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Abstract

In Balabdaoui, Rufibach, and Wellner (Annals of Statistics, 37, pages 1299-1331,
2009), pointwise asymptotic theory was developed for the nonparametric maxi-
mum likelihood estimator of a log-concave density. Here, the practical aspects
of their results are explored. Namely, the theory is used to develop pointwise
confidence intervals for the true log-concave density. To do this, the quantiles of
the limiting process are estimated and various ways of estimating the nuisance
parameter appearing in the limit are studied. The finite sample size behaviour of
these estimated confidence intervals is then studied via a simulation study of the
empirical coverage probabilities.
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1. Introduction

The nonparametric maximum likelihood estimator (MLE) of a log-concave
density has received much attention in the statistics literature of late. It has
been studied, for example, in Walther (2002); Dümbgen and Rufibach (2009);
Dümbgen and Rufibach (2011); Chang and Walther (2007); Chen and Samworth
(2013); Cule et al. (2010); Cule and Samworth (2010). For an overview, we rec-
ommend the review article of Walther (2009). The appeal of this estimator is
that, unlike a kernel-density approach, it does not require a choice of bandwidth.
Indeed, the log-concave MLE is not only fully automatic, but also automatically
locally adaptive. Furthermore, the simulations in Chen and Samworth (2013, page
12-13) show that the log-concave MLE outperforms the kernel-density estimator
for larger sample sizes, when the true density is log-concave. For smaller sample
sizes, an (automatic) smoothed version of the MLE continues to have improved
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performance over the kernel-density estimator. (Chen and Samworth (2013) con-
sider the density on Rd with d = 2, 3.)

Here, we focus on the MLE of a log-concave density on R. That is, let f0

denote a log-concave density on R and suppose that we observe X1, . . . , Xn in-
dependent and identically distributed samples from f0. Let F denote the class of
log-concave densities on R. Then the nonparametric MLE of a log-concave den-
sity on R is defined as

f̂n = argmax f∈F

n∑
i=1

log f (Xi).

Dümbgen and Rufibach (2009) show that this estimator exists and is unique, and
also study its consistency. Additional results on consistency can also be found
in Pal et al. (2007); Cule and Samworth (2010). The estimator may be calcu-
lated using the active set algorithm, and this has been implemented in the R pack-
age logcondens (Dümbgen and Rufibach, 2006; Dümbgen and Rufibach, 2011).
Pointwise asymptotic theory for f̂n was developed in Balabdaoui et al. (2009).

Suppose that the true density f0 is log-concave with f0(x0) > 0 and ϕ0 = log f0

is twice continuously differentiable in a neighbourhood of x0 with ϕ′′0 (x0) , 0.
One of the main results of Balabdaoui et al. (2009) is that

n2/5
(

f̂n(x0) − f0(x0)
)
⇒

 f 3
0 (x0)|ϕ(2)

0 (x0)|
4!

1/5

C(0), (1)

where the distribution of C(0) is known (here, we describe it in Section 2). For a
fixed f0, define

c2(x) =

 f 3
0 (x)|ϕ(2)

0 (x)|
4!

1/5

. (2)

If c2(x) is known, and qα denotes the quantile such that P(C(0) ≤ qα) = α, then
the result in (1) implies that(

f̂n(x0) −
c2(x0)
n2/5 q1−α/2, f̂n(x0) −

c2(x0)
n2/5 qα/2

)
(3)

forms an asymptotically correct 100(1 − α)% confidence interval for f0(x0). The
main goal of this paper is to provide estimators for the quantiles qα and c2(x0) so
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that the confidence intervals (3) may be implemented in practice, and to assess the
quality of this procedure.

In Section 2 we describe the process C(0) and provide its quantile estimates
based on simulations (the simulations are detailed in Appendix A). In Section 3
we consider estimation of the constant c2, and in Section 4 we use simulations
to understand the empirical performance of the estimated confidence intervals (3).
The methods presented here have been implemented in the R package logcondens
(Dümbgen and Rufibach, 2006).

2. Quantiles of the limiting process

Let B(t), t ∈ R denote a two-sided Brownian motion. That is, B(t) = B1(t), t ≥
0 and B(t) = B2(−t), t ≤ 0, where B1,B2 are two independent Brownian motions
with B1(0) = B2(0) = 0. Let

Y(t) =


∫ t

0
B(s)ds − t4, t ≥ 0∫ 0

t
B(s)ds − t4, t < 0,

and let H be the almost surely unique process such that

1. H(t) ≤ Y(t) for all t ∈ R,
2. H′′(t) is concave,
3. H(t) = Y(t) if the slope of H′′(t) is strictly decreasing at t.

The process H thus defined exists and is unique (Balabdaoui et al., 2009, Theorem
2.1). Let C(t) = H′′(t) for all t ∈ R, then the quantity of interest, C(0), is simply
C(t) evaluated at t = 0.

The process H, or rather its close relative, was first shown to exist in Groene-
boom et al. (2001a), and we refer to Appendix A for further details. Using their
approach, one could show that C(t) = limm→∞Cm(t), where Cm is defined as:

Cm = argminϕ∈Cm

{∫ m

−m
ϕ2(t)dt − 2

∫ m

−m
ϕ(t)d

(
B(t) − 4t3

)}
,

where Cm denotes the class of concave functions with the restriction that ϕ(−m) =

ϕ(m) = −12m2. Thus, we can think of C(t) as the concave regression on the
function −12t2 plus white noise.

