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Abstract. We consider additive functionals
R t
0

V (ηs)ds of symmetric zero-range processes,

where V is a mean zero local function. In dimensions 1 and 2 we obtain a central limit theorem

for a−1(t)
R t
0

V (ηs)ds with a(t) =
√

t log t in d = 2 and a(t) = t3/4 in d = 1 and an explicit form

for the asymptotic variance σ2. The transient case d ≥ 3 can be handled by standard arguments
[KV, SX,S]. We also obtain corresponding invariance principles. This generalizes results obtained

by Port (see [CG]) for noninteracting random walks and Kipnis [K] for the symmetric simple

exclusion process. Our main tools are the martingale method together with L2 decay estimates
[JLQY] for the process semigroup.

0. Introduction.
In a system of interacting random walks on Z

d one may consider a local function V

and its time integral
∫ t

0
V (ηs)ds. The total number of particles is a conserved quantity

and correspondingly such a system will typically have a one parameter family of invariant
measures νρ parametrized by the average particle density ρ. If particle number is the only
conserved quantity the system is ergodic and, if we start with density ρ then the time integral∫ t

0
V (ηs)ds will converge to the appropriate expectation Eνρ

[V ].

Next it is natural to ask about the fluctuations of
∫ t

0
(V (ηs)−Eνρ

[V ])ds. We observe them
under the stationary process Pρ obtained by starting the process with the invariant measure
νρ with density ρ. A computation (see [CG]) shows that for independent symmetric nearest
neighbour random walks, with each particle jumping at rate 2d, and V = η(0), the number
of particles at the origin,

1

a(t, d)

∫ t

0

(ηs(0)− ρ)ds

converges in law to a normal distribution with mean zero and variance σ2(d, ρ) where

d = 1 : a(t, d) = t3/4

d = 2 : a(t, d) =
√

t log t

d ≥ 3 : a(t, d) =
√

t.

(0.1)
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and σ2(1, ρ) = 4ρ/3
√

π, σ2(2, ρ) = ρ/2π, and σ2(d, ρ) = 2ρ
∫∞
0

pt(0, 0)dt in d ≥ 3, where
pt(x, y) are the transition probabilities of the corresponding continuous time random walk.
The recurrence of the individual particles is responsible for the unusual scaling in one and
two dimensions.

Kipnis [K] showed that the analogous results hold for symmetric random walks with simple
exclusion, with a new variance given by σ2(1, ρ) = 4ρ(1− ρ)/3

√
π, σ2(2, ρ) = ρ(1− ρ)/2π if

d = 2, and σ2(d, ρ) = 2ρ(1− ρ)
∫∞
0

pt(0, 0)dt in d ≥ 3. However, these results are somewhat
special as they rely on explicit calculations. In particular, they rely heavily on the special
self-duality of symmetric simple exlusions from which the equation (λ− L)Gλ(η) = η(0)− ρ
is explicity solved by Gλ(η) =

∑
x gλ(x)(η(x) − ρ) where gλ(x) =

∫∞
0

e−λtpt(0, x)dt solves
(λ−∆)gλ = δ(0) for the lattice Laplacian ∆f(x) =

∑
y∼x(f(y)−f(x)). For more complicated

V one can in principle use duality to obtain analogous results. However, these are still very
special exact computations and one can ask whether something more general is available.
Here we are interested in the zero-range models; systems of continuous-time random walks
where each particle’s jump rate is affected by the total number of particles at its site. No
duality is available, and unless special assumptions are imposed, the models are not attractive.
However they do have an explicit family νρ of (product) invariant measures.

In the transient case, d ≥ 3, one can appeal to general results of Kipnis and Varadhan
[KV] for additive functionals of reversible Markov processes which apply whenever we have a

bound E[(
∫ t

0
V (ηs)ds)2] ≤ Ct, V mean zero. More precisely, they show that the central limit

theorem holds for t−1/2
∫ t

0
V (ηs)ds whenever the asymptotic variance, −2E[V L−1V ], is finite.

In d ≥ 3 this holds for any bounded local function. This still leaves open the cases d = 1, 2
where typically −2E[V L−1V ] = ∞. For symmetric simple exclusion and zero-range models,
it is known [SX] that under mild conditions, −2E[V L−1V ] < ∞ if and only if V̄ (n)(ρ) = 0
for n = 0, 1, 2 in d = 1, n = 0, 1 in d = 2 and n = 0 in d ≥ 3 where

V̄ (ρ) = Eνρ
[V ] (0.2)

and V̄ (n) denotes the nth derivative.
Recently it was shown [JQLY] that under mild assumptions, the L2 decay of a mean zero

function V to equilibrium is at rate t−d/2 for the symmetric zero-range dynamics. More
precisely,

Eνρ
[(PtV )2] = C(ρ, d)[V̄ ′(ρ)]2t−d/2 + o(t−d/2) (0.3)

with an explicit constant C(ρ, d). Pt here denotes the semigroup etL of the dynamics. In
other words, up to leading order, the only contribution of a local function V is through its
(formal) projection onto

∑
x(ηx − ρ), and all other details are lost.

