(z) = ® with 1+ 3 > a > 1, the right hand side is bounded by

A\/C(N)§>~1 for some A < co. This proves that Py are tight. If C(N) — 0 it is clear that
X; = 0 is the only possible limit. U




Corollary 2.4 . Let d < 2. Let V be a local function satisfying (1.4) with

Vi(p)=V(p) = 0.

Let Py be the distribution of XN = a(N ) f V(ns)ds, t € [0,T] under P,. Then Py
converge weakly to the trivial process concentrated on X; = 0..

Proof. By Fubini’s theorem,

</otv(”s> )]—2// E,,[V Py, V]dsydss.

By the reversibility of the process this is equal to

t So
2/ / E, [(Poy—sy V)?ds1dss.
o Jo 2

By the decay estimate this becomes, in d =1 or 2,

E

a?(d, )Cy [V'(0))” x(p) (8¢ (p)) "2 + Cot> 277,

for C1,Cy < oo depending only on p and d. Since V'(p) = 0 the result follows from the
previous corollary. U
In the sections 4 and 5 we will prove the following result.

Lemma 2.5 . Let

N 1 Nt
XN = s [ (et = et (2.4)

Let Py be the distribution of XN under P,. Then Py are tight and has unique weak limit: In

20(p)\/ ¢ (p) 3/2 3/2_

d =1 fractional Brownian motion of parameter 3/2 with covariance T[t

w(p)

Ity — t1]%/?]; In d = 2, Brownian motion with covariance min(¢y,ts).

Proof of theorem 1.1. We can write

[ vonas= | (V(ns)— Z((g)) [C(ns(O))—w(p)]) ds+z,’((§)’ | etrno) - el ds.

By Corollary 2.3 the first term, suitably rescaled, is tight and converges to the trivial process
X; = 0. By the previous lemma, the second term is tight and converges to the limit in
theorem 1.1. U

3. Some coefficients from potential theory.
We now compute some explicit constants which play a role in the limiting variance. Let
pt(z,y) be the solution of

E = Apv po(%y) = 5(1’ - y)?



where Af, =37, fy — fa is the lattice Laplacian and 6(z) takes the value 1 at x € 7% and
(2dt)™

0 otherwise. Note that p,(z,y) = e 24 Y =2
probabilities of a symmetric simple random walk on Z¢. We have, as t — oo,

pn(z,y) where p,(z,y) are the transition

p+(0,0) ~ (47 (1 +t)) "2, (3.1)

For each A > 0, let
gr(z) = / e_)‘tpt(O,x)dt,
0

x € Z%, so that
(A= A)gx = 6(0). (3.2)
Lemma 3.1 . i. Ind =2, limy_, #g)\ > oy (O2(Y) — gx(2))? = 1/2m,
1. Ind <2, ‘|g>\’|?2(z;d) - %fooo te_Atpt(O,O)dt ~\E2
Proof. ii follows from (3.1). Multiplying (3.2) by g and summing gives A > _[gx(z)]* +
3 2amy (DA (1) =92 (2))* = g2(0). By @4, limy o =555 >0y (92 (1) =9 (2))* = 2limy—o —15z592(0).

Now use (3.1) again. O
Let

o) = /OtpS(O,a:)dS

so that 5
a_: = Av+6(0),  wvo(x)=0. (3.3)

Lemma 3.2 . Ind=1,i. lim;_t7 323 [v(2)]? = 5=(V2-1),
i limy oo 752 [030, [0s(y) = vs(@)]2ds = 2= (2 = V/2).

Proof. i. > [u(x)]* = 3, f(f f(f Ds, (0, 2)ps, (0, 2)ds1dsy = 2 f(f o Psy+s2(0,0)ds1dss.
Using (3.1) we obtain i. To obtain i, multiply (3.3) by v and integrate to obtain fg Dy Vs (Y)—
vs(@)]2ds = 2 [ vs(0)ds — 3, [v(x)]? and use (3.1) again. O

4. Martingale method (d=2).
In this section we prove Lemma 2.5 in dimension d = 2 using the martingale method. Let

Gam) =D gx@ @) —p), G =Y ga(@)(cn(x)) — ¢(p)).

