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Abstract

We develop an estimation procedure of a discrete probability mass
function (pmf) with unknown support. We derive the maximum likeli-
hood estimator of this pmf under the mild and natural shape-constraint
of unimodality. Shape-constrained estimation is a powerful and robust
technique, which additionally provides smoothing of the empirical dis-
tribution yielding thereby gains in efficiency. We show that our uni-
modal estimator is consistent when the model is specified, and that it
converges to the best projection of the true pmf on the unimodal class
under model misspecification. Furthermore, we derive the limiting dis-
tribution of the the estimator, and use the obtained result to build
asymptotic confidence bands for the unknown pmf when the latter is
unimodal. We illustrate our approach using time-to-onset data of the
Ebola virus during the 1976 outbreak in the former republic of Zaire.

1 Introduction

Discrete or discretized data show up in many practical instances, see Harlan
et al. (2014); Chowell et al. (2013, 2009); Laskowski et al. (2011); Breman
and Johnson (2014). If computing the empirical distribution requires no as-
sumptions on the unknown law, gains in efficiency can be made by imposing
additional constraints. Such a constraint is unimodality, which is a natural
and mild assumption in many real statistical applications.

Nonparametric estimation of a unimodal density has been treated in
many research papers. In case the mode is known, the problem boils down
to fitting the well-known Grenander estimator (Grenander, 1956). However,
as noted by Birgé (1997), it is unrealistic in practice to assume that the
location of the mode is known. The main consequence of not making such
an assumption is that the maximum likelihood estimator (MLE) fails to ex-
ist. To address this problem, several estimators have been proposed, see
Wegman (1968, 1969); Prakasa Rao (1969); Wegman (1970a,b); Reiss (1973,
1976) in which the Grenander estimator has been additionally constrained.
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More recent work appears in Birgé (1997), where the proposed estimator is
chosen among all the possible unimodal Grenander estimators as the one
with cumulative distribution function closest to the empirical distribution.
Durot et al. (2013) consider the estimation of a discrete convex distribu-
tion, using the least squares criterion. Recently, Dümbgen and Rufibach
(2009); Cule et al. (2010) proposed to use the maximum likelihood estimator
of a log-concave density in lieu of the unimodal assumption, partially due
to the inherent problems faced when estimating a unimodal density using
maximum likelihood. As opposed to the continuous setting, existence of the
unimodal MLE when the data are discrete is guaranteed, even when the
mode is unknown. On the other hand, uniqueness is not always true, but
this problem is rather marginal, as a rule for selecting from among the fi-
nite options is immediate, making our estimator fully automatic and easy to
compute. Furthermore, if the pmf is not unimodal, the MLE is still consis-
tent, in the sense that it approaches the best unimodal pmf among a finite
number of choices. Further details of this behavior are provided in Section 4.

In the recent work of Balabdaoui et al. (2013), the discrete MLE under
the constraint of log-concavity was studied. One important consequence of
this work is that we can evaluate the loss when data exhibit unimodality
but at the same time log-concavity would not be a valid assumption. The
unimodal MLE seems to be a more natural estimator to consider when ad-
ditional features of the true distribution besides unimodality are lacking or
hard to obtain. On the other hand, it is expected the log-concave MLE to
be more efficient than the unimodal one in case log-concavity is a correct
assumption about the model. This is studied via simulations in Section 3.
Although restricted to discrete distributions, our results may be interesting
to those studying the continuous setting as well.

The manuscript is organized as follows. In Section 2, we provide the tech-
nical details required to define and compute the MLE of a discrete unimodal
distribution. In our set-up, the support is assumed to be unknown, and is
also estimated empirically from the data. In Section 3, we consider the finite
sample size behavior of our estimator via simulations. As mentioned pre-
viously, we compare here our estimator with the discrete log-concave MLE,
but also we assess the loss of efficiency when the support is unknown and
must be estimated from the data. Sections 4 and 5 we establish consistency
and global asymptotic theory for the estimator. One of our key contributions
is the application of these to develop global confidence bands for a unimodal
pmf, see Section 6. Finally, we illustrate the estimator on a data set for
the 1976 Ebola outbreak in Zaire; see Section 7. The data clearly shows a
drastic difference in the time from infection to onset of symptoms depending
on the type of infection: whether the individual was infected from person-
to-person contact or from injection with an unsterilized needle. R (R Core
Team, 2014) code for this analysis (along with all simulations) is available
online at www.math.yorku.ca/~hkj/Research/. All proofs and additional
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details are left to the Appendices.

2 Maximum likelihood estimation

2.1 Discrete unimodal distributions

In this work, we consider estimation of a unimodal pmf of a discrete real-
valued random variable. We denote the support of such a pmf as S = {si}i∈K ,
where K is a subset of Z. Without loss of generality, we take si ∈ R for all
i ∈K, and we assume that si < si+1.

We say that a pmf p is unimodal if there exists an integer m such that

p(si) ≥ p(si+1), for all i ≥m, and

p(si−1) ≤ p(si), for all i ≤m. (2.1)

The element sm is thus a mode of the pmf p, but is not necessarily unique.
In general, we can define the modal region, denoted here by M, as

M = {sκ ∈ S ∶ p satisfies (2.1) at m = κ} (2.2)

M is necessarily a finite set and we have that p(s) = p(s′) for all s, s′ ∈M.
Next, let U1(S) denote the space of unimodal pmfs with the same fixed
support S. For the purpose of estimating such a p, it is most convenient to
decompose the space of unimodal pmfs as

U
1
(S) = ⋃

κ∈K

U
1
∣κ(S), (2.3)

where U1∣κ(S) is the space of pmfs which are increasing on {si ∶ i ≤ κ − 1}
and decreasing on {si ∶ i ≥ κ}. Note that a pmf in U1∣κ(S) is unimodal
either at sκ−1 or sκ depending on the order of its values at these points. It
may seem, at first, that it would be more natural to decompose U1(S) into
the spaces of pmfs that are unimodal at κ. However, it turned out that the
decomposition (2.3) is much more convenient. In addition, the MLE will
always “decide” between these two possibilities by choosing the one that
yields the largest value of the likelihood. Note also that if κ = minK, then
U1∣κ(S) is simply the space of non-increasing pmfs on S. Notably, each space
U1∣κ(S) is convex, whereas U1(S) is not.

Known as Khintchine’s Theorem, a density with respect to Lebesgue
measure is unimodal if and only if it can be written as a mixture of uniform
densities, see for example Olshen and Savage (1970). Hence, it is expected
that such a representation exists also in the discrete setting.

Proposition 2.1. A pmf p satisfies p ∈ U1∣κ(S) if and only if

p(si) = ∑
j≥0

1i∈{κ,...,κ+j}

j + 1
q(sj) + ∑

j≤−1

1i∈{κ+j,...,κ−1}

∣j∣
q(sj), (2.4)

for some pmf q with support S.
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A proof of Proposition 2.1 can be found in the Appendix. Using (2.3), a
unimodal p ∈ U1(S) admits a representation (2.4) for some κ ∈K.

Remark 2.2. Suppose that K is finite, and write K = {0,1, . . . , k}. Then
U1∣0(S) ⊂ U

1∣1(S).

2.1.1 Relationship with unimodal densities

Given a probability mass function p with support on S = Z, one can define
a density function f on R by

f(x) = p(z) for x ∈ (z − 1, z], z ∈ Z.

The mass function p is unimodal iff the (piecewise constant) density f is
unimodal.

Given a general unimodal density with support on R, one can also define
a unimodal pmf p via

p(z) = ∫

z

z−1
f(x)dx, z ∈ Z.

Here, the choice of the discretization on [z − 1, z) is arbitrary. Indeed, any
choice of a ∈ R, with [z + a − 1, z + a) is possible. One could also consider
intervals of length other than one, as long as the length is fixed.

In this sense, discrete distributions provide a useful way to analyze data
which has been “discretized” in such a manner. One such example is consid-
ered in Section 7. This relationship with unimodal densities is particularly
noteworthy, since, although the MLE of a unimodal density does not exist,
the MLE of its discretized version does.

2.1.2 When the true support is unknown

The discussion above relating unimodal densities and pmfs implies that one
natural assumption on the support S is that it is a connected subset of a+δZ,
for some a ∈ R and δ > 0. However, we believe that in certain instances
additional generality may be required. For this reason, the only assumption
we make about the support S is that it is an ordered subset of R. This
assumption provides additional flexibility to our approach: unimodality of
a pmf is preserved under scalar transformations (if the pmf of a random
variable X is unimodal, then so is the pmf of aX), and under removal of
elements of the support.

In order to reflect this flexibility in our estimation approach, we do not
assume that the true support is known a priori. Instead, we estimate both
the unimodal pmf and its support from the collected observations. However,
if the true support is known a priori, then it is expected that more efficiency
would be gained by including this information to the estimation procedure.
Some simulations studying this are given in Section 3.1.
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Figure 1: The same empirical observations (shown in grey) yield two different
solutions maximizing the likelihood.

Notably, our consistency and asymptotic results developed later apply
to both versions of the MLE (either when the support is known or when it
is unknown). All theoretical results are proved and stated for the unknown
support version; the proofs are only simplified when the support is known.

2.2 The unimodal maximum likelihood estimator

Let X1,⋯,Xn be n independent observations from a discrete pmf p0. Also,
let pn(z) = n

−1
∑
n
j=1 I{z}(Xi) and Fn(z) = n−1∑nj=1 I{(−∞,z]}(Xi) denote the

empirical pmf and the associated empirical cumulative distribution function
(cdf), respectively. Finally, let Sn denote the observed support of pn, that is
Sn = {z0, . . . , zJ−1} is the set of distinct values in the sample {X1, . . . ,Xn}.
We assume in our notation that z0 < z1 < . . . < zJ−1.

2.2.1 Definition

Recall that we do not assume that the support S is known. Thus, we define
the maximum likelihood estimator (MLE) as

p̂n = argmaxp∈U1(Sn) Ln(p),
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where the log-likelihood is given by

Ln(p) = ∫ log p(z)dFn(z) =
J−1

∑
j=0

log(p(zj))pn(zj).

This maximization is done in two steps: (1) we maximize Ln over the space
U1∣κ(Sn) for each κ, and (2) we find κ̂n and the corresponding estimator at
which the overall maximum is attained.

2.2.2 The shape operators iso,anti, and uni

To describe and compute the MLE, we find it convenient to first define several
shape operators. For any z ∈ Rd, we denote zs∶t the sub-vector (zs, . . . , zt)
where 1 ≤ s ≤ t ≤ d. Consider the following sets of constrained vectors

Id = {u = (u1, . . . , ud) ∈ Rd ∶ u1 ≤ ⋅ ⋅ ⋅ ≤ ud}

Dd = {w = (w1, . . . ,wd) ∈ Rd ∶ w1 ≥ ⋅ ⋅ ⋅ ≥ wd}.

Also, for κ ∈ {1, . . . , d}, let

Ud∣κ = {z = (z1, . . . , zd) ∈ Rd ∶ z1∶(κ−1) ∈ Iκ−1 and zκ∶d ∈ Dd−κ+1}, and

Ud = ∪
d
κ=1Ud∣κ.

Lastly, we denote the `2 distance by ∥v − u∥22 = ∑
d
j=1(vj − uj)

2.

We can now define the first two operators iso ∶ Rd → Id and anti ∶ Rd → Dd
as

iso[v] = argminu∈Id ∥v − u∥2

anti[v] = argminw∈Dd ∥w − u∥2.

In other words, iso[v] and anti[v] = − iso[−v] are the well-known least squares
projections of v on the spaces Id andDd respectively; cf. Barlow et al. (1972);
Sen and Meyer (2013). Note also that the operator anti is the same as the
gren operator discussed in Jankowski and Wellner (2009); Jankowski (2014).

Finally, for κ ∈ {1, . . . , d}, define the operators uniκ ∶ Rd → Ud∣κ and
uni ∶ Rd → Ud as

uniκ[v] = (iso[v1∶(κ−1)],anti[vκ∶d]) = argminu∈Ud∣κ ∥v − u∥2,

uni[v] = argminu∈Ud ∥v − u∥2.

Note that, as before, we have that

uni[v] = uniκ=κ̃[v], where κ̃ ∈ argminκ ∥v − uniκ[v]∥2.

The operators iso and anti are unique. However, the operator uni may yield
more than one solution, much like the operator yielding the MLE. Properties
of these operators are discussed in detail in Appendix C.3.
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2.2.3 Existence and characterization of the MLE

Using these operators, we may now state some facts about the MLE.

Proposition 2.3. The restricted MLE p̂n∣κ exists and is unique. Further-
more, it is characterized by

p̂n∣κ = uniκ[pn].

The (unrestricted) unimodal MLE p̂n exists, but is not necessarily unique.
For {κ̂n} = argmax1≤κ≤J−1Ln(p̂n∣κ), the (finite) collection of solutions to the
maximization problem, {p̂n}, is characterized as

{p̂n} = {p̂n∣κ;κ ∈ {κ̂n}}. (2.5)

Note that the MLE is not defined in terms of the operator uni, however,
the operator does show up in its limiting distribution.