From (0.3) one obtains immediately that the asymptotic variance E[( 1
a(t,d)

∫ t

0
V (ηs)ds)2]

→ C̃(ρ, d)[V̄ ′(ρ)]2 in d = 1 and 2 with a(t, d) as before; the unusual factors a(t) = t3/4

in d = 1 and a(t) =
√

t log t in d = 2 simply compensate for the non-integrability of the
correlations t−d/2. But also the fact that most of the details of V are lost means that one can
replace V by more or less any local function, and a central limit theorem for one would imply
the same for the other. Hence our strategy is to find a nice local function f for which the
martingale method used by Kipnis goes through, i.e. for which we can solve (λ− L)Gλ = f
more or less explicitly, and then use (0.3) to extend it to a general local function V .

In Section 6 we consider the symmetric simple exclusion process. Because of the special
self-duality property, (0.3) can be obtained easily. In fact one can compute the next order
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term. Hence for symmetric simple exclusion in one dimension we can study the fluctuations

of
∫ t

0
V (ηs)ds under Pρ when V (ρ) = V ′(ρ) = 0. The scaling turns out to be a(t, 2) and the

limit is normal with variance C[V ′′(ρ)]2 with an explicit constant C. An interesting open
problem is whether the corresponding result can be obtained for the zero-range models.

Although one expects a result analogous to (0.3) for a large class of systems, at present
it is only known for symmetric zero-range and simple exclusion processes (where one can
use duality to give a complete expansion). For the important case of the Ising model with
Kawasaki dynamics, even under strong mixing conditions, (0.3) is open and the best that is
available at at this time is a bound of the form t−d/2(log t)α for some α > 0 [LQY]. It would
also be very interesting to obtain related results for asymmetric systems. Only partial results
are available [S].

Finally, we note that our methods give full invariance principles, i.e., process limits of

XN
t = 1

a(N,d)

∫ Nt

0
V (ηs)ds. Of course XN

t by itself is not a Markov process. Using the mar-

tingale method we can obtain that the limit is Gaussian. Since

lim
N→∞

1

N log N

∫ Nt2

0

∫ Nt1

0

(1 + |s2 − s1|)−1ds1ds2 = 2 min(t1, t2) (0.4)

and

lim
N→∞

1

N3/2

∫ Nt2

0

∫ Nt1

0

(1 + |s2 − s1|)−1/2ds1ds2 =
4

3
[t

3/2
2 + t

3/2
1 − |t2 − t1|3/2], (0.5)

we see from (0.3) that the asymptotic covariance is 4C(ρ, d)[V̄ ′(ρ)]2 min(t1, t2) in d = 2 and
4
√

2
3 C(ρ, d)[V̄ ′(ρ)]2[t

3/2
2 + t

3/2
1 − |t2 − t1|3/2] in d = 1. Hence in d = 2 (and d ≥ 3 ) the limit

is Brownian motion, while in d = 1 the limit is a fractional Brownian motion with exponent
3/2. In particular, the Markov property is recovered in the limit in d ≥ 2 but not in d = 1.

1. Notation and Results.
Zero-range model. Particles are distributed on the lattice Z

d, with η(x) denoting the
number of particles at site x ∈ Z

d. Configurations will be called η and the state space

is the set N
Z

d

of such configurations. We also choose jump rates c: N → R+ such that
c(0) = 0 < c(k) for k ≥ 1. The dynamics of the process is described as follows. If there are
η(x) particles at site x then the rate at which a particle jumps from x to nearest neighbour
site y is c(η(x)). In other words, each particle at x jumps at rate 2dc(η(x))/η(x). When it
jumps it chooses at random from its 2d neighbours. This takes place independently of all
the other particles, and the new configuration ηx,y obtained from η in this way is given by
ηx,y(z) = η(z) + δ(x, y)− δ(x, z) where δ(x, y) = 1 if x = y and 0 otherwise.

The dynamics we have described is a Markov process on the state space N
Z

d

whose gener-
ator acts on functions that depend only on a finite number of coordinates as

Lf(η) =
∑

x∼y

c(η(x))[f(ηx,y)− f(η)] (1.1)

where x ∼ y denotes (ordered) nearest neighbours.
To ensure that the process is well defined and also to guarantee that the system on a box

of side length N has spectral gap of order N−2 (see [LSV]), we assume that for some B < ∞
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−B ≤ c(n + 1) − c(n) ≤ B for all n = 0, 1, . . . and that there exists δ > 0 and k0 ≥ 1 such
that c(m)− c(n) ≥ δ for all m− n ≥ k0. Note that it follows from the assumptions that for
some κ < ∞, for all n = 0, 1, . . . , κ−1n ≤ c(n) ≤ κn.

Denote by Z: R+ → R+ the partition function defined by Z(ϕ) =
∑

k≥0 ϕk/c(k)! where

c(k)! = c(1) · · · c(k). Note that from κ−1n ≤ c(n) the radius of convergence of Z is infinite.
The dynamics we have described conserves the total number of particles and the product

measure ν on N
Z

d

with marginals

ν(ηx = j) = [Z(ϕ)]−1ϕj/c(j)! (1.2)

for j ∈ N, x ∈ Z
d, for 0 ≤ ϕ < ∞ represent a full set of extremal translation invariant,

invariant measures [A]. Let ρ(ϕ) = Eν̄ϕ
[η0] be the density of particles for the measure ν̄ϕ.