Our interest here is limited to the value of C(t) at t = 0, and below we present
some observed properties based on n = 100 000 independent samples. Details on
the algorithm used to generate these samples is given in Appendix A. Figure 1
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Figure 1: Estimates of fC(0): log-concave MLE (dashed red line) and kernel density estimator
(solid red line) from a sample size of n = 100 000. The dashed black line is the Gaussian density
with mean zero and variance equal to that of the data, and has been added for reference. The verti-
cal lines denote the observed mean (dashed line) and median (solid line) of the data. The observed
range of the data was (−4.55, 6.49), while 99% of the data fell into the interval (−3.09, 3.69), the
latter are marked on the plot in red.

shows the estimate of the density of C(0). Visually, two things are immediately
striking: first, the density appears to be asymmetric (right-skewed), and second,
the density appears to be log-concave. We address these two questions in Sec-
tions 2.1 and 2.2.

Table 1: Moment estimates for C(0)

estimate error

mean 0.0036 (0.0042)
median -0.0557 (0.0029)
variance 1.7395 (0.0078)
E[C2(0)] 1.7395 (0.0079)
E[C3(0)] 0.599 (0.0294)
E[C4(0)] 9.3086 (0.1053)
E[C5(0)] 9.9032 (0.4689)
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Moment (plus median) estimates of C(0) are given in Table 1 while quantile
estimates are given in Table 2. Table 2 gives four different quantile estimates
based on

(A). the empirical distribution function,
(B). the kernel density estimate,
(C). the log-concave MLE,
(D). the normal approximation.

The last column of the table gives standard errors of the values in column (A),
(see Shorack and Wellner, 1986, Example 1, page 639). The Gaussian approxi-
mation is given for reference only. Our simulations indicate that E[C(0)] = 0, as
expected.

Table 2: Estimated values of F−1
C(0)(p)

p (A) (B) (C) (D) error

0.001 -3.6442 -3.6569 -3.6349 -4.0722 (0.0017)
0.005 -3.0905 -3.1108 -3.0878 -3.3937 (0.0019)
0.010 -2.8172 -2.8358 -2.8178 -3.0647 (0.0020)
0.025 -2.4157 -2.4327 -2.4157 -2.5815 (0.0021)
0.050 -2.0574 -2.0737 -2.0617 -2.1659 (0.0023)
0.100 -1.6440 -1.6537 -1.6457 -1.6867 (0.0024)
0.200 -1.1184 -1.1236 -1.1186 -1.1065 (0.0026)
0.500 -0.0557 -0.0565 -0.0575 0.0036 (0.0029)
0.800 1.0948 1.0986 1.0916 1.1136 (0.0029)
0.900 1.7421 1.7467 1.7387 1.6938 (0.0027)
0.950 2.2653 2.2767 2.2657 2.1730 (0.0026)
0.975 2.7536 2.7618 2.7498 2.5886 (0.0025)
0.990 3.3193 3.3328 3.3188 3.0718 (0.0024)
0.995 3.6881 3.7059 3.6959 3.4009 (0.0022)
0.999 4.5140 4.5270 4.4939 4.0793 (0.0020)

2.1. Is the density of C(0) log-concave?
Let ĝn denote the nonparametric MLE of a decreasing density on R+, that is,

the Grenander estimator. If the true decreasing density, g0, satisfies g0(x0) > 0
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Figure 2: Estimates of log( fC(0))(x) + 0.5 c0 x2: log-concave MLE (dashed) and kernel density
estimator (solid) from a sample size of n = 100 000 with c0 = 0.25. The vertical line denotes the
mean of the data. The observed range of the data was (−4.55, 6.49), while 99% of the data fell into
the interval (−3.09, 3.69), the latter are marked on the plot as dashed vertical lines.

and g′(x0) < 0, then it was established in Prakasa Rao (1969) (see also Groene-
boom (1985)) that

n1/3 (̂
gn(x0) − g0(x0)

)
⇒ 2

(
g0(x0)|g′0(x0)|

2

)1/3

Z,

where the density of Z is known as Chernoff’s distribution. Moreover, one can
show that Z = argmax{B(t) − t2}. Chernoff’s distribution arises as the limit in
many monotone problems, including estimation of the mode (Chernoff, 1964;
Balabdaoui and Wellner, 2012), and the form of the density of Z was determined
in Groeneboom (1989). Computation of fZ was considered in Groeneboom and
Wellner (2001), where exact quantiles were also calculated. More recently, Balab-
daoui and Wellner (2012) established that Chernoff’s density is log-concave, and
conjecture that it is also strongly log-concave. A density f is strongly log-concave
if it satisfies (− log f )′′(x) ≥ δ > 0 for all x in the support of f . Equivalently, f is
strongly log-concave if (log f )(x) + c0 x2/2 is concave for some c0 > 0.