Remark 2.4. One of the key conclusions of Proposition 2.3 is that the
size of the set {p̂n} may be greater than one (see, for example, Figure 1).
To overcome the computational difficulties that would result from this non-
uniqueness, we simply take the MLE to be equal to the maximizer with the
smallest mode. That is, let κ̂n denote the smallest integer κ such that

Ln(p̂n∣κ) = max
1≤l≤J−1

Ln(p̂n∣l).

Then p̂n = p̂n∣κ̂n . Note the slight abuse of notation: we denote κ̂n as the
smallest element of {κ̂n}. Also, note that in order to find κ̂n we can search
only over 1 ≤ κ ≤ J − 1 using Remark 2.2.

The characterization in (2.5) along with our convention provides a straight-
forward way to compute p̂n. Namely, we first find the restricted MLE p̂n∣κ as
the right slopes of the greatest convex minorant of {(0,0), (zj ,Fn(zj), 0 ≤ j ≤
κ−1} and the left slopes of the least concave majorant of {(0,0), (zj ,Fn(zj)), κ ≤
j ≤ J − 1}. The MLE p̂n will be then taken to be equal to p̂n∣κ which maxi-
mizes the overall likelihood for the smallest integer κ. Proposition 2.3 follows
immediately from the more general result of Theorem 4.2 as well as the sub-
sequent Lemma C.3.

3 Finite sample performance of the MLE

Here we compare three maximum likelihood estimators for small and medium
samples sizes. The three estimators are

(1) the MLE under no assumption on the pmf; i.e., the empirical MLE,

(2) the MLE assuming the pmf is unimodal (p̂n as defined in this work),
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(3) the log-concave MLE assuming the pmf is log-concave. Theoretical
and computational aspects of this estimator have been studied in Bal-
abdaoui et al. (2013).

In our simulations, we consider six different distributions:

– The negative binomial distribution with parameters r = 6, p = 0.3. This
is a distribution is both strictly unimodal and strictly log-concave.

– The double logarithmic distribution with S = Z, which we define as

p(z) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

p∣z∣

2∣z∣(p−log(1−p)) z ≤ −1
p

p−log(1−p) z = 0,
pz

2z(p−log(1−p)) z ≥ 1.

(3.6)

This distribution is strictly unimodal but not log-concave. In the sim-
ulations, we take p = 0.9.

– The uniform pmf with S = {0, . . . ,9}. This is an example of a pmf
which is neither strictly unimodal nor strictly log-concave.

– The mixture of uniform distributions with support on {0, . . . ,49}, with
pmf given by taking S = Z, κ = 0 and

q(z) = {
1/3 z = 9,39,49
0 otherwise.

(3.7)

in decomposition (2.1). This distribution is unimodal (though not
strictly unimodal), and is not log-concave.

– The Poisson with rate λ = 2, a strictly log-concave and unimodal dis-
tribution.

– A mixture of Poisson distributions: Letting pλ denote the pmf of a
Poisson distribution with rate λ, then the mixture we consider is given
by (1/4) ⋅p1(⋅)+(1/8) ⋅p3(⋅)+(5/8) ⋅p8(⋅). This distribution is (strictly)
bimodal, and is therefore neither unimodal nor log-concave.

Table 1: Properties of distributions considered.

unimodal log-concave finite support

negative binomial yes (strict) yes (strict) no
double logarithmic yes (strict) no no
uniform yes yes yes
uniform mixture yes no yes
Poisson yes (strict) yes (strict) no
Poisson mixture no no no
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Figure 2: Boxplots of the `2 distance of the estimated pmf from the true
pmf under each of three estimators: the empirical MLE (1), the unimodal
MLE (2), the log-concave MLE (3). Each boxplot is the result of B = 1000
simulations. Properties of these distributions are summarized in Table 1.
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Figure 3: Boxplots for the six distributions of Figure 2 of the `2 distance
of the estimated pmf from the true pmf for the unimodal MLE when the
support is known (a) and unknown (b). Each boxplot is the result of B =

1000 simulations.

10



Properties of the six distributions are summarized in Table 1 for convenience.
In Figure 2, we can see that the unimodal MLE performs better than the

empirical MLE for all six distributions. It is, however, outperformed by the
log-concave MLE for the distributions which are log-concave, although they
seem to have very comparable errors in the case of the Poisson distribution
with rate λ = 2. On the other hand, the unimodal MLE outperforms the log-
concave MLE when the distribution is not log-concave, at least for sample
sizes which are “large enough”. Our simulations show that this sample
size is related to how far away the true pmf is from the set of log-concave
distributions. In Figure 2, the `2 distance to the corresponding log-concave
Kullback-Leibler projection (cf. Balabdaoui et al. (2013)) is approximatively
0.363 for the double logarithmic and 0.050 for the uniform mixture. Overall,
we expect that when log-concavity fails to hold, the unimodal MLE will be
the better estimator for larger sample sizes. Moreover, this behavior will
hold also for smaller sample sizes for pmfs that are further away from the
log-concave class. The bimodal Poisson mixture model is the only example
in which neither the log-concave nor unimodal classes are correct. Notably,
although the empirical pmf is the only well-specified MLE in this case, it
outperforms the other two estimators only for the largest sample size.

3.1 Comparison of known versus unknown support

It seems self-evident that some efficiency will be lost by assuming that the
support is unknown. Here, we briefly consider the question of “how much
efficiency is lost?” via simulations. To be precise, when we say that the
support is known, the MLE is defined as

argmaxp∈U1(S) Ln(p),

unlike in the definition of p̂n, where S is replaced by its estimate Sn. In order
to avoid existence issues of the estimator defined above, the class U1(S)
should be viewed as the set of probability mass functions p with support
contained in S. Our simulations show that although some difference is seen
for small a sample size, the cost is not great, and the difference disappears
with increased sample size. As mentioned previously, our consistency and
asymptotic results developed later apply to both versions of the MLE.

Figure 4 gives an example of the two approaches (known vs. unknown
support in the unimodal MLE) for a sample from the negative binomial
distribution for n = 50. Both unimodal MLE approaches provide considerable
“smoothing” to the empirical pmf. However, when the support is unknown,
the MLE will only place mass on Sn, whereas the MLE with known support
will place mass on the entire range {X(1), . . . ,X(n)}. This is clearly seen
in Figure 4. Thus, the potential loss of efficiency will most likely occur
in the tails of the true distribution, and this will be particularly true for
distributions with a fatter tail.
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Figure 4: Example comparing the unimodal MLE when the support is known
vs. unknown. The true distribution is the negative binomial with sample
size n = 50.

We compared the two approaches via simulations, the results of which
are shown in Figure 3. The distributions considered are exactly the same
as those described on page 8. The loss is small for the uniform distribution
which has support on only ten points, and also for both Poisson distributions,
where the tails converge to zero very quickly. For the other distributions,
which slower rate of decay in the tails, some efficiency is lost for the small
sample size (n = 50). However, the loss appears almost negligible for the
medium sample size (n = 200).

Remark 3.1. When S = Sn, the known support and unknown support MLE
versions will be the same. For the case when ∣S∣ is finite, the probability that
this does not happen for a given n decreases exponentially with n. Further-
more, with probability one, there exists an n0, such that for all n ≥ n0, S = Sn
in this case.

4 The Kullback-Leibler projection and consistency
of the unimodal MLE

Let p0 denote a fixed probability mass function on S0 with distribution
function P0. We let

ρ(p∣p0) = ∫ log
p0
p
dP0,
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denote the Kullback-Leibler (KL) divergence. In this section, we seek the
KL projection p̂0 ∈ U

1(S0) of a given pmf p0. The KL projection has been
considered extensively for the log-concave shape constraint for densities on
Rd in Cule and Samworth (2010) and Dümbgen et al. (2011) and for proba-
bility mass functions in Balabdaoui et al. (2013). As in Cule and Samworth
(2010); Cule et al. (2010); Balabdaoui et al. (2013), we can define such a
projection as

p̂0 = argminp∈U1(S0)∫
S0

log
p0
p
dP0 = argminp∈U1(S0)

ρ(p∣p0), (4.8)

which is the element of U1(S0) closest to the unknown pmf p0 in the sense of
Kullback-Leibler divergence. From a practical point of view, this allows us
to view the shape constrained estimator as the closest approximation within
a class of distributions.

Alternatively, Patilea (2001) uses the definition

∫ log
p̂0
p
dP0 ≥ 0, for all p ∈ U1

(S0), (4.9)

and refers to the pmf p̂0 satisfying (4.9) as the pseudo-true pmf. If the
integrals involved are finite, one can re-arrange (4.9) into (4.8) and vice
versa. In particular, if infq∈U1(S0)

ρ(q∣p0) = ρ(p̂0∣p0) < ∞ for some p̂0 then
(4.8) is equivalent to (4.9), since then

0 ≤ ∫ log
p0
p̂0
dP0 ≤ ∫ log

p0
p
dP0 = ∫ log

p0
p̂0

p̂0
p
dP0

= ∫ log
p0
p̂0
dP0 + ∫ log

p̂0
p
dP0.

Alternatively, as in Dümbgen et al. (2011), one could also consider

∫ log p̂0 dP0 ≥ ∫ log pdP0, for all p ∈ U1
(S0), (4.10)

which is akin to maximizing the likelihood. If p0 admits a finite entropy, that
is ∫ log p0 dP0 > −∞, then (4.10) is equivalent to (4.8). Furthermore, (4.9) is
equivalent to (4.10) whenever supp∈U1(S0) ∫ log pdP0 > −∞ and is attained.

In what follows, we work with the formulation of Patilea (2001) in (4.9),
although we continue to refer to it as the KL projection. Before stating our
first theorem, we recall that U1∣κ(S0) is the space of unimodal pmfs with
support S0 and mode at either sκ−1 or sκ.

Theorem 4.1. Let p0 be a discrete pmf with support S0. Let P̂0∣κ denote the
greatest convex majorant of the cumulative sum of p0(si), i ≤ κ − 1 and the
least concave minorant of the cumulative sum of p0(si), i ≥ κ, and let p̂0∣κ
denote the pmf corresponding to P̂0∣κ. Then

∫ log
p̂0∣κ
p
dP0 ≥ 0, for all p ∈ U1

∣κ(S0). (4.11)

13



Furthermore, when p0 ∈ U
1∣κ(S0), or when ∑j≠0 log ∣j∣p0(sj) <∞, q = p̂0∣κ is

the unique pmf which satisfies ∫ log(q/p)dP0 ≥ 0 for all p ∈ U1∣κ(S0).

We next consider the larger class U1(S0).

Theorem 4.2. Let p0 be a discrete pmf with support S0.
1. Suppose that p0 ∈ U1(S0). Then p̂0 = p0 is the unique unimodal pmf
satisfying

∫ log
p̂0
p
dP0 ≥ 0 for all p ∈ U1

(S0).

2. Suppose that p0 ∉ U
1(S0) and ∑j≠0 log ∣j∣p0(sj) < ∞. Then there exists a

p̂0 ∈ U
1(S0) such that

∫ log
p̂0
p
dP0 ≥ 0 for all p ∈ U1

(S0).

When p̂0 is not unique, we shall denote by {p̂0} the (finite) collection of all
such projections.

Theorem 4.2 says that in case the model is well-specified, then the KL
projection of p0 is unique and equal to the true pmf itself under no additional
assumptions. However, if the model is misspecified, there may exist several
different KL projections. These are collected in the set {p̂0} which is neces-
sarily finite. Examples of such non-uniqueness are given later in Figure 5.
We believe that this lack of uniqueness is due to the fact that the space of uni-
modal densities is not convex. Although the condition ∑j≠0 log ∣j∣p0(sj) <∞
may seem a bit unnatural at first, one can express it in a more transparent
form thanks to the next proposition.

Proposition 4.3. Let p0 be a discrete pmf with support S0. Then

∑
j≠0

log ∣j∣ p0(sj) <∞ if and only if sup
p∈U1(S0)

∫ log p dP0 ∈ (−∞,0].

Recall that under this condition, (4.9) is equivalent to (4.10). Further-
more, if we assume in addition that

0 < δ1 ≤ inf(sj+1 − sj) ≤ sup(sj+1 − sj) ≤ δ2 <∞,

then one can show that the condition ∑j≠0 log ∣j∣p0(sj) < ∞ is equivalent
to ∫ log ∣x − a∣dP0(x) ∈ R for some a ∉ S0. Therefore, this condition gives a
bound on the speed of decay of p0. Also, it is weaker than the assumption
of having a finite mean required by Cule and Samworth (2010); Dümbgen
et al. (2011). Our assumption is also weaker than that made by Patilea
(2001, Corollary 5.6), although the latter is a condition in order to derive
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rates of convergence. In our setting, Patilea’s assumption boils down to
existence of an ε > 0 such that

∫ p̂−ε0 dP0 <∞

where P0 is the cumulative distribution function of p0. By the inequality
log(x) ≤ xε/ε for x ∈ (0,∞), we find

∫ log(1/p̂0)dP0 ≤
1

ε
∫ p̂−ε0 dP0 <∞,

implying our condition in Proposition 4.3 (since then ∫ log p̂0dP0 > −∞).

4.1 Consistency

For two pmfs p and q defined on S, let `k(p, q) and h(p, q) denote the `k and
Hellinger distances between p and q, respectively. That is,

`k(p, q) =

⎧⎪⎪
⎨
⎪⎪⎩

(∑x∈S ∣p(x) − q(x)∣k)
1/k

, if 1 ≤ k <∞

supx∈S ∣p(x) − q(x)∣, if k =∞

and

h(p, q) =
1

2
∑
k∈S

(
√
p(x) −

√
q(x))

2
.