ρ: [0,∞)→ [0,∞) is a smooth strictly increasing bijection. Since ρ(ϕ) has a physical meaning
as the density of particles, instead of parameterizing the above family of measures by ϕ, we
use the density ρ as parameter and we write νρ, ρ ∈ [0,∞) for the corresponding product
measures. Note ϕ is a smooth function whose derivative is bounded above and below by a
strictly positive constant on each compact set of R+ (cf. [KL]). Note that ρ = Eνρ

[η(0)] =
ϕZ ′(ϕ)/Z(ϕ) and

Eνρ
[c(ηx)] = ϕ(ρ). (1.3)

The process is reversible with respect to each νρ, i.e. the generator L is symmetric on L2(νρ).
Fix a density ρ > 0 and denote by Pρ the corresponding stationary process with marginals
νρ.

A function V : N
Z

d → R is called local if it only depends on η(x), x ∈ Λ where Λ is a finite
subset of Z

d.
We will say that a local function V , depending on ηx, |x| ≤ R, has a polynomial bound if

for some N, C1, C2 < ∞,

|V (η)| ≤ C1 + C2[
∑

|x|≤R

η(x)]N . (1.4)

In [JLQY] it is shown that (0.3) holds for bounded local functions with

C(d, ρ) = χ(ρ)(8πϕ′(ρ))−d/2. (1.5)

We will prove below it holds for any local function with polynomial bound. Note that in our
model

χ(ρ) = V arνρ
(η(0)) = ϕ(ρ)/ϕ′(ρ). (1.6)

Theorem 1.1 . Consider zero-range models satisfying the above conditions. Let V be a mean
zero local function with polynomial bound, and consider

XN
t =

1

a(N, d)

∫ Nt

0

V (ηs)ds, (1.7)

where a(t, d) is given by (0.1). Under Pρ, XN
t ⇒ Xt where Xt is

d = 1 : fractional Brownian motion, cov.
2ϕ(ρ)

3
√

π |ϕ′(ρ)|3/2
[V̄ ′(ρ)]2[t

3/2
2 + t

3/2
1 − |t2 − t1|3/2],

d = 2 : Brownian motion, covariance
ϕ(ρ)

2π|ϕ′(ρ)|2 [V̄ ′(ρ)]2 min(t1, t2),

d ≥ 3 : Brownian motion, covariance 2
〈
V (−L)−1V

〉
min(t1, t2).
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The case d ≥ 3 follows from the general central limit theorem for additive functionals of
reversible Markov processes [KV] together with the fact [SX] that in d ≥ 3 every mean zero
local function with polynomial bound has

〈
V (−L)−1V

〉
< ∞ (which also follows easily from

the decay estimate). The d = 2 case will be proved in sections 2 and 3 and the d = 1 case
will be proved in sections 2 and 4.

Symmetric simple exclusion. Particles are performing symmetric continuous time
random walks on the lattice Z

d with the exclusion rule that jumps to already occupied sites
are suppressed. If we start with at most one particle per site then it remains so for all time.

The state space is then {0, 1}Z
d

and the generator acts on local functions as

Lf(η) =
∑

x∼y

(f(ηxy)− f(η)) (1.8)

where ηxy denotes the configuration obtained from η by switching the occupation numbers
at x and y. For simplicity we have considered the nearest neighbour case with jump rate one
to each nearest neighbour site: The results will all have straightforward generalizations to
any symmetric finite range jump law. The invariant measures of the process are the product
measures νρ with νρ(ηx = 1) = ρ, ρ ∈ [0, 1]. These are also reversible. Let Pρ denote the
stationary process with initial distribution νρ.

Theorem 1.2 . Consider the symmetric simple exclusion process described above. i. Let V
be a mean zero local function, and consider

XN
t =

1

a(N, d)

∫ Nt

0

V (ηs)ds (1.9)

where a(t, d) is given by (0.1). Under Pρ, XN
t ⇒ Xt where Xt is

d = 1 : fractional Brownian motion, cov.
2ρ(1− ρ)

3
√

π
[V̄ ′(ρ)]2[t

3/2
2 + t

3/2
1 − |t2 − t1|3/2],

d = 2 : Brownian motion, covariance
ρ(1− ρ)

2π
[V̄ ′(ρ)]2 min(t1, t2),

d ≥ 3 : Brownian motion, covariance 2
〈
V (−L)−1V

〉
min(t1, t2).

ii. In d = 1, let V be a local function with V̄ (ρ) = V̄ ′(ρ) = 0. Let

XN
t =

1√
N log N

∫ Nt

0

V (ηs)ds. (1.10)

Under Pρ, XN
t ⇒ Brownian motion, covariance ρ2(1−ρ)2

8π |V̄ ′′(ρ)|2 min(t1, t2).

Part i was proved in [K] for V (η) = η0 − ρ (note that our process has been sped up by
a factor 2d relative to his). The case d ≥ 3 follows from [KV] and [SX] as before. d ≤ 2 is
proved in an analogous way to Theorem 1.1, using the analogous decay estimate (0.3) which
can be obtained easily for symmetric simple exclusion using duality. Part ii is proved in
Section 6 by using duality to obtain the next term in the decay estimate.
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2. L2 decay to equilibrium.
The main tool used to prove Theorem 1.1 is the following result adapted from [JLQY]. Let

Pt denote the semigroup etL.

Theorem 2.1 . Let V be a local function with polynomial bound (1.4) and Eνρ
[V ] = 0. Then

there exists γ > 0 and R < 0 and depending only on d and C1, C2, N appearing in (1.4) such
that ∣∣∣td/2Eνρ

[(PtV )2]− C(ρ, d)[V̄ ′(ρ)]2
∣∣∣ ≤ Rt−γ (2.1)

holds with C(ρ, d) given by (1.5).