ZIJGZd erd

A summation by parts yields

~

LGx(n) = c(n(0)) — ¢(p) — AGA(n).
Hence we can write

1

Nt
e L (0~ plo)ds = MY+ Y



where

. Nt
MY = W[GI/N(nNt> — Gy~ (o) _/o LGN (ns)ds| (4.1)
is a martingale and
) Nt
R = W[—Glﬂv(ﬂm) + G1/n(no) + N/, Gy (ns)ds]. (4.2)

We compute [ Ga 22, = Vary, (1(0) g2 o) and [Gal[2a, ) = Vary, (c(n(O))llgallZ o).
From lemma 3.1 it follows that Ep, [(Riv ) ] < Ct/log N . Hence, once we show RY is tight,

it will converge to the trivial process X; = 0. This is done at the end of this section in Lemma
4.2.

For M}N we use the central limit theorem for martingales [R] in the following form.

Lemma 4.1 . If MY are martingales satisfying i. <MN> (t) — o2t in probability, t € [0,T];
ii. o (MN)(t) = > o<r, <t |IAMN(7:)|?L(|AMN(73)| > €) — 0 in probability, for each € > 0.
Then M} conveges to a Brownian motion with variance o2. Here (M) (t) is the variance
process of a martingale M (t), defined by M?(t) — (M) (t) is a martingale, and 7; are the jump
times, and AM (7;) the jumps of the process.

Note that if M, = G(t,n;) — G(0,70) — [y {0u + L}G(u,n,)du then E[(M; — M,)?|F,]

E[fslt Dy c(M2)(VayG)?du| Fs] where V., G(n) = G(n*™¥)—G(n). In our situation, V,,Gx(n) =
9x(y) — gx(z). Hence we can compute by Lemma 3.1.7.,

<MN> f)(gp])\? Z(Ql/zv(y) - 91/N($))2 - @;Z)t,

T~y

which gives ¢ of Lemma 4.1. To check ii, note that

oe(MN)(t) = logN > NP (0918 W) — 918 (@)L (g1/n (y) — 91/n(x) > /Nlog Ne)

r~y

where P}Y are independent Poisson processes running at rate Nn(z)(1—n(y). This converges
to 0 as N — oo by the law of large numbers and another application of Lemma 3.1.:.
The following lemma completes the proof of Theorem 1 in d = 2.

Lemma 4.2 . The family of processes RYY defined in (4.2) is tight.
Proof. Note first that \/N%[Gl/]v(nm) — Gyn(mo)] = JY + KN where K is a mar-

tingale and JN = ds. The proof that K} is tight is the same as that

\/rf LGl/N 775)

for the M}¥ so we omit it. From the Feynman-Kac formula and the variational formula for
the principal eigenvalue of L + V,

zltlogE[exp {a/ot LGl/N(ns)ds}] < sup {aEl,[LGl/N(n)f(n)] + E,/[\/?L\/?]}

E,[f]=1, f20



Now E,[LGy /N f] = 5y Eulc(n(x)(f (™) = fF))(91/8(y) — g1/n(2))] and E,[fLf] =
5 D wy Eulen(x))(f (7*¥) = f(n))?]. By Schwarz’s inequality and f(n*¥)—f(n) = (v/F(n*¥)+
VIM)VF0™) =/ F(n)) the supremum is bounded by Ca? Y (g1/n(y) — g1/5(2))?. By

stationarity and Lemma 3.1 we obtain,
E[exp {a(JgV - J;V)}] < exp{C(N)a?|t — s|}. (4.3)

In fact C(N) = O(N~1), but for compactness we only need that C' is bounded. Applying
Lemma 2.2 with ¥(z) = e — 1 and p(x) = /x after some computation one obtains from
(4.3) that for some C(T) < oo,

Bl sup I — JN|) < CVE(1 + log ),

0<s<t<T

[t—sl<s

which gives the compactness of JN.
Now we can write RY = AN + BN + CN where AN = ,N2 g N f (G1/n(MNt) —

Nt A

Gl/N(ns)]d87 Bzgv = +m fO [Gl/N<ns) - iGl/N(ns)]dS and Cg\] = m[( /(P -
1)Gy/n(nne) + Giyn(no)]. AY and C}Y are tight by the previous argument. B} is tight by
Corollaries 2.3 and 2.4. O

5. Martingale method (d=1).
In this section we prove Lemma 2.5 for zero-range models on the one dimensional interger
lattice. Using the decay estimate Theorem 2.1, and a variance computation (such as in the

proof of Corollary 2.4), we can see that (2.3) is satisfied for X}V = a(N 0 fo c(ns) —@(p)ds

for some C(N) = C < oo. Hence X}V are tight. Furthermore the asymptotic covariance
can be computed by (0.5). Therefore it only remains to show that the limiting process is
Gaussian.

Note that us(z) = Owl(p)t ps(0, z)ds is the solution of

Opu = Sol(p) [Au + 50] ) U(ZL', 0) =0.