In the following, we establish almost sure consistency of the unimodal MLE
under a mild condition on the true pmf p0. Let us fix a discrete pmf p0 with
support S0, and assume that we observe i.i.d. data X1, . . . ,Xn ∼ p0. Here,
we do not necessarily assume that p0 is itself unimodal. Let p̂n denote again
the unimodal MLE based on the sample (X1, . . . ,Xn). Recall that in the
well-specified model, the KL projection p̂0 in the sense of (4.9) is p0 itself.
When the model is misspecified and p0 satisfies ∑j log ∣j∣p0(sj) < ∞, then
the KL projection p̂0 exists in the sense of (4.10) but may not be unique. In
this situation, we denote by {p̂0} the set of all such KL projections.

Theorem 4.4. Suppose that ∑i≠0 log ∣i∣p0(si) <∞, and let d ≡ `k or h. Then

d(p̂n,{p̂0}) ≡ inf
q̂∈{p̂0}

d(p̂n, q̂)→ 0

almost surely. If p0 is unimodal, then

d(p̂n, p0)→ 0

almost surely.

Remark 4.5. Pointwise convergence and convergence in `k,1 ≤ k ≤ ∞ and
Hellinger distance h are all equivalent for probability mass functions. This
follows for example from Lemma C.2 in the online supporting material of
Balabdaoui et al. (2013).
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Figure 5: Convergence of p̂n to {p̂0} for p0 as in (4.12). The boxplots show
the d = `2 distance for B = 1000 Monte Carlo samples with a sample size
of n = 1 000 000. The three columns give (a) d(p̂n, p̂

1
0), (b) d(p̂n, p̂

2
0), and (c)

d(p̂n,{p̂0}). The plot on the right differs from the plot on the left in that, on
the right, in (a) and (b) the boxplots have been split into large/small values
to show the bimodal nature of the data. For reference, the dashed horizontal
line gives d(p̂10, p̂

2
0).

The fact that {p̂0} is not necessarily a singleton means that the MLE
does not necessarily converge to a particular element of {p̂0}. Rather, our
proof shows instead that the MLE is sequentially compact: there exists an
element q̂ ∈ {p̂0} and a subsequence nk such that d(p̂nk , q̂)→ 0. We illustrate
this behaviour via the following example. Let S0 = {−2,−1,0,1,2} and define

p0(si) = {
1/6 si = −2,0,2
1/4 si = −1,1.

(4.12)

In this case, {p̂0} has two elements, which we denote by p̂10 and p̂20. Straight-
forward calculations show that

p̂10(si) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1/6 si = −2,2
1/4 si = −1,
5/24 si = 0,1

with mode at −1 and p̂20(si) = p̂
1
0(−si) (with mode at 1). Simulations for a

very large sample size are shown in Figure 5, where the convergence in set
distance is clearly visible.

On the other hand, if ∣{p̂0}∣ = 1, then the unimodal MLE converges to
the unique element of {p̂0}. We also note that if we consider the restricted
MLE p̂n∣κ, then a similar result to the above holds. A proof may be provided
using, for example, Marshall’s lemma as in Patilea (2001, Lemma 5.5, page
114), without any restrictions on p0.
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Let M̂n be the modal region of the unimodal MLE p̂n, cf. (2.2). An
immediate corollary of the preceding theorem is the following statement
about convergence of M̂n. For simplicity, we now assume that the KL
projection is unique. However, one may state the following results with
some additional generality, albeit in a less clear manner.

Corollary 4.6. Assume ∑i≠0 log ∣i∣p0(si) < ∞ and that ∣{p̂0}∣ = 1, and let
M denote the modal region of p0. Then with probability one, there exists a
sufficiently large n0, such that for all n ≥ n0, M̂n ⊂M.

If ∣M∣ = 1, then Corollary 4.6 implies that, with probability one, there
exists a sufficiently large n0, such that the mode of the MLE coincides with
the true mode. In the case ∣M∣ > 1, then this is no longer true, and all we can
say is that eventually the estimated mode will be inM. Note that the latter
has nothing to do with the fact that we make the convention of taking the
smallest mode to define the MLE; any such convention (or no convention)
would result in the same behavior.

From Theorem 4.4 we immediately obtain the following result.

Corollary 4.7. Assume ∑i≠0 log ∣i∣p0(si) < ∞ and that ∣{p̂0}∣ = 1. Let F̂n
and F̂0 denote the cdfs of p̂n and p̂0 respectively. Then

lim
n→∞

sup
s∈S0

∣F̂n(s) − F̂0(s)∣ = 0

almost surely.

5 Global asymptotics

The asymptotic behaviour of the unimodal MLE, as well as the proof thereof,
share many similarities with those given in Jankowski and Wellner (2009) for
the Grenander estimator of decreasing pmf on N. Our main interest here is to
derive the weak limit of the estimator when p0 is unimodal, and therefore we
do not consider the misspecified setting. One could, however, mimic the work
in Jankowski (2014) to obtain the asymptotic distributions in this case under
some further restrictions on p0. Despite the similarity mentioned earlier with
the monotone problem, some technical details need special attention due to
the fact that (1) the mode of the true pmf is unknown, and (2) we do not
assume that the true support is known.

To describe the asymptotic theory, we first need to define an operator,
denoted here as ϕ. Recall thatM denotes the modal region of p0 as defined
in (2.2). Let us write

D = {si ∶ si ∉M and p0(si) ≥ p0(si+1)}, and

I = {si ∶ si ∉M and p0(si−1) ≤ p0(si)}
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as the decreasing and increasing regions of S0 respectively. We will write
M = {τ I0 , . . . , τ

D
0 } (where τ I0 ≤ τD0 ), and let {τDi }i≥1 enumerate the points

in D such that p0(si) > p0(si+1), where τDi < τDi+1. Similarly, let {τ Ii }i≥1
enumerate the points in I such that p0(si−1) < p0(si), where τ Ii+1 < τ

I
i . We

will write Dj = {s ∈ S0, τ
D
j−1 < s ≤ τ

D
j } for j ≥ 1, and Ij = {s ∈ S0, τ

I
j ≤ s < τ

I
j−1}

for j ≥ 1. Notice that each of these regions is necessarily finite, and that p0
is constant on each subset Ij ,Dj and M. We therefore have that

I = ⊍Ij , D = ⊍Dj , and S0 = I ⊍M ⊍D. (5.13)

We also denote the collection of knots as

T = {τ Ij , j ≥ 1} ∪ {τD0 , τ
I
0 } ∪ {τDj , j ≥ 1}. (5.14)

Note that our definition of a knot, as well as the collection of knots, depends
on the underlying pmf p0. Finally, let q be an element of `2(S0), and for a
subset C ⊂ S0 we write the vector qC = {q(sj), sj ∈ C} to denote the sequence
q restricted to C. We may now define ϕ ∶

ϕ[q](s) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

iso[qIj ](s) s ∈ Ij ,
uni[qM](s) s ∈M,
anti[qDj ](s) s ∈Dj .

(5.15)

Note that the definition of ϕ technically depends on p0, although we omit
this dependence in the notation. In addition, ϕ satisfies ϕ[p0] = p0.

Theorem 5.1. Suppose that p0 is unimodal and that ∑i≠0 log ∣i∣p0(si) <∞.
Let W denote the discrete white noise process: That is, W is the mean zero
Gaussian process defined on S0 such that cov(W(si),W(sj)) = p0(si)δi,j −
p0(si)p0(sj). Then

√
n(p̂n − p0) ⇒ ϕ[W],

in `k(S0), where 2 ≤ k ≤∞.

An immediate corollary of our result is that if s is such that s ∈ C
where C = Ij ,M, or Dj and ∣C ∣ = 1, then

√
n(p̂n(s) − p0(s)) ⇒ W(s),

since in such cases ϕ[q](s) = q(s). Namely, this says that in regions where
p0 is strictly unimodal, the asymptotics of p̂n are the same as those of pn.
Similar observations have been made in Jankowski and Wellner (2009) for the
Grenander estimator and Balabdaoui et al. (2013) for the log-concave MLE.
In addition, we note that `2(S0) is the smallest space, of those considered
above, where one can prove the asymptotics. In other words, convergence
in a smaller space such as `1(S0) cannot be considered without additional
assumptions on p0. We refer to Jankowski and Wellner (2009) for additional
details.

The next result follow immediately from the definition of the operator ϕ
as well as Jankowski and Wellner (2009, Theorem 2.1).
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Figure 6: 95% constant-width (β = 0) confidence bands for the true pmf when
sampling from the double logarithmic distribution p = 0.9. The sample size
is n = 100 on the top and n = 1000 on the bottom.

Proposition 5.2. For 2 ≤ k ≤∞, we have that ∣∣ϕ[W]∣∣k ≤ ∣∣W∣∣k.

In addition, it is also possible to develop a Marshall’s lemma type result
in our setting. The (asymptotically negligible) error term not seen in the
usual type of result here is due to estimation of the support in our approach.

Proposition 5.3 (Marshall’s Lemma). Suppose that ∑s∈S0
p
1/2
0 (s) <∞ and

that the true pmf p0 is unimodal with associated cumulative distribution func-
tion F0. Then, with probability one, there exists an n0 such that for all n ≥ n0

sup
s∈S0

∣F̂n(s) − F0(s)∣ ≤ sup
s∈S0

∣Fn(s) − F0(s)∣ + op(n
−1/2

).

6 Global confidence bands for p0

The key application of the previous section is the calculation of confidence
bands for the true pmf p0, which we assume to be unimodal. To this end,
let q0,α be such that P (∣∣W∣∣∞ > q0,α) = α. Then, it follows that

lim
n
P (

√
n∣∣p̂n − p0∣∣∞ ≤ q0,α) ≥ 1 − α.

19



This follows since

√
n∣∣p̂n − p0∣∣∞ ⇒ ∣∣ϕ[W]∣∣∞ ≤ ∣∣W∣∣∞.

It is important to note that if p0 is strictly monotone then ϕ[W] = W, and
then the last inequality above becomes an equality, resulting in an asymp-
totically exact confidence band.

In order to estimate q0,α, we use p̂n in place of p0. In Proposition B.7,
we show that this yields an almost surely consistent method of estimating
q0,α. Also, we estimate each quantile using Monte Carlo simulations. Thus,
let q̂0,α denote the Monte Carlo estimate of the quantile of ∣∣W∣∣∞.

It follows that an asymptotically correct conservative confidence band is
given by

{[(p̂n(si) −
q̂0,α
√
n
) ∨ 0, p̂n(si) +

q̂0,α
√
n
] , si ∈ supp(p̂n)} (6.16)

where supp(p̂n) denotes the support of p̂n. When the support of p0 is es-
timated from the data, then supp(p̂n) = Sn, the support of the empirical
distribution.

In Figure 6, we show an example of confidence bands thus constructed,
when the true pmf is the double logarithmic distribution with p = 0.9. We
found the constant width of the confidence bands, particularly for the smaller
sample size, somewhat visually jarring. For this reason, we also create con-
fidence bands which are visually more appealing in that they do not have
uniform width. Define, for β ≥ 0,

Ŵβ
n(s) =

⎧⎪⎪
⎨
⎪⎪⎩

√
n(p̂n−p0)(s)

p̂βn(s)
, s ∈ supp(p̂n)

0, s ∉ supp(p̂n).

If β = 0, then Ŵβ
n =

√
n(p̂n−p0), and we are in the situation of constant-width

confidence bands discussed above.

Proposition 6.1. Fix β > 0 and assume that the support of p0 is finite.
Then

∣∣Ŵβ
n∣∣∞ ⇒

RRRRRRRRRRR

RRRRRRRRRRR

ϕ[W]

pβ0

RRRRRRRRRRR

RRRRRRRRRRR∞

≤

RRRRRRRRRRR

RRRRRRRRRRR

W
pβ0

RRRRRRRRRRR

RRRRRRRRRRR∞

.

In this case, an asymptotically correct conservative confidence band is
given by

{[(p̂n(s) − p̂
β
n(s)

q̂β,α
√
n
) ∨ 0, p̂n(s) + p̂

β
n(s)

q̂β,α
√
n
] , s ∈ supp(p̂n)} ,

where q̂β,α is an estimate of qβ,α where P (∥p−β0 W∥
∞
> qβ,α) = α. Estimation

of this quantile can be done using a Monte Carlo approach, as before.
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Figure 7: 95% confidence bands for the true pmf when sampling from the
mixture of uniforms distribution with mixing distribution given in (3.7). The
sample size is n = 100 and we chose β = 0 (left, constant width) and β = 0.5
(right, varying width).

Remark 6.2. When p0 has infinite support, the limiting distribution p−β0 W
exists in `2 provided that ∑p

1−2β
0 <∞, which adds the restriction that β < 1/2.

We conjecture that the above result continues to hold for distributions with
infinite support with the restriction that β ∈ [0,1/2), although we do not
pursue the proof here. We do note that the assumption of finite support
may be highly plausible in certain practical situations, whereas the (weaker)
assumption of ∑i p

1−2β
0 <∞, may not be as easy to motivate.