Proof. As stated in [JLQY], (0.3) holds only for bounded V . Keeping careful track through
that proof of the dependence of the o(t−d/2) term on ‖V ‖∞ we obtain the following statement:
There exists an ε > 0 and a constant K(d, ρ) < ∞ such that for any local function V , for all
t ≥ 1,

|td/2Eνρ
[(PtV )2]− C(d, ρ)

[
V̄ ′(ρ)

]2 | ≤ K(d, ρ)
[
‖V ‖2∞

]
t−ε. (2.2)

For V satisfying (1.4) we write V = Wt +Xt where Wt = V ∧tε/4 and Xt = (V −V ∧tε/4). By
the contractivity in L2 of Pt, and |Xt| ≤ f1f>tε/4 where f = C1 +C2[

∑
|x|≤R η(x)]N , and by

the Schwarz inequality, we have Eνρ
[(PtXt)

2] ≤ ‖f‖1/2
L4 [P (f ≥ tε/4)]1/2 which is exponentially

small in t. Also |W̄ ′
t(ρ) − V̄ ′(ρ)| ≤ Eνρ

[f1f>tε/4

∑
x(ηx − ρ)] ≤ ct−a for some c < ∞ and

a > 0 depending only on C1, C2 and N . Applying (2.2) to Wt the result follows. �

The proof of the following lemma can be found in [SV].

Lemma 2.2 . (Garsia, Rodemich, Rumsey) Let p and Ψ be continuous, strictly in-
creasing functions on [0,∞) such that p(0) = Ψ(0) = 0 and limt→∞ Ψ(t) = ∞. Given T > 0
and Xt ∈ C([0, T ], R), then for 0 ≤ τ ≤ T − δ,

|Xτ+δ −Xτ | ≤ 8

∫ δ

0

Ψ−1

(
4

u2

∫ T

0

∫ T

0

Ψ

( |Xt −Xs|
p(|t− s|)

)
dsdt

)
dp(u).

Corollary 2.3 . Let PN be probability measures on C([0, T ], R) satisfying

EPN
[(Xt −Xs)

2] = C(N)|t− s|1+γ (2.3)

for t, s ∈ [0, T ] with C(N) ≤ C < ∞ and independent of t and s, and γ > 0. Then PN are
tight. If C(N) → 0 as N → ∞, then PN converge weakly to the trivial process concentrated
on Xt ≡ 0.

Proof. We apply the lemma of Garsia, Rodemich, and Rumsey with Ψ(x) = x2. After an
application of Schwarz’s inequality we obtain

EPN
[ sup
|t−s|≤δ

|Xt −Xs|] ≤ 16

∫ δ

0

dp(u)

u

(∫ T

0

∫ T

0

EPN

[
|Xt −Xs|2

]

p(|t− s|)2 dsdt

)1/2

.

From (2.3) if we choose p(x) = xα with 1 + γ
2

> α > 1, the right hand side is bounded by

A
√

C(N)δα−1 for some A < ∞. This proves that PN are tight. If C(N) → 0 it is clear that
Xt ≡ 0 is the only possible limit. �
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Corollary 2.4 . Let d ≤ 2. Let V be a local function satisfying (1.4) with

V̄ ′(ρ) = V̄ (ρ) = 0.

Let PN be the distribution of XN
t = 1

a(N,d)

∫ Nt

0
V (ηs)ds, t ∈ [0, T ] under Pρ. Then PN

converge weakly to the trivial process concentrated on Xt ≡ 0..

Proof. By Fubini’s theorem,

E

[(∫ t

0

V (ηs)ds

)2
]

= 2

∫ t

0

∫ s2

0

Eνρ
[V Ps2−s1

V ]ds1ds2.

By the reversibility of the process this is equal to

2

∫ t

0

∫ s2

0

Eνρ
[(P s2−s1

2

V )2]ds1ds2.

By the decay estimate this becomes, in d = 1 or 2,

a2(d, t)C1

[
V̄ ′(ρ)

]2
χ(ρ)(8πϕ′(ρ))−d/2 + C2t

2− d
2
−γ ,

for C1, C2 < ∞ depending only on ρ and d. Since V̄ ′(ρ) = 0 the result follows from the
previous corollary. �

In the sections 4 and 5 we will prove the following result.

Lemma 2.5 . Let

XN
t =

1

a(N, d)

∫ Nt

0

(c(ηs)− ϕ(ρ))ds. (2.4)

Let PN be the distribution of XN
t under Pρ. Then PN are tight and has unique weak limit: In

d = 1 fractional Brownian motion of parameter 3/2 with covariance
2ϕ(ρ)

√
ϕ′(ρ)

3
√

π
[t

3/2
2 + t

3/2
1 −

|t2 − t1|3/2]; In d = 2, Brownian motion with covariance ϕ(ρ)
2π min(t1, t2).

Proof of theorem 1.1. We can write

∫ t

0

V (ηs)ds =

∫ t

0

(
V (ηs)−

V̄ ′(ρ)

ϕ′(ρ)
[c(ηs(0))− ϕ(ρ)]

)
ds +

V̄ ′(ρ)

ϕ′(ρ)

∫ t

0

[c(ηs(0))− ϕ(ρ)]ds.