Let

=3 ur_i(@)n(@) - p).

Then M = UL (n:) — UT (no) fo s + L)UZL (ns)ds is a martingale in t up to time 7', and
by explicit computation of (05 + L)UT we have

T
/0 (c(ne(0)) — plp))dt = MF + UL (o) + Rer

where

Re= [ ar-d(walm(a)ds.



where a(n) = c(n) — o(p) — ©'(p)(n — p), and q;(x) = Py (p)¢(0, ). In particular,
1N P e 1 1
N3/ (c(ns(0)) — @(p))ds = na/aINT I+ N3/4U 7 (10) + WRNT

We first show that the error term N 3/4Ryr is negligible. We write the expectation of
it’s square as

NT NT
v S e o) avr e () Blal (e1)al, (22)dsadse

T1,T2

Since we have a stationary Markov process the expectation can be written as E,, [az, Pls,—s,|0z,)
where we use a, to denote the function n — a(n(z)). By the Markov property, and reversibil-
ity of the process this can be rewritten as Eup[(P@;-ﬂawl)(Pngsl‘am)]. By Schwarz’s
inequality, the L? decay estimate, Theorem 2.1, and the fact that a’ = 9,E, [a]|, = 0, we
have, uniformly in z; and zo, E[a(ns, (21))a(ns,(z2))] = o(|sz — s1|~1/277) for some v > 0.
The summations over x; of ¢.(x;) are each 1, and hence, performing the two time integrals,
after a simple change of variables we obtain for some « > 0.

E {(N‘3/4RNT>2] = O(N~°).

Now note that Ul (n9) € Fo and MY are independent. By the central limit theorem,
N=3/4UNT () converges to a Gaussian process. Note that

M; _Z/ Vay UL dP, ()

T~y

where P;"Y are independent, compensated Poisson martingales jumping at rate c(n;(z)). Since
Vay UL = up_s(y) — ur—s(z) we have

1
N3/4 NT _N3/4 Z/ [unT—s(y) — unt—s(2)]dPs(2,y)

T~y

=%N Z/Ov“()@f“()

z€Z/VN
e=+1

where

v(x) = [unt(VNz + e) — un:(VNz)),
{¢(x) = N"Y4Py(VNz, VNz + e).

Now erz/\/ﬁ QN¢(2)8, converges to a space-time white noise /¢ (p)W (¢, z) (with variance

w(p)). We can identify viv “(z) with a function on R by, say, polygonalizing between values
of Z/ V/N. Then by local central limit theorem [L], v} ¢(x) — sgn(e)vy(x) strongly, where

= ft ze— " /4sg —3/24‘\1/3_ Therefore N3/4
by the sum of two independent copies (for e = £1) of

\/7// v (z)W (dt, dx).

This completes the proof of Theorem 1 in d = 1.

M JJ\\,[% converges to the Gaussian process given



6. Symmetric simple exclusion.

Symmetric simple exclusion possesses a very special self-dual property, which can be ex-
pressed in several different ways. For our purposes we use the following description. Fix
p € (0,1) and for each finite subset A of Z? let

UA—JEGI_[A\/—

where in this model
x(p) = p(1 = p).

The collection 74, A a finite subset of Z9, is an orthonormal basis of L?(r,). Let E,, denote
the span of 74, |A] = n. Then L?(7,) is the direct sum of the F,. The special self-dual
property of symmetric simple exclusion is that L : E,, — E,. In particular,

Lna = Z (NB —N4)

B~A

where B ~ A means that B can be obtained from A by deleting a site from A and appending
its nearest neighbour. If f € L?(m,) then we have f = > 7, Z|A|:n fana and Lf =
2 neo > Aj=n Ly fafia where
Lnfa=> (f5—fa).
B~A
In other words, on each F,, the process can be identified with a continuous time random
walk A; on the subsets of Z? of cardinality n, where jumps to all nearest neighbour sets take

place at rate one. Let us denote the corresponding semigroup Pt(") fa=Ea[fa,]-
The duality allows one to make rather explicit computations. In particular, we can compute
the next order term in (0.3).

Theorem 6.1 . Let P,V (n) = E,[V(n:)] be the semigroup of symmetric simple exclusion
with generator (1.8). For any local function with E, [V] =0,

( ) ‘V”( )|2t_1—|—0(t_3/2)

A=1 1 B, [(RV)) =x(p) () 2V (e /2 4 X0
d=2 1 B, (V)] =x(0)&0) [V ()Pt +aslp, V)i + O
123 1 B, (VY] =X()(85) IV (P12 + aalp, V)imV2 4 O,
where
2
aalo V) = X2 gL Ly S (et

j=1 x

ol V) = ~ 7l ZZ\%|V+ (KW + 27 =30V ()P, d 23

jlac

Remark. The next term in the expansion seems to have no meaning except in d = 1.