In Figure 7 we compare the constant-width confidence band to the vary-
ing width confidence band (with β = 0.5) when the true distribution is the
mixture of uniforms, whose mixing distribution is given in (3.7). Visually, we
find the choice of β = 0.5 preferable in that the values, where p̂n is smaller,
express slightly more accuracy, as one would expect. In this particular ex-
ample, the difference is not great, but is still eye-pleasing. For β = 0, the
width of the confidence bands varies from 0.13 to 0.07 (median 0.08), while
for β = 0.5, the width of the confidence bands varies from 0.17 to 0.04 (me-
dian 0.06). Note that, although for β = 0 the confidence bands have constant
width, we have to cut off the lower bound at a maximum value of zero, and
hence the bands end up being non-constant in reality. Without this cutoff,
the width would be constant at 0.13.

In Table 2, we examine the empirical performance of the proposed confi-
dence bands. We consider two different unimodal distributions: the mixture
of uniforms as above, and the double logarithmic with p = 0.9 from (3.6).
Our simulations span various samples sizes and values of β. Note that when
β = 0.5, and the true pmf is double logarithmic, the conditions for conver-
gence are violated (see Proposition 6.1 and Remark 6.2), and we include this
example for comparison only (seeing as the condition that ∑i p

1−2β
0 <∞ may
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be difficult to verify without additional information about p0).

Table 2: Empirical coverage probabilities for the proposed confidence bands
with α = 0.05.

β n = 100 n = 1000 n = 5000

mixture of
uniforms

0 0.972 0.963 0.959
0.25 0.991 0.971 0.970
0.5 0.959 0.953 0.991

double
logarithmic

0 0.956 0.949 0.949
0.25 0.970 0.950 0.948
0.5 0.980 0.989 0.989

Define, for β ≥ 0,

ĉn,u(s) = p̂n(s) + p̂
β
n(s)

q̂β,α
√
n
, s ∈ supp(p̂n),

ĉn,l(s) = 0 ∨ (p̂n(s) − p̂
β
n(s)

q̂β,α
√
n
) , s ∈ supp(p̂n),

ĉn,u(s) = ĉn,l(s) = 0, s ∉ supp(p̂n).

The results in Table 2 give the empirical coverage on the set Sn as indicated
in the third column. That is, we report the proportion of times that

ĉn,l(s) ≤ p0(s) ≤ ĉn,l(s), for all s ∈ Sn (6.17)

was observed.
Overall, we find that the confidence bands perform rather well. Note that

the double logarithmic case β < 0.5 we would expect to obtain asymptoti-
cally correct bands, whereas in both uniform mixture scenarios, we expect an
asymptotically conservative result. In Appendix A, we provide some addi-
tional results where we study the cost of defining the bands on supp(p̂n) = Sn
in the simulations.

7 Time-to-onset of the Ebola virus

In a recent article, Breman and Johnson (2014) describe their experiences
during the 1976 Ebola virus outbreak in Zaire (currently, the Democratic
Republic of the Congo). The figure in the article shows histograms of the
time of onset of the disease based on the transmission route: patients be-
came infected either with an unsterilized needle or through person-to-person
contact. This data was also previously published in Breman et al. (1978).
Here, we use the histograms in Breman and Johnson (2014) to transcribe the
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Figure 8: Time to onset of symptoms of the Ebola virus based on trans-
mission type. The sample size is n = 57 for those infected from unsterilized
needles and n = 108 for person to person contact.

data and perform a brief analysis. We note that transcribing the histograms
resulted in samples sizes of n = 57 and n = 108, which differs slightly from
that presented in Breman and Johnson (2014).

Figure 8 shows the empirical observations and the fitted unimodal MLEs
for the two types of transmission routes. The 95% asymptotic global confi-
dence band are also included, where we used the version with constant width;
i.e. those corresponding to β = 0. Note that the time-to-onset is measured
in days, and it therefore makes sense to assume that the support of the true
pmf is either equal to the natural numbers, or is a connected subset thereof.
Thus, we use the version of the likelihood maximization where the support
is not estimated from the data. As mentioned earlier, our results apply also
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to this (easier) case. Visually, there is no glaring reason that the assumption
of unimodality is not appropriate in these two cases. On the other hand, the
fitted MLE provides a slight smoothing to the empirical distribution, which
is appealing.

We note also that the confidence bands in Figure 8 appear somewhat wide
at first glance. However, this is due to the smaller sample sizes observed in
both distributions. The average width for the injection infection was found
to be 0.18, and 0.12 for infection from person-to-person contact. As a crude
benchmark, the average widths of 95% pointwise confidence intervals were
calculated for the true pmf

p̂n ± 1.96
√
p̂n(1 − p̂n),

based on Theorem 5.1 and under the (untested) assumption that the true
pmf is strictly unimodal. Here, the average width for the injection infection
was found to be 0.12, and 0.08 for infection from person-to-person contact.
These are also rather wide, but smaller than the global confidence bands, as
expected.

It is quite interesting how different the two distributions appear to be.
The standard Kolmogorov-Smirnov test does not yield exact p-values in
this setting because the data is discretized, and hence we used a permu-
tation test (Jöckel, 1986). This modified approach yielded a p-value of
0.0014 for the hypothesis that the two distributions are the same (incor-
rectly applying the regular Kolmogorov-Smirnov test also rejected the null
hypothesis). This is in line with what we observe in Figures 8 and 9. R (R
Core Team, 2014) code for performing this analysis is available online at
www.math.yorku.ca/~hkj/Research.

A biological explanation for the difference between the two distributions
was provided to us by Jane Heffernan (2014, private communication): “In-
jection gets the pathogen into the blood stream. Person-to-person contact
provides exposure to the mucosa (innate immunity) first, so the pathogens
that ultimately make it to the blood will be different in fitness distribution
than the injection method. Also, the amount of pathogen ultimately making
it to the blood could be smaller compared to the injection method. Both of
these variables will affect the incubation period.” In the data, we see this
difference not only through a mean comparison (the mean time-to-onset is
6.3 days for transmission via injection and 9.4 days for person-to-person in-
fections) but also in the stochastic dominance observed via the fitted and
empirical CDFs in Figure 9. The latter suggest that Tinj ≤ Tptp stochasti-
cally, where Tinj and Tptp denote the times to onset for injection and person-
to-person infections, respectively. Repeating the permutation test for the
hypothesis that the two distributions are equal against the alternative that
Finj > Fptp yields a p-value of 0.0008.

Acknowledgments. The authors would like to thank Hélène Massam for

24



0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

empirical CDF (injection)
empirical CDF (person−to−person)
unimodal CDF (injection)
unimodal CDF (person−to−person)
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Supplementary Material

Appendices

A Some further empirical coverage results

Table 3: Empirical coverage probabilities for the proposed confidence bands
with α = 0.05.

β R n = 100 n = 1000 n = 5000

mixture
of
uniforms

0
Sn 0.972 0.963 0.959

supp(p0) 0 0.953 0.959

0.25
Sn 0.991 0.971 0.970

supp(p0) 0 0.961 0.970

0.5
Sn 0.959 0.953 0.991

supp(p0) 0 0.944 0.991

double
logarithmic
p = 0.9

0
Sn 0.956 0.949 0.949

p0(R) ≈ 0.95 0.001 0.922 0.949

0.25
Sn 0.970 0.950 0.948

p0(R) ≈ 0.95 0.001 0.922 0.948

0.5
Sn 0.980 0.989 0.989

p0(R) ≈ 0.95 0.001 0.959 0.990

Let R ⊆ S0. The results in Table 3 give the empirical coverage on the set
R as indicated in the third column. That is, we report the proportion of
times that

ĉn,l(s) ≤ p0(s) ≤ ĉn,l(s), for all s ∈ R

was observed. The confidence bands are optimized for R = supp(p̂n), and
this allows us to compare the behavior for other choices of R.

The results of Table 3 clearly show the cost of only defining the confi-
dence bands on supp(p̂n) = Sn in the simulations. For larger sample sizes,
this cost decreases. However, for small sample sizes, the undercoverage is
drastically big, simply because Sn does not cover the set R yet. This issue
aside, we find that the confidence bands perform rather well. In the double
logarithmic setting for β < 0.5, we expect to obtain asymptotically correct
coverage bands, and hence, empirical coverage probabilities not statistically
different from 0.95 are shown in bold. In all uniform mixture scenarios, we
expect an asymptotically conservative result; that is, the asymptotic cov-
erage should is expected to be greater than 0.95. In the table, empirical
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coverage probabilities not statistically smaller than 0.95 are shown in bold
(for the mixture of uniforms case).

B Proofs and technical details

B.1 Note on finding the MLE

In several proofs, we make use of the following idea (a well known practice
in shape-constrained estimation problems):

To compute p̂n∣κ, we first relax consideration over pmfs to positive se-
quences, U ∣κ(Sn) , by changing the criterion function Ln to

Φn(p) = Ln(p) −
J−1

∑
j=0

p(zj) = Ln(p) − ∑
z∈Sn

p(z). (B - 18)

This is possible because the two maximization problems are equivalent. To
see this, note that if p is a positive sequence with support Sn maximizes Φn,
then for all c ∈ R with ∣c∣ very small

0 = lim
c→0

Φn(p + cp) −Φn(p)

c
= 1 − ∑

z∈Sn

p(z)

implying that p is necessarily a pmf. In the sequel, we denote by U(Sn) the
space of positive unimodal sequences with support Sn.

B.2 Proofs from Section 4

Proof of Theorem 4.1. We first recall that

ρ(p∣p0) ≥ 0, (B - 19)

with equality if and only if p = p0 (P0 a.s.). This result is often referred to as
Gibbs’ inequality. We now proceed progressively in steps. We first assume
that ∣S0∣ ≥ 2.

1. Let Q denote the cdf of any discrete distribution on N and Q̂ denote
its least concave majorant (on N). Let q̂ denote the pmf associated
with Q̂. We first claim that q̂ is such that

∫ log
q̂

p
dQ ≥ 0, for all decreasing pmf p.

This follows from the results of Patilea (1997, 2001) for decreasing
densities as follows: Let F0(z) = Q(z − 1) denote a cdf on R+, and let
F̂0 denote its least concave majorant on R+ (LCM), with associated
pdf f̂0. Then, from Patilea (1997, 2001) it follows that f̂0 satisfies

∫ log
f̂0
f
dF0 ≥ 0,
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for all decreasing densities f , and hence also for all decreasing densities
with the form f(x) = ∫

∞

0 θ−11[0,θ](x)dµ(θ), where µ is discrete with
mass only at Z+. In other words, any f which is piecewise constant,
with points of jump occurring possibly only at Z+. For such densities f,
let p(z) = ∫

z+1
z f(x)dx = f(z + 1), z ∈ N. In addition, note that q̂(z) =

∫
z+1
z f̂0(x)dx = f̂0(z + 1), from the definition of Q̂ and F̂0. Then we

have that

∫ log
q̂

p
dQ = ∑

z≥0

log
q̂(z)

p(z)
q(z)

= ∑
z≥0

log
f̂0(z + 1)

f(z + 1)
{F0(z + 1) − F0(z)}

= ∫ log
f̂0
f
dF0 ≥ 0,

and the result follows.

2. Next, let α = ∑i≥κ p0(si), q1(i) = α
−1p0(si+κ), and q2(i) = (1−α)−1p0(sκ−1−i).

Both q1 and q2 are pmfs on N and we apply step one above to find their
q̂1, q̂2. Define p̂0∣κ(si) = αq̂1(i−κ), i ≥ κ and p̂0∣κ(si) = (1−α)q̂2(κ−1−i)
for i ≤ κ − 1. Then clearly p̂0∣κ ∈ U1∣κ(S0). Furthermore, for any
p ∈ U1∣k(S0)

∫ log
p̂0∣κ
p
dP0 = ∑

i≤κ−1

log
p̂0∣κ(si)

p(si)
p0(si) +∑

i≥κ

log
p̂0∣κ(si)

p(si)
p0(si)

= ∑
i≤κ−1

log
(1 − α)q̂2(κ − 1 − i)

p(si)
p0(si)

+∑
i≥κ

log
αq̂1(i − κ)

p(si)
p0(si)

= (1 − α) ∑
i≤κ−1

log
(1 − α)q̂2(κ − 1 − i)

p(si)

p0(si)

1 − α

+α∑
i≥κ

log
αq̂1(i − κ)

p(si)

p0(si)

α

= (1 − α)∑
z≥0

log
q̂2(z)

p2(z)
q2(z) + α∑

z≥0

log
q̂1(z)

p1(z)
q1(z),

where p2(z) = (1 − α)−1p(sκ−1−z) and p1(z) = α
−1p(sκ+z). Now, let c1

denote the constant such that c1∑z≥0 p1(z) = 1, and let p̃1 = c1p1 (and
similarly for p2). Let β = ∑z≥0 p(sκ+z). Then, we have that the above
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is equal to

(1 − α)∑
z≥0

log
q̂2(z)

p2(z)
q2(z) + α∑

z≥0

log
q̂1(z)

p1(z)
q1(z)

= (1 − α) log c2 + α log c1 + (1 − α)∑
z≥0

log
q̂2

p̃2(z)
q2(z)

+α∑
z≥0

log
q̂1

p̃1(z)
q1(z)

≥ (1 − α) log c2 + α log c1 = (1 − α) log
(1 − α)

(1 − β)
+ α log

α

β
≥ 0,

where the last inequality follows from the Gibbs’ inequality in (B - 19)
applied to two Bernoulli distributions with success probabilities α and
β respectively. It follows that

∫ log
p̂0∣κ
p
dP0 ≥ 0

for any p ∈ U1∣κ(S0). We have therefore proved existence of p̂0∣κ.