By Corollary 2.3 the first term, suitably rescaled, is tight and converges to the trivial process
Xt ≡ 0. By the previous lemma, the second term is tight and converges to the limit in
theorem 1.1. �

3. Some coefficients from potential theory.
We now compute some explicit constants which play a role in the limiting variance. Let

pt(x, y) be the solution of

∂p

∂t
= ∆p, p0(x, y) = δ(x− y),
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where ∆fx =
∑

y∼x fy − fx is the lattice Laplacian and δ(x) takes the value 1 at x ∈ Z
d and

0 otherwise. Note that pt(x, y) = e−2dt
∑∞

n=0
(2dt)n

n! pn(x, y) where pn(x, y) are the transition

probabilities of a symmetric simple random walk on Z
d. We have, as t →∞,

pt(0, 0) ∼ (4π(1 + t))−d/2. (3.1)

For each λ > 0, let

gλ(x) =

∫ ∞

0

e−λtpt(0, x)dt,

x ∈ Z
d, so that

(λ−∆)gλ = δ(0). (3.2)

Lemma 3.1 . i. In d = 2, limλ→0
1

− log λ

∑
x∼y(gλ(y)− gλ(x))2 = 1/2π,

ii. In d ≤ 2, ‖gλ‖2`2(Zd) = 1
2

∫∞
0

te−λtpt(0, 0)dt ∼ λ
d
2
−2.

Proof. ii follows from (3.1). Multiplying (3.2) by gλ and summing gives λ
∑

x[gλ(x)]2 +
1
2

∑
x∼y(gλ(y)−gλ(x))2 = gλ(0). By ii, limλ→0

1
− log λ

∑
x∼y(gλ(y)−gλ(x))2 = 2 limλ→0

1
− log λgλ(0).

Now use (3.1) again. �

Let

vt(x) =

∫ t

0

ps(0, x)ds

so that
∂v

∂t
= ∆v + δ(0), v0(x) = 0. (3.3)

Lemma 3.2 . In d = 1, i. limt→∞ t−3/2
∑

x[vt(x)]2 = 4
3
√

π
(
√

2− 1),

ii. limt→∞ t−3/2
∫ t

0

∑
x∼y[vs(y)− vs(x)]2ds = 4

3
√

π
(2−

√
2).

Proof. i.
∑

x[vt(x)]2 =
∑

x

∫ t

0

∫ t

0
ps1

(0, x)ps2
(0, x)ds1ds2 = 2

∫ t

0

∫ s2

0
ps1+s2

(0, 0)ds1ds2.

Using (3.1) we obtain i. To obtain ii, multiply (3.3) by v and integrate to obtain
∫ t

0

∑
x∼y [vs(y)−

vs(x)]2ds = 2
∫ t

0
vs(0)ds−

∑
x[vt(x)]2 and use (3.1) again. �

4. Martingale method (d=2).
In this section we prove Lemma 2.5 in dimension d = 2 using the martingale method. Let

Gλ(η) =
∑

x∈Zd

gλ(x)(η(x)− ρ), Ĝλ(η) =
∑

x∈Zd

gλ(x)(c(η(x))− ϕ(ρ)).

A summation by parts yields

LGλ(η) = c(η(0))− ϕ(ρ)− λĜλ(η).

Hence we can write

1√
N log N

∫ Nt

0

(c(ηs(0))− ϕ(ρ))ds = MN
t + RN

t
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where

MN
t =

1√
N log N

[G1/N (ηNt)−G1/N (η0)−
∫ Nt

0

LG1/N (ηs)ds] (4.1)

is a martingale and

RN
t =

1√
N log N

[−G1/N (ηNt) + G1/N (η0) +
1

N

∫ Nt

0

Ĝ1/N (ηs)ds]. (4.2)

We compute ‖Gλ‖2L2(νρ) = V arνρ
(η(0))‖gλ‖2`2(Zd) and ‖Ĝλ‖2L2(νρ) = V arνρ

(c(η(0)))‖gλ‖2`2(Zd).

From lemma 3.1 it follows that EPρ

[(
RN

t

)2] ≤ Ct/ log N . Hence, once we show RN
t is tight,

it will converge to the trivial process Xt ≡ 0. This is done at the end of this section in Lemma
4.2.

For MN
t we use the central limit theorem for martingales [R] in the following form.

Lemma 4.1 . If MN
t are martingales satisfying i.

〈
MN

〉
(t) → σ2t in probability, t ∈ [0, T ];

ii. σε(M
N )(t) =

∑
0≤τi≤t |∆MN (τi)|21(|∆MN(τi)| ≥ ε) → 0 in probability, for each ε > 0.

Then MN
t conveges to a Brownian motion with variance σ2. Here 〈M〉 (t) is the variance

process of a martingale M(t), defined by M 2(t)−〈M〉 (t) is a martingale, and τi are the jump
times, and ∆M(τi) the jumps of the process.

Note that if Mt = G(t, ηt) − G(0, η0) −
∫ t

0
{∂u + L}G(u, ηu)du then E[(Mt −Ms)

2|Fs] =

E[
∫ t

s

∑
x∼y c(ηx)(∇xyG)2du|Fs] where∇xyG(η) = G(ηxy)−G(η). In our situation,∇xyGλ(η) =

gλ(y)− gλ(x). Hence we can compute by Lemma 3.1.i.,

〈
MN

〉
(t) =

ϕ(ρ)t

log N

∑

x∼y

(g1/N(y)− g1/N (x))2 → ϕ(ρ)t

2π
,

which gives i of Lemma 4.1. To check ii, note that

σε(M
N )(t) =

1

log N

∑

x∼y

N−1PN
xy(t)(g1/N(y)− g1/N(x))21(g1/N (y)− g1/N (x) ≥

√
N log Nε)

where P N
xy are independent Poisson processes running at rate Nη(x)(1−η(y). This converges

to 0 as N →∞ by the law of large numbers and another application of Lemma 3.1.i.
The following lemma completes the proof of Theorem 1 in d = 2.