Figure 1 shows kernel density and log-concave MLE estimates of the density
of C(0), and the two appear quite close. The Gaussian density with mean and
variance equal to that of the data has also been added for reference in the plot. To
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test if the density of C(0) is log-concave we preformed the “trace test” developed
in Chen and Samworth (2013). The test attained a p-value of 1.00 (to minimize
computational time we chose B = 100). Furthermore, in Figure 2 we show plots
of log f̂n + x2/8 (i.e. c0 = 0.25) where f̂n is either the kernel density estimate or the
log-concave MLE. The result appears to be concave, except in the far tails, and
therefore it seems plausible that the density fC(0) is also strongly log-concave.

2.2. Is the density of C(0) symmetric about zero?
It is well-known that Chernoff’s density is symmetric, see e.g. Groeneboom

and Wellner (2001, page 395). One might think, at first, that C(0) is also symmet-
ric about zero, and indeed this was stated in Balabdaoui et al. (2009, page 1307)
and was also conjectured by the authors of this work. However, the assumption of
symmetry appears to be quite clearly violated by the fitted densities, see Figure 1.
A comparison of the mean and median in Table 1 (along with their standard er-
rors) appears to affirm this statement. The following result shows that a different
version of symmetry does hold for both H(t) and C(t).

Proposition 2.1. The processes H(t) and C(t) are symmetric about zero in the
sense that H(t) d

= H(−t), H′(t) d
= −H(−t), and C(t) d

= C(−t). It follows that the
density of H′(0) is symmetric about zero.

To study the problem further, we consider the (simpler) regression:

G1 = argming

 5∑
k=−5

(
g(k) − (k2 + εk)

)2
; g convex


G2 = argming

 5∑
k=−5

(
g(k) − (−k2 + εk)

)2
; g concave

 ,
where εk, k = −5, . . . , 5 are IID standard normal. Using the function conreg

in the package cobs, we simulate n = 100 000 samples of G1(0) and G2(0), and
the resulting densities are shown in Figure 4. (Note that our sample size is de-
fined as follows: in each sample we observe the entire function ε−5, . . . , ε5 exactly
once.) The observed moments of both densities were µ̂G1(0) = −0.0013, µ̂G2(0) =

−0.0021, σ̂G1(0) = 0.839, σ̂G2(0) = 0.838. The median of G1(0) (resp. G2(0))
was 0.0445 (resp. -0.0472). The confidence interval for µG1(0) (resp. µG2(0)) is
(−0.007, 0.004) (resp. (−0.007, 0.003)).

The plots and estimates above indicate that G1(0) is slightly left-skewed, while
G2(0) is slightly right-skewed. In Figure 3, 25 samples from G1 are shown, along
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Figure 3: 25 samples of G1 (blue), the function k2 is shown in black along with samples of the
errors (light gray).

with the underlying function k2 +εk. Since G1 must be convex, the values at G1(0)
sometimes get “pulled down” to accommodate the overall fit. The reverse occurs
for G2, which must be concave.

3. Estimating the constant c2(x0)

To estimate the constant c2, we need to estimate the second derivative of ϕ0 =

log f0. An estimator of ϕ0 is provided directly by the MLE: ϕ̂n = log f̂n. However,
this is piecewise linear and therefore the second derivative is equal either to zero
or to −∞. Therefore, an alternative approach is required. Here, we consider three
main methods. The first two are based on the fact that

ϕ′′0 (x) =
f0(x) f ′′0 (x) −

(
f ′0(x)

)2

f 2
0 (x)

,

which allows us to write

c2(x) =

(
f0(x)|ψ2(x)|

4!

)1/5

, (4)
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Figure 4: Kernel density estimates of the densities of G1(0) (convex, blue) and G2(0) (concave,
red) shown in the top plot and on the log-densities are shown in the bottom plot. The dashed lines
correspond to the log-concave MLE estimates. 99% of the convex (resp. concave) data fell into
the region (−2.30, 1.90) (resp. (−1.92, 2.28)) which is marked in blue (resp. red) in the plot.
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where ψ2(x) = f0(x) f ′′0 (x) −
(

f ′0(x)
)2
.

The three methods which we consider are:
1. Smoothed MLE approach: The smoothed log-concave MLE was introduced in

Dümbgen and Rufibach (2009) and is defined as

f̃n(x) =

∫
φγ̂n(x − y) f̂n(y)dy, (5)

where φγ denotes the normal density with mean zero and standard deviation
γ. The value γ̂n is defined by γ̂2

n = σ̂2
n − var f̂n

(X), where σ̂2
n is the observed

variance of the data and var f̂n
(X) is the variance of the random variable X with

density f̂n. It is known that γ̂2
n > 0 and with this choice var f̃n(X) = σ̂2

n. It was
shown in Chen and Samworth (2013) that f̃n is also a consistent estimator of f0.
An exact calculation of f̃n is provided in the R package logcondens (Dümbgen
and Rufibach, 2006; Dümbgen and Rufibach, 2011). Unlike the MLE, the
smoothed estimator is directly differentiable, and our first approach is to use
plug in estimates f̃n, f̃ ′n and f̃ ′′n in estimating c2(x). We denote this estimator as
ĉsmle

n,2 (x).
2. Kernel-density estimation: Here, we use kernel density estimators of the zero,

first, and second derivatives, f n, f
′

n and f
′′

n and plug these in directly into c2(x)
to obtain the estimate. Various methods exist to obtain the bandwidth, and we
refer the reader to Härdle (1991, Chapter 4) or Härdle et al. (2004, Section
3.3). In our implementation, we used the R package ks (Duong, 2012, 2007).