3. Finally, we prove that p̂0∣κ as defined above is the unique solution to
(4.11) in the two cases stated in the proposition.

● Suppose that p0 ∈ U1∣κ(S0). Then, by Gibbs’ inequality, we have
that

∫ log
p0
p
dP0 ≥ 0, ∀p ∈ U1∣κ(S0).

Suppose then that p̂0 is another candidate for the KL projection, as
above. Then we would have that

∫ log
p0
p̂0
dP0 ≥ 0 and also ∫ log

p̂0
p0
dP0 ≥ 0.

But this implies that

∫ log
p0
p̂0
dP0 = 0,

and (again by Gibbs’ inequality) it follows that p̂0 = p0, P0 a.s..

● Suppose that p0 ∉ U1∣κ(S0) with ∑j≠0 log ∣j∣p0(sj) < ∞. Then,
by Proposition 4.3, we have that supp∈U1∣κ(S0) ∫ log pdP0 ∈ (−∞,0].
Hence, (4.11) is equivalent to

p̂0 = argmaxp∈U1∣κ(S0)∫ log pdP0.
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By the strict concavity of log, we have that log(αa+(1−α)b) ≥ α log a+
(1 − α) log b, with equality iff a = b. Suppose that p̂1 and p̂2 are two
different pmfs at which the cross entropy achieves its maximum. Then,
by convexity of U1∣κ(S0), p̂0 = αp̂1 + (1 − α)p̂2 is also in U1∣κ(S0), and
hence

∫ log p̂0 dP0 = ∫ log {αp̂1 + (1 − α)p̂2}dP0

> α∫ log p̂1dP0 + (1 − α)∫ log p̂2dP0

= argmaxp∈U1∣κ(S0)∫ log pdP0

which yields a contradiction. Therefore, we must have that p̂1 = p̂2, P0-
almost surely. But this implies that on the set {s ∈ S0 ∶ p0(s) > 0}, p̂1
and p̂2 must both be equal to the slope of the greatest convex minorant
(GCM) of the cumulative sum of p0(si) to the left of sκ−1 and the slope
of its LCM to the right of sκ. Since the latter has the same support
as p0, we conclude that uniqueness has to hold everywhere.

Lastly, suppose that ∣S0∣ = 1. Then p0 ∈ U1∣κ(S0) must be unimodal with
S0 = {sκ}, and p̂0 = p0. The same proof as the first part of point three above
applies.

Lemma B.1. Suppose that ∑j≠0 log ∣j∣p0(sj) <∞. Then for each κ ∈ Z such
that sκ ∈ S0, there exists a q ∈ U1∣κ(S0) such that ∫ log q dP0(x) ∈ (−∞,0].

Proof. Fix κ ∈ Z with κ ≠ 0. Then

∑
j≠κ

log ∣j − κ∣p0(sj) = ∑
j∉{κ,0}

log ∣j∣
∣j − κ∣

∣j∣
p0(sj) + log ∣κ∣p0(s0)

= ∑
j≠0,κ

log ∣j∣p0(sj) + ∑
j∉{κ,0}

log
∣j − κ∣

∣j∣
p0(sj) + log ∣κ∣p0(s0)

≤ ∑
j≠0

log ∣j∣p0(sj) + ∑
j∉{κ,0}

log
∣j − κ∣

∣j∣
p0(sj) + log ∣κ∣.

Now, since lim∣j∣→∞ log (∣j − κ∣/∣j∣) = 0, and by the assumption of the lemma,
all three terms above are finite, and it follows that ∑j≠κ log ∣j −κ∣p0(sj) <∞
for all κ ∈ Z.

Define a pmf q with support S0 as

q(sj) ∝

⎧⎪⎪
⎨
⎪⎪⎩

1
∣j−κ∣ log2 ∣j−κ∣

j ≠ κ − 1, κ, κ + 1,
1

2 log2 2
j = κ − 1, κ, κ + 1,

(B - 20)

for sj ∈ S0. Since ∫
∞

2 (x log2 x)−1dx = 1/(log 2), there exists a normalizing
constant for q ∈ U1∣κ(S0). It remains to calculate its entropy. That is,

∑
j

log q(sj)p0(sj) = D − ∑
∣j−κ∣≥2

log ∣j − κ∣p0(sj) − 2 ∑
∣j−κ∣≥2

log log ∣j − κ∣p0(sj),
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where D is some finite constant. The second term is also finite by the first
part of this proof. For the last term we have that

0 ≤ ∑
∣j−κ∣≥e

log log ∣j − κ∣p0(sj) ≤ ∑
∣j−κ∣≥e

log ∣j − κ∣p0(sj),

and hence this term is also finite. The result follows.

Proof of Theorem 4.2. The first point can be shown using Gibbs’ inequality
as done above in the proof of Theorem 4.1. To prove the second point, we
first note that by Proposition 4.3, under the assumptions of the theorem,
(4.9) and (4.10) are equivalent. Therefore, to prove that (4.9) holds, it is
sufficient to show that (4.10) holds, for some p̂0. By Lemma B.1, for each
κ ∈ Z there exists a q ∈ U1∣κ(S0) such that ∫ log qdP0 > −∞. Therefore, each

∫ log p̂0∣κ(x)dP0(x) > −∞ (although this bound is not uniform in κ). Next,
by Lemma C.1, we have that

∫ log p̂0∣κ(x)dP0(x) = ∑
j

log p̂0∣κ(sj)p0(sj)

≤ −∑
j≠κ

log ∣j − κ∣p0(sj)

≤ − log ∣κ −m∣p0(sm),

for some fixed m such that sm ∈ S0. Letting κ → ±∞, it follows that the
maximum cannot be attained for large values of ∣κ∣, and hence the supremum
of ∫ log p̂0∣κ(x)dP0(x) can be found by considering a finite collection of
values of κ. This proves existence of a maximizer p̂0 ∈ U

1(S0) (and also that
{p̂0} is a finite set).

Proof of Proposition 4.3. We first show that if ∑j≠0 log ∣j∣dP0 = ∞, then

∫ log pdP0 = −∞, for any unimodal p. This follows since, if p is unimodal,
then p ∈ U1∣κ(S0) for some κ ∈ Z. Hence, by Lemma C.1, we have that

∫ log pdP0 ≤ ∑
j

log min (1, ∣j − κ∣−1)p0(sj)

= −∑
j≠κ

log ∣j − κ∣p0(sj).

Now, if κ = 0, then ∫ log pdP0 ≤ −∑j≠κ log ∣j − κ∣p0(sj) = ∑j≠0 log ∣j∣p0(sj).
If κ ≠ 0, then

−∑
j≠κ

log ∣j − κ∣p0(sj) = − ∑
j∉{κ,0}

log ∣j∣
∣j − κ∣

∣j∣
p0(sj) − log ∣κ∣p0(s0)

= −∑
j≠0

log ∣j∣p0(sj) − ∑
j∉{κ,0}

log
∣j − κ∣

∣j∣
p0(sj) − log ∣κ∣p0(s0) + log ∣κ∣p0(sκ)

≤ −∑
j≠0

log ∣j∣p0(sj) − ∑
j∉{κ,0}

log
∣j − κ∣

∣j∣
p0(sj) + log ∣κ∣.
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Since lim∣j∣→∞ log (∣j − κ∣/∣j∣) = 0, there exists an integer J > 0 such that for
all ∣j∣ > J

log
∣j − κ∣

∣j∣
∈ [−

1

2
,
1

2
] .

Then,

∑
j∉{κ,0}

log
∣j − κ∣

∣j∣
p0(sj)

= ∑
j∉{κ,0},∣j∣≤J

log
∣j − κ∣

∣j∣
p0(sj) + ∑

j∉{κ,0},∣j∣>J

log
∣j − κ∣

∣j∣
p0(sj)

≥ ∑
j∉{κ,0},∣j∣≤J

log
∣j − κ∣

∣j∣
p0(sj) −

1

2
∑

j∉{κ,0},∣j∣>J

p0(sj)

≥ ∑
j∉{κ,0},∣j∣≤J

log
∣j − κ∣

∣j∣
p0(sj) −

1

2
= −C,

for some finite constant C. Therefore,

∫ log pdP0 ≤ −∑
j≠0

log ∣j∣p0(sj) +C+ log ∣κ∣,

and the first part of the claim follows (noting that since κ ∈ Z and κ ≠ 0,
then log ∣κ∣ < ∞). The second part of the claim follows immediately from
Lemma B.1.

B.2.1 Proof of Theorem 4.4

We start by showing the following lemma.

Lemma B.2. Suppose that ∑i≠0 log ∣i∣p0(si) < ∞. Let M̂n be the modal
region of p̂n. Then, we can find M > 0 sufficiently large, such that with
probability one there exists an integer n0 > 0 such that

sup
n≥n0

max
κ∈M̂n

∣κ∣ ≤M + 1.

Proof. Fix ε1 ∈ (0, p0(s0)/4), and define the event that Acn = {sup ∣Fn −F0∣ ≤

ε1}. By the Dvoretzky-Kiefer-Wolfowitz inequality the probability of An is

at most 2e−2nε
2
1 . Applying Lemma C.1, we have that

∫ log p̂n∣κdFn ≤ −∑
i≠κ

log ∣i − κ∣pn(si)

≤ − log ∣κ∣pn(s0) ≤ − log ∣κ∣(p0(s0) − 2ε1)

≤ − log ∣κ∣p0(s0)/2 ≤ − logM p0(s0)/2,

if ∣κ∣ > M. Let Bn denote the event that ∫ log p̂n∣κdFn > − logM p0(s0)/2,
whenever ∣κ∣ > M. By the above, we have that Bn ⊂ An. Since P (An) is
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summable, the Borel-Cantelli lemma implies that P (Bn i.o.) = 0. Thus, we
have shown that, with probability one, there exists an integer n1 such that
for all n ≥ n1

∫ log p̂n∣κdFn ≤ − logM p0(s0)/2, ∀∣κ∣ >M.

Without loss of generality, we can assume that S0 = {si, i ∈ K} with
K = Z. Next, define q as in (B - 20), and note that here we have

∑
i

∣ log q(si)∣p0(si) <∞,

using similar arguments to those used in the proof of Proposition 4.3. Recall
that the pmf q ∈ U1∣κ=0(S0). Fix ε2 > 0. By the strong law of large numbers,
we can find with probability one an integer n2 such that for all n ≥ n2

∫ log q dFn ≥ ∫ log q dF0 − ε2.

Since ∫ log q dF0 ∈ R, we can furthermore choose ε2 and M so that

∫ log q dFn > − logM p0(s0)/2.

Thus, it follows that with probability one, there exists an n0 (in fact, n0 =
max{n1, n2}), such that

∫ log q dFn > ∫ log p̂n∣κdFn

for all ∣κ∣ > M. But this implies that p̂n∣κ cannot be equal to the MLE p̂n
when ∣κ∣ >M, proving the result.

Proof of Theorem 4.4. We want to show that p̂n → p̂0. First, we recall that
pointwise convergence and convergence in `k,1 ≤ k ≤ ∞ and Hellinger dis-
tance h are all equivalent for sequences of pmfs. This follows for example
from Lemma C.2 in the on-line supporting material of Balabdaoui et al.
(2013). We also recall that a collection of probability measures is tight if,
for all ε > 0, there exists a compact set K =K(ε), such that for all measures
µ in the collection, we have µ(Kc) < ε. Let P̂n denote the measure induced
by p̂n. We first claim that {P̂n}n≥1 is tight with probability one. Fix ε > 0.
Then, by the Glivenko-Cantelli theorem, we can find with probability one an
integer n1 > 0 such that for all n ≥ n1, sups∈S0

∣Fn(s) − F0(s)∣ < ε/6. Also, by
definition of the cdf, there exists a constant M0 > 0 such that for all M ≥M0,

1 − F0(M) + F0(−M − 1) < ε/6.
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Note that this implies that we have with probability one

1 − Fn(M) + Fn(−M − 1)

= 1 − F0(M) + F0(−M − 1)

+{F0(M) − Fn(M)} + {Fn(−M − 1) − F0(−M − 1)}

< ε/2,

for all n ≥ n1 and all M ≥M0.
Next, let κ̂n be such that p̂n ∈ U

1∣κ̂n(S0). Then, by the result of Lemma B.2,
with probability one, there exist M >M0 and an integer n2 > 0 such that for
all n ≥ n2, supn≥n2

∣κ̂n∣ ≤M . On this event, we have that

P̂n ([−M,M]
c
) = ∑

z≥M+1

p̂n(z) + ∑
z≤−M−1

p̂n(z)

≤ ∑
z≥M+1

pn(z) + ∑
z≤−M−1

pn(z)

= 1 − Fn(M) + Fn(−M − 1) < ε/2

where the inequality in the second line follows from Proposition C.2. We
have therefore shown that there exists a sufficiently large n0 = max{n1, n2}
such that {P̂n}n≥n0 is tight. Since any finite collection of distributions is also
tight, it follows that {P̂n}n≥1 is tight, with probability one.

