Bivariate Analysis

<table>
<thead>
<tr>
<th>Variable 1</th>
<th>Variable 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 LEVELS</td>
<td>2 LEVELS</td>
</tr>
<tr>
<td>X^2</td>
<td>X^2</td>
</tr>
<tr>
<td>chi square test</td>
<td>chi square test</td>
</tr>
<tr>
<td>t-test</td>
<td>t-test</td>
</tr>
<tr>
<td>>2 LEVELS</td>
<td>>2 LEVELS</td>
</tr>
<tr>
<td>X^2</td>
<td>X^2</td>
</tr>
<tr>
<td>chi square test</td>
<td>chi square test</td>
</tr>
<tr>
<td>ANOVA</td>
<td>ANOVA</td>
</tr>
<tr>
<td>(F-test)</td>
<td>(F-test)</td>
</tr>
<tr>
<td>CONTINUOUS</td>
<td>CONTINUOUS</td>
</tr>
<tr>
<td>t-test</td>
<td>t-test</td>
</tr>
<tr>
<td>ANOVA</td>
<td>ANOVA</td>
</tr>
<tr>
<td>(F-test)</td>
<td>(F-test)</td>
</tr>
<tr>
<td>Pearson's Correlation</td>
<td>Simple linear Regression</td>
</tr>
</tbody>
</table>

Correlation

- Used when you measure two continuous variables.

- Examples: Association between weight & height, Association between age & blood pressure.

Correlation is measured by Pearson's Correlation Coefficient.

- A measure of the linear association between two variables that have been measured on a continuous scale.

- Pearson's correlation coefficient is denoted by r.

- A correlation coefficient is a number ranges between -1 and +1.

<table>
<thead>
<tr>
<th>Weight (Kg)</th>
<th>Height (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>170</td>
</tr>
<tr>
<td>93</td>
<td>180</td>
</tr>
<tr>
<td>90</td>
<td>168</td>
</tr>
<tr>
<td>60</td>
<td>156</td>
</tr>
<tr>
<td>112</td>
<td>178</td>
</tr>
<tr>
<td>45</td>
<td>161</td>
</tr>
<tr>
<td>85</td>
<td>181</td>
</tr>
<tr>
<td>104</td>
<td>192</td>
</tr>
<tr>
<td>68</td>
<td>176</td>
</tr>
<tr>
<td>87</td>
<td>186</td>
</tr>
</tbody>
</table>

Pearson's Correlation Coefficient
Pearson's Correlation Coefficient

- If $r = 1$ ➔ perfect positive linear relationship between the two variables.
- If $r = -1$ ➔ perfect negative linear relationship between the two variables.
- If $r = 0$ ➔ No linear relationship between the two variables.

http://noppa5.pc.helsinki.fi/koe/corr/cor7.html
Pearson's Correlation Coefficient

Research question: Is there a linear relationship between the weight and height of students?

- H_0: there is no linear relationship between weight & height of students in the population ($p = 0$)
- H_1: there is a linear relationship between weight & height of students in the population ($p
eq 0$)

Statistical test: Pearson correlation coefficient (R)

Example 1:

- **Value of statistical test:** 0.651
- **P-value:** 0.000
Correlation is significant at the 0.01 level

** Research question: Is there a linear relationship between the age and weight of students?

** Conclusion: At significance level of 0.05, we reject null hypothesis and conclude that in the population there is significant linear relationship between the weight and height of students.
Pearson's Correlation Coefficient

Example 2: SPSS Output

<table>
<thead>
<tr>
<th></th>
<th>weight</th>
<th>age</th>
<th>weight</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Correlation</td>
<td>1.155**</td>
<td>.000</td>
<td>1.197</td>
<td>1.814</td>
</tr>
<tr>
<td>N</td>
<td>1975</td>
<td>1814</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** Correlation is significant at the 0.01 level.

- Conclusion: At significance level of 0.05, we reject null hypothesis and conclude that there is a significant linear relationship between the weight and age of students.

Example 3: SPSS Output

<table>
<thead>
<tr>
<th></th>
<th>age</th>
<th>height</th>
<th>age</th>
<th>height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Correlation</td>
<td>.084**</td>
<td>.000</td>
<td>.084</td>
<td>1.000</td>
</tr>
<tr>
<td>N</td>
<td>1846</td>
<td>1812</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** Correlation is significant at the 0.01 level.

- Research question: Is there a linear relationship between the age and height of students?

- Value of statistical test: 0.084
- P-value: 0.000

H₀: \(\rho = 0 \); No linear relationship between height & age in the population

H₁: \(\rho ≠ 0 \); There is a linear relationship between height & age in the population
Pearson’s Correlation Coefficient

Example 3: SPSS Output

<table>
<thead>
<tr>
<th></th>
<th>age</th>
<th>height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson</td>
<td>.084</td>
<td></td>
</tr>
<tr>
<td>Sig.</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>1846</td>
<td>1812</td>
</tr>
<tr>
<td></td>
<td>.084</td>
<td>1</td>
</tr>
<tr>
<td>Pearson</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>Sig.</td>
<td>1846</td>
<td>1971</td>
</tr>
</tbody>
</table>

Correlation is significant at the 0.01 level.