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

−2 −1 0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 5: Two examples of c2 estimation. The estimator ĉnrd
n,2 is shown in blue and the estimator

ĉkde
n,2 with bandwidth selected using hns is shown in red. The sample sized are n = 1000 (solid

lines) and n = 10000 (dashed lines). The true density is standard normal on the left and standard
Gumbel on the right. The true c2 is shown in black.
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We denote this estimator as ĉkde
n,2 (x). With this package, the available bandwidth

selection methods are
(i) hscv: bandwidth selected using smoothed cross-validation as intro-

duced in Jones et al. (1991),
(ii) hlscv: bandwidth selected using least squares cross-validation (Bow-

man, 1984; Rudemo, 1982),
(iii) hpi: the plug-in bandwidth selector of Wand and Jones (1994),
(iv) hns: asymptotically optimal bandwidth assuming a normal density (Härdle

et al., 2004, page 52).
3. Normal reference distribution: Lastly, we considered the approach of estimat-

ing ϕ′′0 by assuming that the true density is Gaussian. In this case, we find that
ϕ′′0 (x) = −σ−2, which is straightforward to implement. That is, in this case we
estimate c2 as

ĉnrd
n,2 (x) =

 f̃ 3
n (x)

4! σ̂2
n

1/5

.

In addition to these methods, we tried adhoc and cross-validation methods of
choosing γ in the smoothed MLE approach above. However, these did not perform
as well and/or were too computationally intensive to report here. In Figure 6 we
show box plots of the squared L2 error of the various estimators ĉn,2 of the true c2.
That is, we report values of

d2(̂cn,2, c2) =

∫
I
(̂cn,2(x) − c2(x))2dx, (6)

which is approximated using a Riemann sum with m = 500 summands. We con-
sidered two samples sizes, n = 100 and n = 1000, and the following densities.

(a). the standard normal density with I = [−3, 3],
(b). the gamma density with shape parameter α = 3 and rate parameter

λ = 1 with I = [0, 8],
(d). the beta density with parameters α = β = 3 with I = [0, 1],
(d). the standard Gumbel density with I = [−2, 5].

In Figure 6, the estimator ĉsmle
2,n is denoted as DR, ĉnrd

2,n is denoted as nrd, and the
estimator ĉkde

2,n is denoted by its bandwidth selection method.
Of the three estimators of c2 we consider, only the kernel density estimator is

known to be consistent (Baird, 2012). The simple normal reference estimator is

11
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Figure 6: Monte Carlo comparison of the various estimators of c2. From top to bottom the distri-
butions are (a)-(d), as indicated in the text. The sample size is n = 100 (dark grey) and n = 1000
(light grey). The error is measured as in (6) with a Monte Carlo sample of B = 1000.
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also consistent, but only when the true density is Gaussian. The smoothed MLE
estimator of Dümbgen and Rufibach (2009) is a consistent estimator of the true
density f0 (Chen and Samworth, 2013), however, simulations from Figure 6 indi-
cate that ĉsmle

n,2 is not a consistent estimator of c2 in general. From Figure 6 we see
that the the estimator ĉnrd

n,2 has by far the best performance for the normal density,
as expected. Although it is not a consistent estimator for the other densities, it also
performs relatively well, probably because of its relative smoothness (see Figure
5). For even larger sample sizes we would expect that the bias will take over and
the estimator ĉnrd

n,2 will begin to diverge for non-normal densities.

4. A simulation study of confidence intervals

Finally, we use the estimated quantiles from Section 2 and c2 estimators from
Section 3 to estimate the confidence intervals (3). The performance of these is
tested via simulations of empirical coverage probabilities.

We consider two sample sizes: n = 100 and n = 1000, and the same four
densities as in Section 3. In Figures 7 and 8, the densities are (from top to bottom
in both figures):

(a). the standard normal density
(b). the gamma density with shape α = 3 and rate λ = 1
(d). the beta density with parameters α = β = 3
(d). the standard Gumbel density.

All results reported are based on a Monte Carlo sample of B = 1000. We chose
the most popular confidence interval with coverage of 95%, and the results are
reported in Figure 7 for n = 100 and in Figure 8 for n = 1000. Each figure shows
the observed empirical coverage for the following methods:

(i). “oracle” confidence interval with the true c2 used in (3). This is included
for comparison, and is shown in black in all plots.

(ii). confidence interval with c2 in (3) estimated by ĉsmle
n,2 . This is shown in light

gray in all plots, and performed so poorly that it is sometimes not visible.
(iii). confidence interval with c2 in (3) estimated by ĉkde

n,2 with bandwidth esti-
mated by hns. This is shown in blue in all plots.

(iv). confidence interval with c2 in (3) estimated by ĉnrd
n,2 . This is shown in red in

all plots.
(v). ECDF-bootstrap percentile confidence interval (see Remark 4.1 for details).