Since {P̂n} is tight, it is also sequentially compact. Thus, let {P̂nk} de-
note a weakly convergent subsequence, which, for convenience, we continue
to denote as {P̂n}. The Portmanteau theorem then implies that the associ-
ated pmf p̂n(si) converges for all si ∈ S0 (since (s − δ, s + δ) are continuity
sets for appropriate choice of δ), and we let p̃ denote the limiting pmf. To
complete the proof, we need only show that p̃ is an element of {p̂0}. Note
that convergence in the set metric then follows because {p̂0} is necessarily a
finite set.

Now, since we maximize the criterion function ∫ log pdFn − ∑z∈Sn p(z)
(B - 18) over positive and unimodal sequences and since ∑z∈Sn p̂n(z) = 1, we
can write

∑ log p̂0(zj)pn(zj) −∑ p̂0(zj) ≤ ∑ log p̂n(zj)pn(zj) − 1

≤ ∑ log(b + p̂n(zj))pn(zj) − 1,

for b > 0. Re-arranging the terms above, this yields

0 ≤ ∑ log(b + p̂n(zj))pn(zj) −∑ log p̂0(zj)pn(zj) +∑ p̂0(zj) − 1

≤ ∑ log(b + p̂n(zj))pn(zj) −∑ log p̂0(zj)pn(zj),

where the last inequality follows since ∑ p̂0(zj) ≤ 1. Finally, because pn puts
all of its mass only on the zj , we can re-write the latter as

0 ≤ ∑ log(b + p̂n(sj))pn(sj) −∑ log p̂0(sj)pn(sj).
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On the other hand, we have that

∑ log(b + p̂n(sj))pn(sj) −∑ log p̂0(sj)pn(sj)

=∑ log(b + p̂n(sj)) (pn(sj) − p0(sj)) +∑ log p̂0(sj) (p0(sj) − pn(sj))

+∑ log(
b + p̂n(sj)

b + p̂0(sj)
) p0(sj) +∑ log(

b + p̂0(sj)

p̂0(sj)
) p0(sj).

(B - 21)

Next we get rid of the first two terms on the right-hand side. First, using
summation by parts,

∑ log (b + p̂n(sj)) (pn(sj) − p0(sj))

=∑(Fn(sj) − F0(sj)) [log (b + p̂n(sj)) − log (b + p̂n(sj−1))] .

Now, we know that p̂n = p̂n∣κ for some κ. Then,

∣∑ log (b + p̂n(sj)) (pn(sj) − p0(sj))∣

≤ sup ∣Fn(sj) − F (sj)∣

⎧⎪⎪
⎨
⎪⎪⎩

∑
j≤κ−1

[log (b + p̂n(sj)) − log (b + p̂n(sj−1))]

+ ∣log (b + p̂n(sκ)) − log (b + p̂n(sκ−1))∣

+ ∑
j≥κ+1

[log (b + p̂n(sj)) − log (b + p̂n(sj−1))]

⎫⎪⎪
⎬
⎪⎪⎭

≤ 4∣ log(b +max
j
p̂n(sj))∣ sup ∣Fn(sj) − F0(sj)∣

≤ 4 max{log(1 + b), ∣ log(b)∣} sup ∣Fn(sj) − F0(sj)∣,

which converges to zero. The law of large numbers shows that the second
term also converges to zero. This follows because supp∈U1(S0) ∫ log pdP0 >

−∞, which implies that ∑ ∣ log p̂0(sj)∣p0(sj) < ∞. Therefore, rearranging
(B - 21), we find that

lim sup
n

∑ log(
b + p̂0(sj)

b + p̂n(sj)
) p0(sj) ≤ ∑ log(

b + p̂0(sj)

p̂0(sj)
) p0(sj).

Now, letting b→ 0, we have by Fatou’s lemma that

lim sup
b→0

lim sup
n

∑ log(
b + p̂0(sj)

b + p̂n(sj)
) p0(sj) ≤ 0.

Next, we take the limits on the right-hand side. First, by the dominated
convergence theorem

lim sup
n

∑ log(
b + p̂0(sj)

b + p̂n(sj)
) p0(sj) = ∑ log(

b + p̂0(sj)

b + p̃(sj)
) p0(sj),
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since ∣ log((b + p̂0)/(b + p̂n))∣ ≤ 2 max{log(b + 1), ∣ log b∣}. Next, we want to
show that

lim
b↓0
∑ log(

b + p̂0(sj)

b + p̃(sj)
) p0(sj) = ∑ log(

p̂0(sj)

p̃(sj)
) p0(sj). (B - 22)

To do this, consider both pieces separately. First, log(b+ p̂0(z)) is decreasing
in b and bounded above by log 2, and hence by the monotone convergence
theorem we have that

lim
b
∑ log (b + p̂0(sj)) p0(sj) = ∑ log p̂0(sj)p0(sj).

Similarly − log(b+ p̃(sj)) is increasing as b decreases, and bounded below by
− log 2. Therefore also,

lim
b
∑ log (b + p̃(sj)) p0(sj) = ∑ log p̃(sj)p0(sj).

Note that ∫ log pdP0 is always finite for any unimodal p, and therefore we
may subtract the last two lines above to yield (B - 22). We have thus shown
that

∑ log(
p̂0(sj)

p̃(sj)
) p0(sj) ≤ 0.

Rearranging, this gives

sup
p∈U1(S0)

∫ log pdP0 = ∑ log p̂0(si)p0(si) ≤ ∑ log p̃(si)p0(si),

and hence p̃ ∈ {p̂0}.

Recall the definition of knots in (5.14) and the preceding paragraph.

Lemma B.3. Suppose that ∑j≠0 log ∣j∣p0(sj) < ∞ and ∣{p̂0}∣ = 1. Let τ ∈ T

be a knot point of p0. Then, almost surely, there exists an n0 such that for
all n ≥ n0 we have that τ is also a knot of p̂n.

Proof. Without loss of generality, assume that τ = sk0 and that p̂0(sk0) >

p̂0(sk0−1). Then, from Theorem 4.4, we know that sup ∣p̂0(sj) − p̂n(sj)∣ < ε,
where ε < (p̂0(sk0) − p̂0(sk0−1))/2, for all sufficiently large n. Therefore,

p̂n(sk0) ≥ p̂0(sk0) − ε > p̂0(sk0−1) + ε ≥ p̂n(sk0−1),

and the result follows.

Proof of Corollary 4.6. Write M = {sk1 , . . . , sk2}, and note that, by def-
inition, we have that p̂0(sk1) > p̂0(sk1−1) and p̂0(sk2) > p̂0(sk2+1). From
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Lemma B.3 and the `1 consistency results of Theorem 4.4, it follows that,
with probability one, there exists an n0 such that for all n ≥ n0,

p̂n(sj) ≤ p̂n(sk1−1) < p̂n(sk1), j ≤ k1 − 1,

p̂n(sk2) > p̂n(sk2+1) ≥ p̂n(sj), j ≥ k2 + 1.

This, of course, implies that the mode of p̂n must be in M = {sk1 , . . . , sk2}.

Proof of Corollary 4.7. This is an immediate consequence of Theorem 4.4
and the inequality

∣F̂n(si) − F̂0(si)∣ ≤ ∑
j

∣p̂n(sj) − p̂0(sj)∣.

B.3 Proof of Theorem 5.1

Let {Wn(s), s ∈ Sn} ≡ {
√
n(pn(s) − p0(s)), s ∈ Sn}, denote the empirical

white noise process.

Proposition B.4. Let C = {∪kj=1Ij} ∪ {∪kj=1Dj} with k finite and Ij ,Dj

defined as in (5.13). Then, with probability one, there exists an integer
n0 > 0 such that for n ≥ n0

√
n(p̂n − p0)(s) = ϕ[Wn](s), for all s ∈ C.

Proof. By the strong law of large numbers, with probability one, we can find
an integer n1 > 0 such that for all n ≥ n1, C ⊂ Sn. Next, by Corollary 4.6,
with probability one, we can find n2 ≥ n1 such that for n ≥ n2 we have that
M̂n ⊂ M. This means that the p̂n is found as the minimizer in U1∣κ(S0)
where κ ∈M. By Lemma B.3, again with probability one, we can find an
n3 ≥ n2 such that the knots τ Ii , τ

D
i , i = 0, . . . , k are also knots of p̂n for all

n ≥ n3 (recall the definitions of the knots from (5.14) and the preceding
paragraph). Therefore, by Lemma C.4, for all n ≥ n3 we have that for
1 ≤ j ≤ k

p̂n(s) = iso[(pn)Ij ](s), s ∈ Ij ,

p̂n(s) = anti[(pn)Dj ](s), s ∈Dj .

That is, we have that p̂n(s) = ϕ[pn](s), s ∈ C, for n ≥ n3. Since p0 is constant
on each Ij ,Dj by definition, this implies that

√
n(p̂n − p0)(s) = ϕ[Wn](s), for all s ∈ C,

see Lemma C.5.
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Lemma B.5. Let V be a mean-zero Gaussian vector of dimension d > 0
with variance-covariance matrix Σ given by cov(Vi,Vj) = d−1δi=j−d−2. Then
uni[V] is unique with probability one.

Proof. Suppose that V̂1 and V̂2 are two different solutions for the minimiza-
tion problem. Our goal will be to show that P (V̂1 ≠ V̂2) = 0. Since any
minimizer of uni(V) can be re-written as local averages of the original vec-
tor V, it follows that we can find d×d matrices Â1 and Â2 such that V̂1 = Â1V
and V̂2 = Â2V, where Âi, i = 1,2 can be written as

Âi =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Â1
i 0 0 . . . 0

0 Â2
i 0 . . . 0

...

0 0 0 0 Âmii

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

with Âji , 1 ≤ j ≤mi, given by the lj × lj matrix

Âji =
1

lj

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 1 . . . 1
⋮ ⋮ . . . ⋮

1 1 . . . 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Also, note that if V̂i = ÂiV then

∣∣V̂i −V∣∣
2
2 = VT (I − Âi)V.

Finally, let A denote the set of all possible matrices Âi, and note that
∣A∣ is finite. Hence,

P (V̂1 ≠ V̂2) = P (V̂1 ≠ V̂2,VT (I − Â1)V = VT (I − Â2)V)

≤ ∑
B1,B2,∈A,B1≠B2

P (VT (I −B1)V = VT (I −B2)V)

= ∑
B1,B2,∈A,B1≠B2

P (VT (B1 −B2)V = 0) .

Let S = Σ1/2 so that we can write V = SZ for Z ∼ Nd(0, I). The ma-
trix ST (B1 − B2)S is Hermitian, and therefore admits a spectral decom-
position, which we write as ΓΛΓT , where Γ is an orthogonal matrix and
Λ = diag(λ1, . . . , λp,−λp+1, . . . ,−λd) with λi ≥ 0, 1 ≤ i ≤ d. Note that since
B1 ≠ B2, there exists at least one index i ∈ {1, . . . , d} such that λi ≠ 0. It is
also important to note that only B ∈ A with m = 1 yields BV = 0. Finally,
let U = ΓTZ. Note that U ∼ N (0, I). Then, we can write

P (VT (B1 −B2)V = 0) = P (ZTΓΛΓTZ = 0)

= P (UTΛU = 0)

= P (λ1U
2
1 + . . . + λpU

2
p = λp+1U

2
p+1 + . . . + λdU

2
d ).
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Notice that in the last line at least one of the quantities on the left or
right hand side is not equal to zero and that in such case it is a continuous
random variable (in fact, each has a gamma distribution). Also, notice that
the left hand side is independent of the right hand side. This shows that
P (VT (B1 −B2)V = 0) = 0, and the result follows.

Proof of Theorem 5.1. The proof is divided into several main steps. We first
address a slight technicality: the MLE p̂n is defined on Sn, while p0 is defined
on S0. The results we prove here all “live” in the space of `k sequences defined
on S0. To make our results concrete, we therefore embed all sequences on Sn
into sequences on S0 by setting them equal to zero for s ∉ Sn.

Below, we present the proof for `k(S0) with k = 2 only. Convergence for
3 ≤ k ≤ ∞ follows immediately, because ∣∣q∣∣k ≤ ∣∣q∣∣2 for k ≥ 2 and q ∈ `2 and
hence ∣∣ ⋅ ∣∣k is a continuous mapping on `2(S0) for k ≥ 2.

1. We first show that Wn converges in `2(S0) to the limit W. This is essen-
tially a well known result (cf. Jankowski and Wellner (2009, Theorem
3.1)), noting that for s ∉ Sn, Wn(s) = −

√
np0(s) =

√
n(pn(s) − p0(s))

is still well-defined, since for s ∉ Sn, pn(s) = 0.

2. We will next show that
√
n(p̂n − p0)⇒ ϕ[W] in `2(S0 ∖M). That is,

we consider the sequence only on the set S0 ∖M. This result is proved
in two sub-steps:

(a) We first show that ϕ is continuous in `2(S0 ∖M). This, together
with step one above implies that ϕ[Wn]⇒ ϕ[W] in `2(S0 ∖M).

(b) The next step is to show that ∣∣
√
n(p̂n−p0)−ϕ[Wn]∣∣

2
2

p
→ 0 (where

the `2 norm is calculated only on the support S0 ∖M). In fact,
we prove slightly stronger convergence (in expectation).