Conclusion: At significance level of 0.05, we reject null hypothesis and conclude that in the population there is a significant linear relationship between the height and age of students.

SPSS command for r

Example 1

1. **Analyze**
2. **Correlate**
3. **Bivariate**
4. Select height and weight and put it in the "variables" box.

In-class questions

T (True) or F (False):

In studying whether there is an association between gender and weight, the investigator found out that $r = 0.90$ and p-value < 0.001 and concludes that there is a strong significant correlation between gender and weight.

In-class questions

T (True) or F (False):

The correlation between obesity and number of cigarettes smoked was $r = 0.012$ and the p-value $= 0.856$. Based on these results we conclude that there isn’t any association between obesity and number of cigarette smoked.
Simple Linear Regression

• Used to explain observed variation in the data

• For example, we measure blood pressure in a sample of patients and observe:

<table>
<thead>
<tr>
<th>Pt#</th>
<th>BP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>85</td>
</tr>
<tr>
<td>2</td>
<td>105</td>
</tr>
<tr>
<td>3</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>85</td>
</tr>
<tr>
<td>5</td>
<td>110</td>
</tr>
<tr>
<td>6</td>
<td>70</td>
</tr>
<tr>
<td>7</td>
<td>115</td>
</tr>
</tbody>
</table>

Simple Linear Regression

• In order to explain why BP of individual patients are different, we try to associate the differences in PB with differences in other relevant patient characteristics (variables).

• Example: Can variation in blood pressure be explained by age?

Questions:

1) What is the most appropriate mathematical Model to use? A straight line, parabola, etc...

2) Given a specific model, how do we determine the best fitting model?

Mathematical properties of a straight line

• \(Y = B_0 + B_1X \)

 \(Y \) = dependent variable

 \(X \) = independent variable

 \(B_0 \) = Y intercept

 \(B_1 \) = Slope

• The intercept \(B_0 \) is the value of \(Y \) when \(X = 0 \).

• The slope \(B_1 \) is the amount of change in \(Y \) for each 1-unit change in \(X \).
Simple Linear Regression

Estimation of a simple Linear Regression Model

- Optimal Regression line = $B_0 + B_1X$
- $Y = B_0 + B_1X$

Research Question:
Does height help to predict weight using a straight line model? Is there a linear relationship between weight and height? Does height explain a significant portion of the variation in the values of weight observed?

Weight = $B_0 + B_1$ Height

Example 1:

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered/Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>height</td>
</tr>
</tbody>
</table>

Method
- All requested variables entered.
- Dependent Variable: weight

SPSS output: Example 1

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.451</td>
<td>.424</td>
<td>.423</td>
<td>10.879</td>
</tr>
</tbody>
</table>

$*$ Predictors (Constant), height

SPSS output (Continued): Example 1

ANOVA

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>169820.3</td>
<td>1</td>
<td>169820.297</td>
<td>1435.130</td>
<td>.000</td>
</tr>
<tr>
<td>Residual</td>
<td>230982.0</td>
<td>1952</td>
<td>118.331</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>400802.3</td>
<td>1953</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$*$ Predictors (Constant), height

P Dependent Variable: weight

Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>SE</td>
<td>Beta</td>
<td>t</td>
</tr>
<tr>
<td>(Constant)</td>
<td>335.398</td>
<td>2.339</td>
<td>.940</td>
<td>1435.130</td>
</tr>
<tr>
<td>height</td>
<td>4.041</td>
<td>.029</td>
<td>.951</td>
<td>1435.130</td>
</tr>
</tbody>
</table>

$*$ Unstandardized Variable: weight
Simple Linear Regression

- SPSS output (Continued): Example 1

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.424</td>
<td>0.424</td>
<td>0.423</td>
<td>10.378</td>
</tr>
</tbody>
</table>

* Predictors: (Constant), height

0.424 Height explains 42.4% of the variation seen in weight

Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>B</th>
<th>Std. Error</th>
<th>Unstandardized Coefficients</th>
<th>Beta</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-95.246</td>
<td>4.226</td>
<td>-22.539</td>
<td>.000</td>
<td>.940</td>
<td>37.883</td>
<td>.000</td>
</tr>
</tbody>
</table>

* Dependent Variable: weight

Weight = B0 + B1 Height

Weight = -95.246 + 0.94 Height

Increasing height by 1 unit (1 cm) increases weight by 0.94 Kg

Simple Linear Regression

Question 1:

In a simple linear regression model the predicted straight line was as follows:

\[
\text{Weight (Kg)} = 3.5 - 1.32 \text{ (weekly hours of PA)}
\]

\[
R^2 = 0.22; \ p\text{-value for the slope} = 0.04
\]

What is the dependent/independent variable?

- **Dependent variable:** Weight
- **Independent Variable:** Weekly hours of PA

In-class questions

Question 1:

- H0: B1=0
- H1: B1 ≠0

Because the p-value of the B1 is < 0.05; then reject H0 and conclude that height provides significant information for predicting weight.
Question 1:

In a simple linear regression model the predicted straight line was as follows:

\[\text{Weight (Kg)} = 3.5 - 1.32 \text{ (weekly hours of PA)} \]

\[R^2 = 0.22; \text{ p-value for the slope} = 0.04 \]

Interpret the value of \(R^2 \):

Number of weekly hours of PA explain 22% of the variation observed in weight.