This is shown in green in all plots, and is based on re-sampling from the
empirical distribution.
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Figure 7: Monte Carlo comparison of 95% confidence intervals for n = 100. Four methods using
the asymptotic results are shown as follows: red (normal reference method), grey (DR bandwidth),
blue (kernel density approach), and black (oracle c2). The two bootstrap methods are shown in
green (ECDF) and purple (NPML). For reference, each plot also shows a sample of size n = 100
from the sampling distribution.
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Figure 8: Monte Carlo comparison of 95% confidence intervals for n = 1000. Four methods using
the asymptotic results are shown as follows: red (normal reference method), grey (DR bandwidth),
blue (kernel density approach), and black (oracle c2). The two bootstrap methods are shown in
green (ECDF) and purple (NPML). For reference, each plot also shows a sample of size n = 1000
from the sampling distribution.
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(vi). NPML-bootstrap percentile confidence interval (see Remark 4.1 for de-
tails). This is shown in purple in all plots, and is based on re-sampling
from the fitted nonparametric MLE.

In each plot, the horizontal lines indicate the bounds 0.95 ± 2 ∗
√

0.95 ∗ 0.05/B
where B = 1000 is the size of the Monte Carlo sample. Each plot also shows a
sample data set of the same sample size as in the simulations (e.g., the top panel
in Figure 7 also shows a sample data set of size n = 100 from a standard Gaussian
distribution). This is done for reference.

Remark 4.1 (Details of bootstrap methods used). Let X1, . . . , Xn denote an IID
sample from a density f0, and let f̂n denote its log-concave MLE. For j = 1, . . . , κ =

500, let X∗1 j, . . . , X
∗
n j denote an IID sample from either the empirical distribution Fn

(for the ECDF-bootstrap in (v)), or the fitted density f̂n (for the NPML-bootstrap
in (vi)). For a fixed x0, let f̂ ∗(κα)(x0) denote the α quantile of the bootstrap sample.
The 95% confidence intervals reported are calculated as ( f̂ ∗(0.025κ)(x0), f̂ ∗(0.975κ)(x0)),
for each x0. This is called the “bootstrap percentile interval” in Wasserman (2006,
page 34). Notably, we also tried the “bootstrap pivotal confidence interval”
(Wasserman, 2006, page 33), calculated as

(2 f̂n(x0) − f̂ ∗(0.975κ)(x0), 2 f̂n(x0) − f̂ ∗(0.025κ)(x0)),

but it did not perform well: The mean empirical coverage varied between 70% and
90%, and often the results would not be visible in the figure plots. We therefore do
not report these results in Figures 7 and 8.

Upon examining the results in Figures 7 and 8, it is immediately clear that the
method using the ĉsmle

n,2 (shown in grey) does not work well. Of the other methods
based on the asymptotic theory, (iii) & (iv), it seems that ĉnrd

n,2 (shown in red)
performs best, although the quality of its performance is far from uniform. The
NPML-bootstrap percentile interval (shown in purple) appears to perform most
closely to the oracle c2 method (shown in black). The ECDF-bootstrap percentile
interval (shown in green) appears to perform best of all. All methods are sensitive
to the sample size - that is, they work well only in a likely range for the data (e.g.
consider the first panel of Figure 7 - here, the methods work well only for a range
of about (−1.75, 1.75)). This behaviour is to be expected. Notably, the ECDF-
bootstrap percentile interval is least sensitive in this regard. We note also that the
points where ϕ′′(x0) = 0 (i.e. the modes) will not satisfy the conditions required
for (1) to hold.
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Figure 9: 95% confidence intervals based on maximum likelihood (left, using method (iv)) and
kernel density (right) estimators for a Gumbel data set with sample size n = 500.

5. Examples

5.1. A simulated example
To compare the log-concave MLE to the kernel density estimator, we simu-

lated a data set of size n = 500 from a standard Gumbel density. The results
(along with 95% confidence intervals) are shown in Figure 9. The confidence
interval based on the kernel density estimator was calculated as in Härdle et al.
(2004, Section 2.3, pages 61-62) for a bandwidth calculated based on the normal
reference distribution hns, as this satisfies h = cn−1/5 for some constant c which
depends on the data. The confidence interval for the log-concave MLE is calcu-
lated based on method (iv) as described on page 13. Both confidence intervals
have width proportional to n−2/5, and visually the calculated confidence intervals
appear quite similar. However, the confidence interval based on the kernel density
estimator is not centred at the estimator, due to the bias correction term.

5.2. A reliability data set
In Dümbgen and Rufibach (2009), the authors use the log-concave MLE to

analyze the reliability of a certain device. This data set has been made available
as part of the package logcondens. In Figure 10 we show the estimator f̂n, along
with a 95% confidence interval based on methods (iv) and (v) as described on
page 13. Method (iv) uses the asymptotic theory, while method (v) is the ECDF-
bootstrap. Visually, the confidence interval provides much needed information on
the variability of f̂n.
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Figure 10: 95% confidence intervals in the reliability data set: method (iv) based on asymptotics
is shown as the dashed line and the ECDF-bootstrap, method (v), is shown as the dotted line; the
MLE is shown as the solid line.