Lemma 4.2 . The family of processes RN
t defined in (4.2) is tight.

Proof. Note first that 1√
N log N

[G1/N (ηNt)− G1/N (η0)] = JN
t + KN

t where KN
t is a mar-

tingale and JN
t = 1√

N log N

∫ Nt

0
LG1/N (ηs)ds. The proof that KN

t is tight is the same as that

for the MN
t so we omit it. From the Feynman-Kac formula and the variational formula for

the principal eigenvalue of L + V ,

1

2t
log E

[
exp

{
α

∫ t

0

LG1/N (ηs)ds
}]

≤ sup
Eν [f ]=1, f≥0

{
αEν [LG1/N (η)f(η)] + Eν [

√
fL
√

f ]
}
.
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Now Eν [LG1/Nf ] = 1
2

∑
x∼y Eν [c(η(x))(f(ηxy) − f(η))(g1/N(y) − g1/N(x))] and Eν [fLf ] =

1
2

∑
x∼y Eν [c(η(x))(f(ηxy)−f(η))2]. By Schwarz’s inequality and f(ηxy)−f(η) = (

√
f(ηxy)+√

f(η))(
√

f(ηxy)−
√

f(η)) the supremum is bounded by Cα2
∑

x∼y(g1/N(y)− g1/N (x))2. By
stationarity and Lemma 3.1 we obtain,

E
[
exp

{
α(JN

t − JN
s )
}]

≤ exp{C(N)α2|t− s|}. (4.3)

In fact C(N) = O(N−1), but for compactness we only need that C is bounded. Applying
Lemma 2.2 with Ψ(x) = ex − 1 and p(x) =

√
x after some computation one obtains from

(4.3) that for some C(T ) < ∞,

E[ sup
0≤s<t≤T
|t−s|≤δ

|JN
t − JN

s |] ≤ C
√

δ(1 + log δ),

which gives the compactness of JN
t .

Now we can write RN
t = AN

t + BN
t + CN

t where AN
t = − 1

ϕ′N2 log N

∫ Nt

0
[G1/N (ηNt) −

G1/N (ηs)]ds, BN
t = + 1

N2 log N

∫ Nt

0
[Ĝ1/N (ηs) − 1

ϕ′G1/N (ηs)]ds and CN
t = 1√

N log N
[(t/ϕ′ −

1)G1/N (ηNt) + G1/N (η0)]. AN
t and CN

t are tight by the previous argument. BN
t is tight by

Corollaries 2.3 and 2.4. �

5. Martingale method (d=1).
In this section we prove Lemma 2.5 for zero-range models on the one dimensional interger

lattice. Using the decay estimate Theorem 2.1, and a variance computation (such as in the

proof of Corollary 2.4), we can see that (2.3) is satisfied for XN
t = 1

a(N,1)

∫ Nt

0
(c(ηs)− ϕ(ρ)ds

for some C(N) = C < ∞. Hence XN
t are tight. Furthermore the asymptotic covariance

can be computed by (0.5). Therefore it only remains to show that the limiting process is
Gaussian.

Note that ut(x) =
∫ ϕ′(ρ)t

0
ps(0, x)ds is the solution of

∂tu = ϕ′(ρ) [∆u + δ0] , u(x, 0) ≡ 0.

Let

UT
t (η) =

∑

x

uT−t(x)(η(x)− ρ).

Then MT
t = UT

t (ηt)− UT
0 (η0)−

∫ t

0
(∂s + L)UT

s (ηs)ds is a martingale in t up to time T , and

by explicit computation of (∂s + L)UT
s we have

∫ T

0

(c(ηt(0))− ϕ(ρ))dt = MT
T + UT

0 (η0) + RT

where

RT =

∫ T

0

∑

x

qT−t(x)a(ηt(x))ds,
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where a(n) = c(n)− ϕ(ρ)− ϕ′(ρ)(n− ρ), and qt(x) = pϕ′(ρ)t(0, x). In particular,

1

N3/4

∫ NT

0

(c(ηs(0))− ϕ(ρ))ds =
1

N3/4
MNT

NT +
1

N3/4
UNT

NT (η0) +
1

N3/4
RNT .

We first show that the error term N−3/4RNT is negligible. We write the expectation of
it’s square as

1

N3/2

∫ NT

0

∫ NT

0

∑

x1,x2

qNT−s1
(x1)qNT−s2

(x2)E[a(ηs1
(x1))a(ηs2

(x2))]ds1ds2.

Since we have a stationary Markov process the expectation can be written as Eµρ
[ax1

P|s2−s1|ax2
]

where we use ax to denote the function η 7→ a(η(x)). By the Markov property, and reversibil-
ity of the process this can be rewritten as Eµρ

[(P |s2−s1|
2

ax1
)(P |s2−s1|

2

ax2
)]. By Schwarz’s

inequality, the L2 decay estimate, Theorem 2.1, and the fact that ā′ = ∂qEµq
[a]|ρ = 0, we

have, uniformly in x1 and x2, E[a(ηs1
(x1))a(ηs2

(x2))] = o(|s2 − s1|−1/2−γ) for some γ > 0.
The summations over xi of q·(xi) are each 1, and hence, performing the two time integrals,
after a simple change of variables we obtain for some α > 0.