Question 1:

In a simple linear regression model the predicted straight line was as follows:

\[\text{Weight (Kg)} = 3.5 - 1.32 \text{ (weekly hours of PA)} \]

\[R^2 = 0.22; \text{ p-value for the slope} = 0.04 \]

What is the null hypothesis? Alternative?

\[H_0: \beta_{\text{weekly hours of PA}} = 0 \]
\[H_1: \beta_{\text{weekly hours of PA}} \neq 0 \]

Question 1:

In a simple linear regression model the predicted straight line was as follows:

\[\text{Weight (Kg)} = 3.5 - 1.32 \text{ (weekly hours of PA)} \]

\[R^2 = 0.22; \text{ p-value for the slope} = 0.04 \]

Is the association between weight & weekly hours of PA positive or negative?

Negative

Question 1:

In a simple linear regression model the predicted straight line was as follows:

\[\text{Weight (Kg)} = 3.5 - 1.32 \text{ (weekly hours of PA)} \]

\[R^2 = 0.22; \text{ p-value for the slope} = 0.04 \]

What is the magnitude of this association?

\[-1.32 \Rightarrow \text{One hour increase of PA in a week decreases weight by 1.32 Kg.} \]
In-class questions

Question 1:

In a simple linear regression model the predicted straight line was as follows:

Weight (Kg) = 3.5 - 1.32 (weekly hours of PA)

\[R^2 = 0.22; \ p\text{-value for the slope} = 0.04 \]

Is the association significant at a level of 0.05?

Because the p-value of the B1 is < 0.05; then reject H0 and conclude that weekly hours of PA provide significant information for predicting weight.

Question 2:

What is the dependent/independent variable?

Dependent variable: Length of hospital stay

Independent Variable: ISS - Injury severity score

Interpret the value of \(R^2 \)

ISS explains 40.7% of the variation observed in length of hospital stay.
In-class questions

Question 2:

What is the null hypothesis? Alternative?

- H₀: $B_{ISS} = 0$
- H_1: $B_{ISS} \neq 0$

Question 2:

Is there a significant association between the dependent & the independent?

Because the p-value of the ISS is < 0.05; then reject H_0 and conclude that ISS provide significant information for predicting length of hospital stay.

What is the magnitude of this association?

$0.661 \Rightarrow$ Increasing ISS by 1 unit increases length of hospital stay by 0.661 days.

In-class questions

Question 2:

What is the null hypothesis? Alternative?

- H₀: $B_{ISS} = 0$
- H_1: $B_{ISS} \neq 0$

Question 2:

Is there a significant association between the dependent & the independent?

Because the p-value of the ISS is < 0.05; then reject H_0 and conclude that ISS provide significant information for predicting length of hospital stay.

What is the magnitude of this association?

$0.661 \Rightarrow$ Increasing ISS by 1 unit increases length of hospital stay by 0.661 days.

Biases

Bias is an error in an epidemiologic study that results in an incorrect estimation of the association between exposure and outcome.
Biases

- Selection bias
- Information bias
- Confounding bias

Confounding Bias: Definition

Is present when the association between an exposure and an outcome is distorted by an extraneous third variable (referred to a confounding variable).

Confounding Bias: Example

Example: Study the association between coffee drinking and lung cancer

<table>
<thead>
<tr>
<th>Coffee</th>
<th>LC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>80</td>
</tr>
<tr>
<td>No</td>
<td>20</td>
</tr>
</tbody>
</table>

\[OR = \frac{(80 \times 85)}{(15 \times 20)} = 22 \]

What would you conclude???

Confounding Bias: Minimize bias

- **Research Design:**
 - Use of randomized clinical trial
 - Restriction

- **Data Analysis:**
 - Multivariate statistical techniques
Bivariate Analysis

<table>
<thead>
<tr>
<th>Variable 1</th>
<th>2 LEVELS</th>
<th>>2 LEVELS</th>
<th>CONTINUOUS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X^2</td>
<td>X^2</td>
<td>t-test</td>
</tr>
<tr>
<td>2 LEVELS</td>
<td>chi square test</td>
<td>chi square test</td>
<td></td>
</tr>
<tr>
<td>>2 LEVELS</td>
<td>X^2</td>
<td>X^2</td>
<td>ANOVA (F-test)</td>
</tr>
<tr>
<td>CONTINUOUS</td>
<td>t-test</td>
<td>ANOVA (F-test)</td>
<td>-Correlation -Simple linear Regression</td>
</tr>
</tbody>
</table>

Multivariate analyses

- Logistic Regression (If outcome is 2 levels)
- Multiple Linear Regression (If outcome is continuous)

Multivariate Analysis is used for adjusting for confounding variables.

Multivariate Analysis

WHY?

- To investigate the effect of more than one independent variable.
- Predict the outcome using various independent variables.
- Adjust for confounding variables