6. Discussion

The confidence intervals we present here are confidence intervals for the true
density at a point, and assume that the true density satisfies the conditions of the
result in Balabdaoui et al. (2009). The limiting distribution at a point x0 depends
on the location x0 only in the constant c2(x0). The latter depends on the second
derivative of log f0(x0) and is quite difficult to estimate. Also, it is quite likely
that for a fixed sample size n, the quality of the approximation of the distribution
by the asymptotic distribution depends on the point x0. Indeed, even for a fixed
x0, the quality of this approximation is not well-understood. All of these factors
combine to make the problem of inference for a log-concave density based on (1)
relatively difficult.

A similar problem was investigated in Banerjee and Wellner (2005) for the
current status model with censoring. Banerjee and Wellner (2005) compare two
methods of calculating confidence intervals in that setting: one based on the like-
lihood ratio test of Banerjee and Wellner (2001), and the second based on the
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pointwise asymptotics for their problem (Prakasa Rao, 1969), and similar to those
of Balabdaoui et al. (2009). They do not appear to investigate the quality of the
approaches for various locations x0. The benefit of the likelihood ratio approach
of Banerjee and Wellner (2001) is that its asymptotic distribution is free of nui-
sance parameters, and is therefore easier to estimate. Indeed, the simulations in
Banerjee and Wellner (2005) show that the likelihood ratio approach outperforms
confidence intervals based on pointwise asymptotics for current status data. At
this time, we are not aware of any such likelihood ratio results for the nonpara-
metric estimator based on the log-concave density.

The bootstrap approach has been considered extensively for the Grenander es-
timator and other cube-root asymptotics (Kosorok, 2008; Sen et al., 2010; Léger
and MacGibbon, 2006; Politis et al., 1999). To our best knowledge, no such ex-
amination has yet been done for the log-concave setting, or n−2/5 asymptotics. The
very preliminary results on the bootstrap presented here indicate that such work
would be of great practical interest: indeed, the ECDF-bootstrap percentile con-
fidence interval worked best in the cases we considered here. The benefit of the
bootstrap is that, like the likelihood ratio approach, it does not require the estima-
tion of nuisance parameters. However, due to the current lack of theory backing
its use, it is difficult to fully recommend the bootstrap at this time.

The work presented here was designed to study the practical benefits of the
asymptotic theory developed in Balabdaoui et al. (2009). Our simulation study
allows practitioners to gain some understanding of both the advantages and lim-
itations of the resulting methodology. The approximate confidence intervals we
study here have reasonable performance, but do sometimes overcover and/or un-
dercover. Overall, performance is not ideal, but we believe that it is useful for
practitioners in that it provides an approximate visual representation of the vari-
ability of the log-concave MLE. Of the methods considered, the ECDF-bootstrap
(method (v)) has the best performance. Notably, the empirical performance of the
NPML-bootstrap (method (vi)) follows closely that of the oracle method (method
(i)). The oracle method uses the true value of c2(x0), which in practice would be
unknown. As pointed out by one of the reviewers, the bias in the coverage of
the oracle method is therefore attributable to the discrepancy between the actual
sampling distribution (of the re-scaled error) and that of the limiting distribution.
It is quite interesting that the NPML-bootstrap follows this discrepancy, whereas
the ECDF-bootstrap does not.

The various methods based on (3) have been implemented in the package log-
condens (Dümbgen and Rufibach, 2006) in the function logConCI. In practice,
the smoothed MLE defined in (5) is preferable to the MLE, particularly for smaller
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sample sizes. However, we are not aware of asymptotic results for this estimator
at this time, beyond the consistency results of Chen and Samworth (2013). The
simulated data from Section 2, sample code from Section 5, as well as other sam-
ple code is available online at
www.math.yorku.ca/∼hkj/Research/AJGsupplement.zip.
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Appendix A. Simulating from the limiting distribution C(0)

In this section we give the details on the algorithm used to simulate the quantile
estimates of C(0) given in Section 2. As mentioned previously, the distribution
of C(0) is closely related to the asymptotic distribution which shows up in the
estimation of a convex decreasing density on R+, a problem which was studied
in Groeneboom et al. (2001a,b). To define the latter, let B(t), t ∈ R denote a
two-sided Brownian motion, as before, and let

Ỹ(t) =


∫ t

0
B(s)ds + t4, t ≥ 0,∫ 0

t
B(s)ds + t4, t < 0.

Define H̃ to be the almost surely unique process such that

1. H̃(t) ≥ Ỹ(t) for all t ∈ R,
2. H̃′′(t) is convex,
3. H̃(t) = Ỹ(t) if the slope of H̃′′(t) is strictly decreasing at t.

It was shown in Groeneboom et al. (2001a) that the process H̃ exists and is unique.
In fact, Balabdaoui et al. (2009) show existence of their limiting process simply
by noting that H = −H̃ in distribution. Groeneboom et al. (2001a) show that
C̃(t) = H̃′′(t) = limm→∞ C̃m(t), where C̃m is defined as:

C̃m = argminϕ∈C̃m

{∫ m

−m
ϕ2(t)dt − 2

∫ m

−m
ϕ(t)d

(
B(t) − 4t3

)}
,
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Table A.3: Two-sides Kologorov-Smirnov test p-values for simulations with different values of m
and g. The settings are reported as m/g; that is, 5/1000 indicates that m = 5 and g = 1000.

p-value 5/1000 5/2000 5/5000 10/1000

5/2000 0.5361
5/5000 0.9996 0.2705

10/1000 0.9802 0.3582 0.9011
15/1000 0.9557 0.6815 0.8623 0.9541

where C̃m denotes the class of convex functions with the restriction that ϕ(−m) =

ϕ(m) = 12m2. As Groeneboom et al. (2001a, Corollary 2.4) point out, other re-
strictions, beyond that of ϕ(−m) = ϕ(m) = 12m2, may also be used.