E

[(
N−3/4RNT

)2
]

= O(N−α).

Now note that UT
0 (η0) ∈ F0 and MT

T are independent. By the central limit theorem,

N−3/4UNT
0 (η0) converges to a Gaussian process. Note that

MT
t =

∑

x∼y

∫ t

0

∇xyUT
s dPs(x, y)

where P xy
t are independent, compensated Poisson martingales jumping at rate c(ηs(x)). Since

∇xyUT
s = uT−s(y)− uT−s(x) we have

1

N3/4
MNT

NT =
1

N3/4

∑

x∼y

∫ NT

0

[uNT−s(y)− uNT−s(x)]dPs(x, y)

=
1√
N

∑

x∈Z/
√

N
e=±1

∫ T

0

vN,e
T−s(x)dQN,e

s (x).

where
vN,e

t (x) = [uNt(
√

Nx + e)− uNt(
√

Nx)],

QN,e
t (x) = N−1/4PNt(

√
Nx,

√
Nx + e).

Now
∑

x∈Z/
√

N QN,e
t (x)δx converges to a space-time white noise

√
ϕ(ρ)Ẇ (t, x) (with variance

ϕ(ρ)). We can identify vN,e
t (x) with a function on R by, say, polygonalizing between values

of Z/
√

N . Then by local central limit theorem [L], vN,e
t (x) → sgn(e)vt(x) strongly, where

vt(x) =
∫ t

0
xe−x2/4ss−3/2 ds

4
√

π
. Therefore 1

N3/4
MNT

NT converges to the Gaussian process given

by the sum of two independent copies (for e = ±1) of

√
ϕ(ρ)

∫

R

∫ T

0

vt(x)Ẇ (dt, dx).

This completes the proof of Theorem 1 in d = 1.
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6. Symmetric simple exclusion.
Symmetric simple exclusion possesses a very special self-dual property, which can be ex-

pressed in several different ways. For our purposes we use the following description. Fix
ρ ∈ (0, 1) and for each finite subset A of Z

d let

η̃A =
∏

x∈A

ηx − ρ√
χ(ρ)

where in this model
χ(ρ) = ρ(1− ρ).

The collection η̃A, A a finite subset of Z
d, is an orthonormal basis of L2(πρ). Let En denote

the span of η̃A, |A| = n. Then L2(πρ) is the direct sum of the En. The special self-dual
property of symmetric simple exclusion is that L : En → En. In particular,

Lη̃A =
∑

B∼A

(η̃B − η̃A)

where B ∼ A means that B can be obtained from A by deleting a site from A and appending
its nearest neighbour. If f ∈ L2(πρ) then we have f =

∑∞
n=0

∑
|A|=n f̃Aη̃A and Lf =∑∞

n=0

∑
|A|=n L̃nf̃Aη̃A where

L̃nf̃A =
∑

B∼A

(f̃B − f̃A).

In other words, on each En, the process can be identified with a continuous time random
walk At on the subsets of Z

d of cardinality n, where jumps to all nearest neighbour sets take

place at rate one. Let us denote the corresponding semigroup P
(n)
t f̃A = EA[f̃At

].
The duality allows one to make rather explicit computations. In particular, we can compute

the next order term in (0.3).

Theorem 6.1 . Let PtV (η) = Eη[V (ηt)] be the semigroup of symmetric simple exclusion
with generator (1.8). For any local function with Eνρ

[V ] = 0,

d = 1 : Eνρ
[(PtV )2] =χ(ρ)(8π)−1/2[V̄ ′(ρ)]2t−1/2 +

χ(ρ)2

32π
|V̄ ′′(ρ)|2t−1 + O(t−3/2)

d = 2 : Eνρ
[(PtV )2] =χ(ρ)(8π)−1[V̄ ′(ρ)]2t−1 + a2(ρ, V )t−2 + O(t−3)

d ≥ 3 : Eνρ
[(PtV )2] =χ(ρ)(8π)−d/2[V̄ ′(ρ)]2t−d/2 + ad(ρ, V )t−(d+2)/2 + O(t−d),

where

a2(ρ, V ) =
χ(ρ)2

128π2
|V̄ ′′(ρ)|2 +

1

128π
|V̄ ′(ρ)|2 − 1

16π
[

2∑

j=1

∑

x

|xj|2Ṽx + (
∑

x

xj Ṽx)2]

ad(ρ, V ) = − 1

(8π)d/2
[
1

2

d∑

j=1

∑

x

|xj |2Ṽx +
1

2
(
∑

x

xj Ṽx)2 + 2−5(d2 − 3d)|V̄ ′(ρ)|2], d ≥ 3

Remark. The next term in the expansion seems to have no meaning except in d = 1.
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Proof. From the Parseval relation and the duality described above

Eνρ
[(PtV )2] =

∞∑

n=1

∑

|A|=n

[P
(n)
t ṼA]2.

Since P
(n)
t corresponds to random walk on an orthant of (Zd)n where no two of the n co-

ordinates in Z
d coincide, with reflecting boundary conditions, it is not hard to see we have

expansions
∑
|A|=n[P

(n)
t ṼA]2 = t−nd/2(cn

1 + cn
2 t−1 + cn

3 t−2 + · · · ). The coefficients cn
j are not

easy to compute except for n = 1 or j = 1. On the other hand, for the theorem we only need
c1
1, c

2
1 in d = 1, c1

1, c
1
2, c

2
1 in d = 2, and c1

1, c
1
2 in d ≥ 3.