3. Finally, we will tackle convergence on the set M. This follows essen-
tially from the argmax continuous mapping theorem. Note that since
∣M∣ is necessarily finite, we also have convergence in `2(M) of the
process on the set M.

4. To put the two results together, note that the convergence in steps
two and three can also be stated as joint convergence (and not just
convergence of marginals). This holds because of the joint convergence
of Wn in step one. From here the full result follows.

We now fill in the details in steps 2 and 3 above. To prove 2(a), consider
a converging sequence qn → q in `2(S0 ∖M) and fix ε > 0. Then we can find
an integer n0 and K > 0 large enough such that

sup
n≥n0

∑
∣i∣>K

q2n(si) < ε/6, and ∑
∣i∣>K

q2(si) < ε/6.
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Now, let K1 ≤ −K and K2 ≥K be such that sK1 , sK2 ∈ T . We then have that

∑
si∉M

(ϕ[qn](si) − ϕ[q](si))
2

≤ ∑
i∈[K1,K2],si∉M

(ϕ[qn](si) − ϕ[q](si))
2

+2 ∑
i∉[K1,K2]

ϕ[qn]
2
(si) + 2 ∑

i∉[K1,K2]

ϕ[q]2(si).

Now, by Lemma C.5 (choosing p = q = 0) we have that

∑
i∉[K1,K2]

ϕ[qn]
2
(si) ≤ ∑

i∉[K1,K2]

q2n(si),

and similarly for qn replaced with q. Also, by continuity of the operators iso
and anti (Proposition C.6), we can choose an n1 ≥ n0 such that for all n ≥ n1

∑
i∈[K1,K2],si∉M

(ϕ[qn](si) − ϕ[q](si))
2
< ε/3.

It follows that for all n ≥ n1, we have that

∑
si∉M

(ϕ[qn](si) − ϕ[q](si))
2

≤ ε/3 + 2 ∑
∣i∣≥K

q2n(si) + 2 ∑
∣i∣≥K

q2(si)

≤ ε/3 + 4ε/6 = ε.

This shows that ϕ is continuous in `2(S0 ∖M).
To prove 2(b), we fix ε > 0 and pick K large enough so that ∑∣i∣>K p0(si) <

ε. Now, let K1 ≤ −K and K2 ≥ K be such that sK1 , sK2 ∈ T . Let Ŵn(s) =√
n(p̂n − p0)(s). Then

∑
si∉M

(Ŵn − ϕ[Wn])
2
(si) ≤ ∑

i∈[K1,K2],si∉M

(Ŵn(si) − ϕ[Wn](si))
2

+2 ∑
i∉[K1,K2],si∈Sn

Ŵ2
n(si) + 2 ∑

i∉[K1,K2],si∈Sn

W2
n(si)

+4 ∑
i∉[K1,K2],si∉Sn

W2
n(si).

Now, for n large enough, by Proposition B.4 we have that Ŵn(si) = ϕ[Wn](si)
for all i ∈ [K1,K2], si ∉M.Also, ∑i∉[K1,K2],si∈Sn Ŵ

2
n(si) ≤ ∑i∉[K1,K2],si∈Sn W

2
n(si)

by Lemma C.5. We therefore have that for n sufficiently large

∣∣Ŵn − ϕ[Wn]∣∣
2
2 ≤ 4 ∑

∣i∣>K

W2
n(si).

0 ≤ limE [∣∣Ŵn − ϕ[Wn]∣∣
2
2] ≤ E [lim ∣∣Ŵn − ϕ[Wn]∣∣

2
2]

≤ 4E

⎡
⎢
⎢
⎢
⎢
⎣

lim ∑
∣i∣>K

W2
n(si)

⎤
⎥
⎥
⎥
⎥
⎦

≤ 4E

⎡
⎢
⎢
⎢
⎢
⎣

∑
∣i∣>K

W2
(si)

⎤
⎥
⎥
⎥
⎥
⎦

= ∑
∣i∣>K

p0(si) < ε.
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Since ε was arbitrary, this proves the result.
Finally, we tackle step 3. We will do this by applying the argmax con-

tinuous mapping theorem, cf. van der Vaart and Wellner (1996, Theorem
3.2.2, page 286). Let Ln(p) denote again the empirical log-likelihood, and
recall that

p̂n = argmaxκ∈Sn Ln(p̂n∣κ).

Now, by Lemma B.3 applied to τ I0 and τD0 , and by Lemma C.4 we can also
have that

p̂n = argmaxκ∈MLn(p̂n∣κ),

and furthermore, each p̂n∣κ(s), s ∈ M is determined by the LCM/GCM
characterization only on M. Let d = ∣M∣ and recall the definition of Ud
from Section 2.2.2 as the space of unimodal vectors of length d. Also, let
U+d = {u ∈ Ud ∶ u > 0}. For s ∈M, and for sufficiently large n, we have that

√
n(p̂n − p0) =

√
n{argminp∈U+

d
[− ∑

s∈M

log(
p

pn
)pn + ∑

s∈M

p] − p0}

= argminq∈
√
n(U+

d
−p0)

[− ∑
s∈M

log(
p0 + q/

√
n

pn
)pn + ∑

s∈M

(p0 + q/
√
n)]

= argminq∈
√
n(U+

d
−p0)

⎡
⎢
⎢
⎢
⎢
⎣

− ∑
s∈M

log
⎛

⎝

p0 +
q

√
n

pn

⎞

⎠
pn + ∑

s∈M

q
√
n
− ∑
s∈M

Wn
√
n

⎤
⎥
⎥
⎥
⎥
⎦

,

since ∑s∈M p0 and ∑s∈MWn are constants on which the minimization does
not depend. Now, let

Mn(q) = − ∑
s∈M

log(
p0 + q/

√
n

pn
)pn +

1
√
n
∑
s∈M

q −
1

√
n
∑
s∈M

Wn

= − ∑
s∈M

log(1 +
1

√
n

q −Wn

pn
)pn +

1
√
n
∑
s∈M

q −
1

√
n
∑
s∈M

Wn

≈ − ∑
s∈M

⎧⎪⎪
⎨
⎪⎪⎩

1
√
n

q −Wn

pn
−

1

2
(

1
√
n

q −Wn

pn
)

2⎫⎪⎪
⎬
⎪⎪⎭

pn + ∑
s∈M

q
√
n
− ∑
s∈M

Wn
√
n

=
1

2n
∑
s∈M

(q −Wn)
2

p̄n
= M̃n(q)

where

nM̃n(q) ⇒
1

2
∑
s∈M

(q −W)2

p0
.

Finally, since p0 is constant on M, we would therefore like to conclude that

√
n(p̂n − p0) ⇒ argminq∈U∣M∣ ∑

s∈M

(q −W)
2

= uni[WM],
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where WM denotes the vector of random variables {W(s), s ∈M}. To do
this, we need to check the criteria of the argmax continuous mapping theo-
rem, that is

1.
√
n(p̂n−p0) is tight (“uniformly tight” in the sense of van der Vaart and

Wellner (1996)) since it is equal to
√
n(p̂n∣κ̂n−p0) for some κ̂n ∈M, and

each
√
n(p̂n∣k − p0) converges, using for example, Marshall’s lemma.

2. The requirement that Mn(
√
n(p̂n − p0)) ≥ supqMn(q) is satisfied by

definition of the p̂n.

3. By Lemma B.5, ∑s∈M(q −W)2 has a unique minimum on Ud, that is,
uni[WM] has a unique solution. To see this, recall that onM,W is nor-
mally distributed with mean zero and covariance given by
cov(W(si),W(sj)) = θδi,j − θ

2, letting θ = p0(s), s ∈ M. Now, define
V(s) = (θ∣M∣)−1/2(W(s) − ∑s∈MW(s)/∣M∣), so that W = (θd)1/2V +

∑s∈MW(s)/d, using d = ∣M∣. A quick check shows that V is still nor-
mally distributed with mean zero and cov(V(si),V(sj)) = d

−1δi,j −d
−2.

Applying Lemma C.5, we have that

uni[W] = (θd)1/2 uni[V] + ∑
s∈M

W(s)/d.

By Lemma B.5, uni[V] has a unique solution, and therefore, uni[W]

does also.

4. Note lastly that ∑s∈M(q −W)2 is a.s. continuous in q.

The result follows.

B.4 Proof of Proposition 5.3

Lemma B.6. Suppose that ∑s∈S0
p
1/2
0 (s) <∞. Then

√
n ∑
s∉Sn

p0(s) = op(1).

Proof. Let P0(A) = ∑s∈A p0(s) and Pn(A) = ∑s∈A pn(s). By the Borisov-
Durst theorem (Dudley, 1999, Theorem 7.9, page 279) the power set of S0,

2S0 , is a Donsker class for P0 if and only of ∑s∈S0
p
1/2
0 (s) < ∞. Now, let G

denote the zero-mean Gaussian random field on 2S0 with covariance

E [G(A)G(B)] = P0(A ∩B) − P0(A)P0(B).

The Borisov-Durst theorem tells us that

√
n(Pn − P0) ⇒ G in `∞(2S0). (B - 23)
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Since S0 is countable, we have that

sup
A∈2S0

∣Pn(A) − P0(A)∣ =
1

2
`1(p̄n, p0)→ 0,

almost surely as n → ∞ since the class 2S0 is also Glivenko-Cantelli. Since
by definition, Pn(Scn) = 0, the latter implies that

lim
n→∞

P0(S
c
n) = 0 (B - 24)

almost surely. Furthermore, using the Skorokhod representation the con-
vergence in (B - 23) (see e.g. Theorem 1.10.4 of van der Vaart and Wellner,
1996) implies that we can assume that there exists a common probability
space on which

√
n(Pn − P0) and G are defined such that

sup
A∈2S0

∣
√
n(Pn(A) − P0(A)) −G(A)∣→ 0

almost surely. This implies that

lim
n→∞

(
√
n(Pn(Scn) − P0(S

c
n)) −GP0(S

c
n)) = 0

almost surely. However, G(Scn)
d
= Z

√
P0(Scn)(1 − P0(Scn)) with Z ∼ N (0,1).

Using this along with Pn(Scn) = 0 and (B - 24) it follows that

lim
n→∞

√
nP0(S

c
n) = 0.

We conclude that on the original probability space
√
nP0(S

c
n)→d 0 which is

equivalent to

√
nP0(S

c
n) =

√
n ∑
s∈Scn

p0(s)
p
→ 0,

because the limit is degenerate.

Proof of Proposition 5.3. Let us first fix κ ∈M. From Corollary 4.6 we have
that with probability one, there exists a sufficiently large n0 such that p̂n =
p̂n∣κ̂n with κ̂n ∈M if n ≥ n0. This also implies that M ⊂ Sn for all n ≥ n0.
Consider such an n.

Since κ ∈M, we know that p0 ∈ U
1∣κ(S0). From the characterization of

the restricted MLE, we know that F̂n∣k(s), s ∈ Sn (the associate CDF) is
found as the least concave majorant of the graph

{(i,Fn(zi)), k ≤ i ≤m}

where zi denotes an ordered enumeration of the elements of Sn = {z1, . . . , zm}

and k = k(κ,Sn) is such that zk = sκ (recalling that M ⊂ Sn). Next, define
the function

F 0(zi) = ∑
j≤i

p0(zj).
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This depends of course on the observed Sn. Note that by definition this
function is concave on k ≤ i ≤m and convex on 1 ≤ i ≤ k − 1. Now, the usual
proof of Marshall’s lemma applies. That is, let a = supi≥k ∣Fn(zi) − F 0(zi)∣.
Then for all i ≥ k, we have (1)

F̂n∣k(zi) − F 0(zi) ≥ Fn(zi) − F 0(zi) ≥ −a.

On the other hand F 0(zi) + a is a concave majorant of Fn(zi) on i ≥ k,
and hence (2) F 0(zi) + a ≥ F̂n(zi). Combining the results of (1) and (2)
gives that supi≥κ ∣F̂n(zi) − F 0(zi)∣ ≤ supi≥κ ∣Fn(zi) − F 0(zi)∣. Repeating the
argument on greatest concave minorants, yields a similar result for i ≤ κ− 1,
which combined gives

supz∈Sn ∣F̂n∣k(z) − F 0(z)∣ ≤ supz∈Sn ∣Fn(z) − F 0(z)∣.

This result holds for any choice of κ ∈ M. Next, from Corollary 4.6 we
have that with probability one, there exists a sufficiently large n0 such that
p̂n = p̂n∣κ̂n with κ̂n ∈ M. Let F̂n denote the CDF associated with p̂n. We
then have that

sup
z∈Sn

∣F̂n(z) − F 0(z)∣ ≤ sup
κ∈M

sup
z∈Sn

∣F̂n∣k(z) − F 0(z)∣

≤ sup
z∈Sn

∣Fn(z) − F 0(z)∣.

Next, it follows that

sup
s∈Sn

∣F̂n(s) − F 0(s)∣ ≤ sup
s∈Sn

∣Fn(s) − F0(s)∣ + sup
s∈Sn

∣F0(si) − F 0(si)∣

≤ sup
s∈S0

∣Fn(s) − F0(s)∣ + ∑
s∈Scn

p0(s).

On the other hand,

∣F̂n(s) − F 0(s)∣ = ∣F̂n(s) − F0(s) + F0(s) − F 0(s)∣

≥ ∣F̂n(s) − F0(s)∣ − ∣F0(s) − F 0(s)∣

This yields

sup
s∈S0

∣F̂n(s) − F0(s)∣ ≤ sup
s∈S0

∣Fn(s) − F0(s)∣ + 2 ∑
s∈Scn

p0(s).