Since C̃m is a solution to a class of optimization problems, various algorithms
may be applied to find a solution in practice. A nice review of these, cast in the
context of mixture models, is given in Groeneboom et al. (2008, 2004), where the
support reduction algorithm is also introduced. The support reduction algorithm
is a close relative of the iterative cubic spline algorithm, see Groeneboom et al.
(2004, page 2, line -7), Groeneboom et al. (2008, page 390, line -15). The itera-
tive cubic spline (ICS) algorithm is the algorithm discussed in Groeneboom et al.
(2001a, Section 3) to simulate from the approximate distribution of C̃m. Both al-
gorithms (support reduction and ICS) use some approximation on a grid (Groene-
boom et al. (2008), Groeneboom et al. (2001a, page 1645, line -6)) in the solution.
A third alternative to solving these types of problems is the active set algorithm,
described for example in Dümbgen et al. (2010). The latter has been implemented
in the function conreg (which finds the least squares convex/concave regression
on a grid), available in the R package cobs, Ng and Maechler (2011). The func-
tion conreg, however, does not implement the constrained least squares problem
(ϕ̃(m) = ϕ̃(−m) = 12m2).

Here, to simulate samples of C(0) (equivalently, −C̃(0)), we employ the func-
tion conreg from the R package cobs, to simulate samples from

C∗m = argminϕ∈C∗m

{∫ m

−m
ϕ2(t)dt − 2

∫ m

−m
ϕ(t)d

(
B(t) + 4t3

)}
,

where C∗m is the class of concave functions defined on [−m,m]. Our approach,
thus, does not use the constrained least squares solutions suggested by Groene-
boom et al. (2001a). All integrals were approximated on a grid of size 2mg + 1.
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Figure A.11: Comparison of 97.5% quantiles for simulations from distributions (D1)-(D4) for
samples sizes n = 10 000, 100 000, 1 000 000 and the 97.5% quantile of C(0) (shown as horizontal
black line). Means for the distributions (D1)-(D4) are shown as the dashed horizontal lines.
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Figure A.12: Comparison of 2.5% quantiles for simulations from distributions (D1)-(D4) for sam-
ples sizes n = 10 000, 100 000, 1 000 000 and the 2.5% quantile of C(0) (shown as horizontal black
line). Means for the distributions (D1)-(D4) are shown as the dashed horizontal lines.
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Table A.4: Estimated values of F−1
C(0)(p) and four simulations using distributions (D1) normal(0,1),

(D2) gamma(3,1), (D3) beta(3,3), and (D4) Gumbel for sample size n = 10 000.

p C(0) (D1) (D2) (D3) (D4)

0.001 -3.6442 -3.6426 -3.502 -3.4945 -3.9236
0.005 -3.0905 -2.9407 -2.8997 -2.9071 -3.0015
0.010 -2.8172 -2.6953 -2.6407 -2.6546 -2.7257
0.025 -2.4157 -2.3083 -2.2818 -2.2838 -2.3331
0.050 -2.0574 -1.9578 -1.9473 -1.9648 -2.0083
0.100 -1.644 -1.5679 -1.5656 -1.5919 -1.5815
0.200 -1.1184 -1.0734 -1.0752 -1.1068 -1.0541
0.500 -0.0557 -0.0588 -0.0885 -0.104 0.0154
0.800 1.0948 1.0769 1.0232 1.0215 1.1737
0.900 1.7421 1.7197 1.651 1.6582 1.8421
0.950 2.2653 2.2714 2.1901 2.2145 2.4325
0.975 2.7536 2.7782 2.6477 2.7122 3.014
0.990 3.3193 3.3776 3.1755 3.2975 3.6574
0.995 3.6881 3.795 3.549 3.688 4.1097
0.999 4.514 4.881 4.2587 4.3994 5.1261

Comparisons of various choices of m and g are given in Table A.3, and the p-
values reported indicate that no statistical difference exists between the selected
options. In the reported quantile results in this paper, we used m = 5 and g = 1000.
For these settings, the simulations of 100 000 samples took roughly 10 days to
complete, while for larger m/g the simulation times were significantly longer.