The n = 1 case is straightforward since P
(1)
t corresponds to a random walk on Z

d.

Let’s call fx = Ṽx and let f̂(ξ) =
∑

x∈Zd fxeiξ·x. Parseval’s identity reads
∑

x |fx|2 =

(2π)−d
∫
[−π,π)d |f̂(ξ)|2dξ. If ∆fx =

∑
y∼x(fy − fx) then ∆̂f(ξ) = −q(ξ)f̂(ξ) where q(ξ) =

−
∑

y∼0(e
iξ·y − 1). Hence

∑
x |et∆fx|2 = (2π)−d

∫
[−π,π)d e−2tq(ξ)|f̂(ξ)|2dξ. Let q̃(z) = q(z)−

|z|2. After change of variables we have

td/2
∑

x

|et∆fx|2 = (2π)−d

∫

[−
√

tπ,
√

tπ)d

e−2|z|2e−2tq̃(z/
√

t)|f̂(
z√
t
)|2dz.

Expand |f̂( z√
t
)|2 = |f̂(0)|2+t−1/2D1|f̂ |2(0) ·z+t−1D2|f̂ |2(0)z ·z+D3|f̂ |2(0)z⊗z⊗z+O(t−2)

and e
−2tq̃( z√

t
)
= 1− t−1

(
1
2

∑
i6=j z2

i z2
j − 1

12

∑
i z4

i

)
+ O(t−2). We have

td/2
∑

x

|et∆fx|2 = (8π)−d/2|f̂ |2(0) + t−1(8π)−d/2[
1

4
∆|f̂ |2(0)− 2−5(d2 − 3d)|f̂ |2(0)] + O(t−2).

Here ∆ is the continuum Laplace operator. Now note that

V̄ ′(ρ) =
∑

x

Eνρ

[
V (η)

( ηx − ρ

ρ(1− ρ)

)]
= χ(ρ)−1/2

∑

x

Ṽx.

Since
∑

x Vx = f̂(0) this gives

c1
1 =

χ(ρ)

(8π)d/2
|V̄ ′(ρ)|2.

Now ∆|f̂ |2(0) = −2[
∑d

j=1

∑
x |xj |2fx + (

∑
x xjfx)2]. This gives

c1
2 = − 1

(8π)d/2
[
1

2

d∑

j=1

∑

x

|xj |2Ṽx +
1

2
(
∑

x

xj Ṽx)2 + 2−5(d2 − 3d)|V̄ ′(ρ)|2].

The case n = 2 can be mapped 1 → 2 to a random walk xt on {x1, x2 ∈ Z
d : x1 6= x2}.

Since xN2t/N converges to Brownian motion on R
2d with generator the continuum Laplacian

∆, it is not hard to check using the local limit theorem that

td
∑

|A|=2

|P (2)
t ṼA|2 =

1

(8π)d
|
∑

|A|=2

ṼA|2 + O(t−1).
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Now
V̄ ′′(ρ) = 2χ(ρ)−1

∑

|A|=2

ṼA.

This gives

c2
1 =

χ(ρ)2

4(8π)d
|V̄ ′′(ρ)|2.

�

Proof of Theorem 1.2. The proof follows closely the proof for zero-range in sections 2,3
and 4, so we only give a sketch. As in Corollary 2.4, the decay estimate allows us to reduce
the problem to solving for some particular choice of V . In d = 1, 2 for V̄ (ρ) = 0, that choice
can be V (η) = η(0)− ρ, and the central limit theorem is proved in [K]. The only remaining

case is d = 1, V̄ (ρ) = V̄ ′(ρ) = 0. We choose as our candidate V (η) = η̃{0,1}. Let Ẽ2 denote

the subsets of Z of cardinality 2. For A, B in Ẽ2, let p̃2
t (A, B) be the solution of

∂p̃2

∂t
= L̃2p̃, p̃2

0(A, B) = δ(A, B),

where δ(A, B) = 1 if A = B and 0 otherwise. Then g̃2
λ(A) =

∫∞
0

e−λtp̃2
t ({0, 1}, A)dt is the

solution of
(λ− L̃2)g̃

2
λ(A) = δ(A, {0, 1}).

Define
Gλ(η) =

∑

|A|=2

g̃2
λ(A)η̃A.

Then
(λ− L)Gλ = η̃{0,1}.

Hence
1√

N log N

∫ Nt

0

η̃{0,1}ds = MN
t + RN

t

where MN
t and RN

t are as in (4.1) and (4.2). We have ‖Gλ‖2L2(νρ) = V arνρ
(η(0))‖g̃2

λ‖2`2(Zd)

and ‖Ĝλ‖2L2(νρ) = V arνρ
(η(0))‖g̃2

λ‖2`2(Zd) and the same estimate as before, ‖g̃2
λ‖2`2(Ẽ2)

∼ λ−1,

gives EPρ
[(RN

t )2] ≤ C/ log N and then Corollary 2.3 implies that RN
t converges to the trivial

process Xt ≡ 0. As in section 4, Lemma 4.1 implies that MN
t converge to Brownian motion.

The explicit covariance is obtained from Theorem 6.1. �
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