The full result is obtained by applying Lemma B.6.

B.5 Proofs for Section 6

Proof of Proposition 6.1. Using our assumption of finite support, the result
follows immediately from Theorems 4.4 and 5.1 via Slutsky’s theorem and
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the continuity of norms on Rd. Next, recall the definition of ϕ in (5.15). We
have that

ϕ(W)

pβ0
= ϕ

⎛

⎝

W
pβ0

⎞

⎠

since p0 is constant on the intervals Ij ,M,Dj . The final inequality now
follows as in Proposition 5.2.

Proposition B.7. Let W denote a mean zero Gaussian process defined
on S0 such that cov(W(si),W(sj)) = p0(si)δi,j − p0(si)p0(sj), si ∈ S0. Let
W̃n denote a mean zero Gaussian process defined on supp(p̂n) such that
cov(W̃n(si),W̃n(sj)) = p̂n(si)δi,j − p̂n(si)p̂n(sj), si ∈ supp(p̂n). Let q0,α and
q̃0,α denote the quantiles such that

P (∣∣W∣∣∞ > q0,α) = α, P (∣∣W̃n∣∣∞ > q̃0,α) = α,

respectively. Then q̃0,α → q0,α almost surely.

Proof. First, let pn denote any fixed pmf such that pn converges to p0 and
has the same properties as p̂n ∶

(a) pn converges pointwise to p0, and

(b) limm→∞ limn∑∣si∣>m pn(si) = 0.

Suppose also that W̃n is defined as above, except that pn replaces p̂n in
the definition (in essence, we remove the randomness associated with this
choice). Then one can easily show that W̃n converges weakly to W in `2.
This follows from (a) convergence of finite dimensional distributions, which
is immediate from convergence of pn to p0, and (b) tightness in `2. To prove
tightness, we refer again to Jankowski and Wellner (2009, Lemma 6.2). Note
that we have that

1. E[∣∣W̃n∣∣
2
2] ≤ 1 for all n

2. For sufficiently large n, we have that

∑
∣si∣>m

E[W̃2
n(si)] ≤ ∑

∣si∣>m

pn(si),

which shows that W̃n is tight in `2. The required weak convergence follows.
Now, since the `∞ is continuous in `2, convergence of the quantiles follows.

Thus, we obtain convergence of the quantiles (as numbers), based on
conditions (a) and (b) of pn. We will now show that these conditions hold
almost surely, establishing the full result. Condition (a) follows immediately
from Theorem 4.4. To see also that Condition (b) holds, note that from
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Propositions C.2 and B.4, there exists a sufficiently large n such that with
probability one

∑
∣si∣>m

p̂n(si) = F̂n(−m) + 1 − F̂n(m) ≤ Fn(−m) + 1 − Fn(m)

for m ∉M. That limm limn(Fn(−m) + 1 − Fn(m)) = 0 almost surely follows
from the properties of the empirical CDF and CDFs in general.

C Additional Technical Results

C.1 Useful bounds

Lemma C.1. Any p ∈ U1∣κ(S0) satisfies

p(sj) ≤ min{1, ∣j − κ∣−1} .

Proof. We have that

1 ≥

j

∑
i=κ

p(si) ≥

j

∑
i=κ

p(sj) = (j − κ + 1)p(sj) ≥ (j − κ)p(sj).

Similarly, we have

1 ≥
κ−1

∑
i=j

p(si) ≥
κ−1

∑
i=j

p(sj) = (κ − j)p(sj).

Together, these yield the first inequality.

Proposition C.2. The restricted MLE p̂n∣κ satisfies the inequalities

F̂n∣κ(z) ≥ Fn(z) z ≥ sκ,

F̂n∣κ(z) ≤ Fn(z) z ≤ sκ−1.

Proof. Follows immediately from the GCM/LCM characterization of p̂n∣κ.

C.2 Proof of Proposition 2.1

Suppose that there exists q such that p satisfies (2.4). It is clear that p is a
pmf. We now verify that p is unimodal with mode either at sκ−1 or sκ. Let
(∆p)(j) = p(sj+1) − p(sj). We calculate

(∆p)(j) =

⎧⎪⎪
⎨
⎪⎪⎩

−
q(sj−κ)
j−κ+1 ≤ 0 j ≥ κ,

q(sj+1−κ)
∣j+1−κ∣ ≥ 0 j ≤ κ − 2.
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Therefore, p is non-decreasing on {sj ∶ j ≥ κ} and non-increasing on {sj ∶ j ≤
κ − 1}. For j = κ − 1, we calculate

p(sκ) − p(sκ−1) =
∞

∑
i=κ

q(si)

i − κ + 1
−
i=κ−1

∑
−∞

q(si)

∣i − κ∣

which could be either ≥ 0 or < 0. This shows that p is unimodal with mode
either at sκ−1 or sκ.

Conversely, if p is a pmf which is unimodal with mode either at sκ−1 or
sκ. Let q be defined as

q(si) = {
−(i − κ + 1)(∆p)(i) i ≥ κ,
∣i − κ∣(∆p)(i − 1) i ≤ κ − 1.

By the property of p, q ≥ 0. Furthermore, using Fubini’s theorem and the
fact that p is a pmf, we have that

∑
j

q(sj) = −∑
j≥κ

(j − κ + 1)(∆p)(j) + ∑
j≤κ−1

(κ − j)(∆p)(j − 1)

= −
∞

∑
i=0

∞

∑
j=i+κ

(p(sj+1) − p(sj)) +
∞

∑
i=0

κ−1−i

∑
j=−∞

(p(sj) − p(sj−1))

=
∞

∑
i=0

p(si+κ) +
∞

∑
i=0

p(sκ−1−i)

= ∑
i≥κ

p(si) + ∑
i≤κ−1

p(si) = 1

and hence q is a pmf. Finally, q satisfies

∑
i

(∣i∣ + 1)−1q(si+κ) = ∑
i≥κ

q(si)

i − κ + 1
+ ∑
i≤κ−1

q(si)

κ − i

= −∑
i≥κ

(∆p)(i) + ∑
i≤κ−1

(∆p)(i − 1)

= p(sκ) + p(sκ−1) <∞

which completes the proof. ◻

C.3 Properties of the anti, iso, and uni operators

There is a well-known equivalence between the monotonic projection in the
sense of least squares and likelihood maximization (e.g. the maximum likeli-
hood and least squares estimators are the same for a decreasing density).
As such equivalences are not always readily available in a standard ref-
erence on isotonic estimation, for completeness, we state this relationship
explicitly in the following lemma. Let I+d = Id ∩ {u ∈ Rd ∶ uj > 0} and
D+d = Dd ∩ {u ∈ Rd ∶ uj > 0}.
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Lemma C.3. Suppose that v ∈ Rd such that vj > 0 for j = 1, . . . , d. Then

iso[v] = argmaxu∈I+
d
{

d

∑
j=1

vj log(uj) −
d

∑
j=1

uj},

anti[v] = argmaxu∈D+
d
{

d

∑
j=1

vj log(uj) −
d

∑
j=1

uj}.

Proof. It is known that

argminu∈Id

d

∑
j=1

(vj − uj)
2

is equal to the right slope of the GCM of the cumulative sum diagram
{(0,0), (j,∑

j
i=1 vj), j = 1, . . . , d}. Note that implies in particular that these

slopes have to be positive if vj > 0 for all j ∈ {1, . . . , d}, and hence

argminu∈Id

d

∑
j=1

(vj − uj)
2
= argminu∈I+

d

d

∑
j=1

(vj − uj)
2.

Now maximizing the criterion L(u) = ∑dj=1 vj log(uj)−∑
d
j=1 uj on I+d admits

a unique solution. Let {us}s∈N be a maximizing sequence of L. Suppose that
there exists j ∈ {1, . . . , d} such that

lim
s→∞

usj = 0 or lim
s→∞

usj =∞.

Then, in this case we would have lims→∞L(u
s) = −∞ contradicting the fact

that {us}s∈N is a maximizing sequence since it must satisfy lims→∞L(u
s) ≥

L(v) = ∑
d
j=1 vj log(vj) − ∑

d
j=1 vj > −∞. Hence, there exists K2 > K1 > 0

such that K1 ≤ uj ≤ K2 for j = 1, . . . , d. It follows that the maximization is
performed on a compact set and existence of the maximum is now guaranteed
by continuity of L. Uniqueness follows from strict concavity of L. We denote
this unique solution by v̂. Let j ∈ {1, . . . , d}. For ε ∈ R, let

v̂εi = v̂i + εI1≤i≤j , 1 ≤ i ≤ d.

Then, for ε > 0 small enough, we have v̂ε ∈ I+d , and L(v̂ε) ≤ L(v̂). Therefore

lim
ε↘0

ε−1 (L(v̂ε) −L(v̂)) ≤ 0.

When j is a knot point, that is, v̂j+1 > v̂j then it is easy to see that

lim
ε→0

ε−1 (L(v̂ε) −L(v̂)) = 0.

This yields

j

∑
i=1

vi
v̂i

⎧⎪⎪
⎨
⎪⎪⎩

≤ j, for all j ∈ {1, . . . , d}

= j, if j is a knot point.
(C - 25)
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Let B1, . . . ,Br denote a partition of {1, . . . , d} such that ∀l ∈ Bi, ul = ci some
positive constant, for i = 1, . . . , r. Let i1, i2, . . . , ir denote the largest integers
of B1, . . . ,Bd respectively. Note that ir = d. Then, if follows from (C - 25)
that

j

∑
i=1

vi

⎧⎪⎪
⎨
⎪⎪⎩

≤ jv̂1 = ∑
j
i=1 v̂i, for all j ∈ B1 = {1, . . . , i1}

= jv̂1 = ∑
j
i=1 v̂i, for j = i1.

The same reasoning can be applied for the other sets Bi,2 ≤ i ≤ r to conclude
that

j

∑
i=1

v̂i

⎧⎪⎪
⎨
⎪⎪⎩

≥ ∑
j
i=1 vi, for all j ∈ {1, . . . , d}

= ∑
j
i=1 vi, if j is a jump point.

(C - 26)

Hence, the solution v̂ is given by the slope of the LCM of the cumulative sum
of v. The same reasoning can be applied to the projection on D+d , proving
the result.

In the following, we state a result which shows that isotonic/antitonic
projections can be transformed into “localized”projections between the knots
of the “global” isotonic/antitonic solution. Recall that if v = (v1, . . . , vd) ∈
Rd, then vs∶t = (vs, . . . , vt) for 1 ≤ s ≤ t ≤ d.

Lemma C.4. Let v = (v1, . . . , vd) ∈ Rd such that vj > 0, j = 1, . . . , d. Also
let v̂ = iso[v] and 1 ≤ s1 < . . . < sr ≤ d the locations of the knot points of v̂,
that is

v̂1 = . . . = v̂s1 < v̂s1+1 = . . . v̂s2 < . . . < v̂sr+1 = . . . = v̂d.

Then, for 1 ≤ j < k ≤ r

v̂(sj+1)∶sk = iso[v(sj+1)∶sk].

Proof. The proof follows immediately from the fact that v̂(sj+1)∶sk is charac-
terized by the same Fenchel conditions as iso(v(sj+1)∶sk). Indeed, we know
from the characterization of v̂ = iso(v) that

t

∑
i=1

v̂i

⎧⎪⎪
⎨
⎪⎪⎩

≥ ∑
t
i=1 vi, for all t ∈ {1, . . . , d}

= ∑
t
i=1 vi, if t is a jump point

and therefore

t

∑
i=sj

v̂i

⎧⎪⎪
⎨
⎪⎪⎩

≥ ∑
t
i=sj

vi, for all t ∈ {sj + 1, . . . , sk}

= ∑
t
i=sj

vi, if t is a jump point

which give exactly the characterization of the isotonic projection of the sub-
vector v(sj+1)∶sk .
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Lemma C.5. Suppose that v ∈ Rd and let p ∈ Id, q ∈ Dd. Also, let a > 0, b ∈ R
denote two fixed constants. Then the following (in)equalities hold

∣∣ iso[v] − p∣∣22 ≤ ∣∣v − p∣∣22, ∣∣anti[v] − q∣∣22 ≤ ∣∣v − q∣∣22

anti[av + b] = aanti[v] + b, iso[av + b] = a iso[v] + b,

uni[av + b] = auni[v] + b.

Proof. The first two inequalities appear in Robertson et al. (1988, Theorem
1.6.1); cf. Jankowski and Wellner (2009, Lemma 6.1). The three equalities
are all proved in a similar manner. For example,

anti[v + b] = argminu∈Dd ∣∣u − (v + b)∣∣22

= argminu∈Dd ∣∣(u − b) − v∣∣
2
2

= argminu+b ∈Dd
∣∣u − v∣∣22

= argminu∈Dd ∣∣u − v∣∣
2
2 + b = anti[v] + b.

Continuity of the operators anti and iso follows immediately from Jankowski
and Wellner (2009, Lemma 6.1).

Proposition C.6. Suppose that vn ∈ Rd and that limn→∞ vn = v. Then

lim
n→∞

iso[vn] = iso[v], and lim
n→∞

anti[vn] = anti[v].
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