To assess the quality of these estimates, we compared our quantiles to sample
quantiles of

n2/5c−1
2 (x0)

(
f̂n(x0) − f0(x0)

)
,

using the known values of f0(x0) and c2(x0), for four different distributions. We
chose a sample size of n = 10 000, 100 000 and n = 1 000 000, as well as various
values of x0. The four choices of f0 were

(D1). the normal with mean zero and variance 1,
(D2). the gamma with shape parameter 3 and rate 1,
(D3). the beta with both parameters equal to 2,
(D4). the standard Gumbel distribution.
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Table A.5: Estimated values of F−1
C(0)(p) and four simulations using distributions (D1) normal(0,1),

(D2) gamma(3,1), (D3) beta(3,3), and (D4) Gumbel for sample size n = 100 000.

p C(0) (D1) (D2) (D3) (D4)

0.001 -3.6442 -3.5547 -3.5786 -3.5583 -3.6052
0.005 -3.0905 -2.9683 -2.9806 -2.977 -2.973
0.010 -2.8172 -2.7194 -2.7331 -2.7177 -2.7191
0.025 -2.4157 -2.3333 -2.3393 -2.3479 -2.3351
0.050 -2.0574 -2.004 -2.0062 -2.0233 -1.9799
0.100 -1.644 -1.6081 -1.6062 -1.6159 -1.5743
0.200 -1.1184 -1.104 -1.1078 -1.1133 -1.0692
0.500 -0.0557 -0.072 -0.0922 -0.0857 -0.0508
0.800 1.0948 1.0729 1.0427 1.0473 1.099
0.900 1.7421 1.7001 1.6876 1.6931 1.7232
0.950 2.2653 2.2439 2.2407 2.2493 2.2752
0.975 2.7536 2.7316 2.7324 2.7505 2.7631
0.990 3.3193 3.3249 3.3256 3.3635 3.3263
0.995 3.6881 3.763 3.7211 3.8326 3.7367
0.999 4.514 4.7569 4.6067 4.9339 4.8466

For each distribution we calculated the quantile based on B = 1000 simulations
and averaged this over the various x0 chosen. The results are shown in Tables A.4,
A.5, and A.6. The results in the tables report averages over different values of
x0. For a more detailed view, we also report results for specific x0 for quantiles
corresponding to p = 0.025, 0.975 in Figures A.11 and A.12. The figures in par-
ticular seem to indicate convergence, albeit rather slow, to the estimated quantiles.
This is particularly evident for p = 0.025 (Figure A.12). In the tables, the only
worrisome results are for the smallest quantiles at p = 0.001, 0.999 for distribu-
tions (D2) and (D4) in Table A.6. We conjecture that these are due to numerical
accuracy issues, as these are only observable at the highest sample size.

Remark Appendix A.1. We did try using the ICS algorithm to generate samples
from C̃m (the program for which was generously given to us by Piet Groeneboom),
but we found that this approach underestimated the quantiles as compared to the
empirical results of Table A.4- A.6, and therefore did not perform well in empirical
coverage simulations for finite sample sizes. Notably, however, the ICS algorithm
was much faster than the algorithm currently implemented in conreg.
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Table A.6: Estimated values of F−1
C(0)(p) and four simulations using distributions (D1) normal(0,1),

(D2) gamma(3,1), (D3) beta(3,3), and (D4) Gumbel for sample size n = 1 000 000.

p C(0) (D1) (D2) (D3) (D4)

0.001 -3.6442 -3.6907 -32.4047 -3.7050 -43.9143
0.005 -3.0905 -3.0447 -3.2235 -3.0511 -3.1146
0.010 -2.8172 -2.7692 -2.8519 -2.7793 -2.7945
0.025 -2.4157 -2.3782 -2.3784 -2.3718 -2.3591
0.050 -2.0574 -2.0270 -2.0395 -2.0279 -1.9982
0.100 -1.644 -1.6175 –1.6346 -1.6265 -1.596
0.200 -1.1184 -1.1040 -1.1100 -1.1145 -1.0874
0.500 -0.0557 -0.0619 -0.0787 -0.0733 -0.0541
0.800 1.0948 1.0722 1.0795 1.0691 1.077
0.900 1.7421 1.7075 1.7226 1.7111 1.7181
0.950 2.2653 2.2540 2.2745 2.2664 2.2570
0.975 2.7536 2.7477 2.7796 2.7647 2.7475
0.990 3.3193 3.3334 3.4223 3.3382 3.3313
0.995 3.6881 3.7390 4.0490 3.7505 3.8067
0.999 4.514 4.6840 55.5786 4.8066 47.1243

Appendix A.1. Discussion
The simulation results presented here are based on an ad-hoc approximation

approach, as described above. Although the empirical evidence presented here
indicates that this approach is reasonable, a more theoretical way of calculating
the quantiles of C(0) would be highly desirable. Such an approach is available
for Chernoff’s distribution (see Groeneboom and Wellner, 2001) thanks to the
incredible work in Groeneboom (1989). Groeneboom and Wellner (2001) also
provide some history on the estimation of quantiles of Chernoff’s distribution.

Appendix B. Proofs

Proof of Proposition 2.1. The proof of this is straightforward, and is included
only for completeness. Note that H(t) (the invelope of Y(t)) is uniquely char-
acterized by

1. H(t) ≤ Y(t) for all t ∈ R,
2. H′′(t) is concave,
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3. H(t) = Y(t) if the slope of H′′(t) is strictly decreasing at t.

To prove the result it is enough to note that Y(−t) has the same distribution as
Y(t), and that H(−t) is the (unique!) invelope of Y(−t). Taking derivatives yields
the results for H′(t),C(t).
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