Proof. From the Parseval relation and the duality described above

up Pt Z Z (n)v ]2

n=1|A|=n

Since Pt(n) corresponds to random walk on an orthant of (Z%)"™ where no two of the n co-
ordinates in Z¢ coincide, with reflecting boundary conditions, it is not hard to see we have

expansions - 4 _, [Pt(”)VA]Q = t7"2(ch 4 Bt +cBt72 +---). The coefficients ¢} are not

easy to compute except forn =1 or j = 1. On the other hand, for the theorem we only need

ci,c?ind=1,cl,cd,c?ind=2, and ¢i,cd in d > 3.

The n = 1 case is stralghtforward since Pt( ) corresponds to a random walk on Z<.
Let’s call f, = V, and let f({) > wezd fo€ &% Parseval’s identity reads Y. |f.|? =

(2m)~ [ e | F©1PE TE Afy = 3, (fy — fa) then AAf(S) = —q(€)f (&) where q(&) =

=2 ,0(€Y = 1). Hence 3, [ fof? = (2m) ™% [i_, 2 e @[ f(§)[2d€. Let (=) = q(2) —
|2|2. After change of variables we have

_ — 2 z
9237 | L2 = (2m) /{_ﬁﬁ)d Pl D ) P

Expand |£(25)[? = |F(0) 2+~ D1 | [2(0) - 2+ D2 f2(0) 2+ 5+ D3 F(0) 2 202+ O(t2)
and e 211 = 1 — ¢~ 14 D it 2223 — 5 2., 2¢) + O(t~2). We have

1 .. .
YIS ol = (8 0) +t‘1(8W)‘d/Q[ZA|f\2(0) ~ 27 - 3) fI2(0)] + (™)
Here A is the continuum Laplace operator. Now note that

)= SR (525 = xS

Since )V, = £(0) this gives

= V).

Now A[f[2(0) = =2[32_, 32, |oj |2 fo + (3, @;f2)?]- This gives

;= d/g ZZ‘CBH Vot - ij °(d? = 3d)[V'(p)?].

leIJ

The case n = 2 can be mapped 1 — 2 to a random walk z; on {z1,z2 € Z9 : 21 # x5}
Since 24 /N converges to Brownian motion on R2¢ with generator the continuum Laplacian
A, it is not hard to check using the local limit theorem that

td Z |Pt(2)vA‘2

|A|=2 (

d‘ Z VA‘2+O(t_ )-

8) e



Now

V"(p) =2x(p)"" Y Va.
|A|=2

This gives

2_X<) 7/

O

Proof of Theorem 1.2. The proof follows closely the proof for zero-range in sections 2,3
and 4, so we only give a sketch. As in Corollary 2.4, the decay estimate allows us to reduce
the problem to solving for some particular choice of V. In d = 1,2 for V(p) = 0, that choice
can be V(1) = n(0) — p, and the central limit theorem is proved in [K]. The only remaining
case is d = 1, V(p) = V'(p) = 0. We choose as our candidate V(1) = 7j{0,13. Let E5 denote

the subsets of Z of cardinality 2. For A, B in Es, let $2(A, B) be the solution of

op* s . )

E :L2p7 pO(AaB) :6(A7B)a
where (A, B) = 1 if A = B and 0 otherwise. Then g3(A4) = [~ e *p7({0,1}, A)dt is the
solution of

(A — L2)33(4) = 6(A,{0.1}).

Define
Gi(n) = Z Ga(A)ia.
|A|=2
Then
(A= L)Gx = 750,13
Hence

Nt
ds = M + R}
TR [, Hods =M+

where MY and RY are as in (4.1) and (4.2). We have |]G>\]|L2(V ) = = Var,,(n (O))Hf]AH?Q(Z(i)

and ||CA¥>\||2L2(VP) = Varyp(n(O))\|§]>\||?2(Zd) and the same estimate as before, Hg>\||?2(E2) ~ AL

gives Ep,[(RY)?] < C/log N and then Corollary 2.3 implies that R}’ converges to the trivial
process X; = 0. As in section 4, Lemma 4.1 implies that M}¥ converge to Brownian motion.
The explicit covariance is obtained from Theorem 6.1. 0
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