Question 1a

		MI	No MI
$\begin{aligned} & \text { O } \\ & \text { है } \\ & \text { जn } \end{aligned}$	Yes	29	135
	No	205	1607
	Total	234	1742

The odds of having MI among OC users is 1.68 times higher than the odds of having MI among non- OC users.

Question 1b

- Age 25-29: $\mathrm{OR}=(4 \times 224) /(2 \times 62)=7.2$
- Age $30-34: \quad \mathrm{OR}=(9 \times 390) /(12 \times 33)=8.8$
- Age $35-39: \mathrm{OR}=(4 \times 330) /(33 \times 26)=1.5$
- Age 40-44: OR $=(6 \times 362) /(65 \times 9)=3.7$
- Age 45-49: $\mathrm{OR}=(6 \times 301) /(93 \times 5)=3.9$

Question 1c \& 1d

Part c:
The odds of using $O C=4 / 2=2$

Part d:

The odds of having $\mathrm{MI}=9 / 33=0.27$

Question 2a

		BC	No BC
$\begin{aligned} & \text { 人 } \\ & \frac{0}{0} \\ & 0 \\ & 0 \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Yes	60	40
	No	20	40
	Total	80	80

Odds of exposure among cases $=a / c=60 / 20=3$

Question 2b

		BC	No BC
$\begin{aligned} & \text { 人 } \\ & \frac{0}{0} \\ & 0 \\ & 0 \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Yes	60	40
	No	20	40
	Total	80	80

Odds of exposure among controls $=b / d=40 / 40=1$

Question 2c

		BC	No BC
	Yes	60	40
	No	20	40
	Total	80	80

Odds ratio $=a d / b c=(60 \times 40) /(20 \times 40)=3 / 1=3$
The odds of having bladder cancer among Yerbamate drinkers is three times higher than the odds of bladder cancer among nondrinkers.

Question 2d

		BC	No BC
	Yes	60	40
	No	20	40
	Total	80	80

Odds of $B C$ among drinkers $=a / b=60 / 40=1.5$
Odds of BC among non-drinkers $=c / d=20 / 40=0.5$
Odds ratio $=1.5 / 0.5=3$

Question 2e

		BC	No BC
$\begin{aligned} & \text { र } \\ & \frac{0}{\bar{o}} \\ & \frac{2}{3} \\ & \stackrel{\rightharpoonup}{0} \\ & \end{aligned}$	Yes	60	200
	No	20	200
	Total	80	400

Odds of exposure among cases $=a / c=60 / 20=3$
Odds of exposure among controls=b/d=200/200=1
Odds ratio $=3 / 1=3$
Odds of $B C$ among drinkers $=a / b=60 / 200=0.3$ Odds of BC among non-drinkers $=c / d=20 / 200=0.1$
Odds ratio $=0.3 / 0.1=3$

Question 3

Abstract 1

a) Study design: Case control study
b) Dependent variable: Oral cancer

I ndependent variable: human papillomavirus (HPV) infection
c) Two by Two table:

		OC	No OC
$\overline{\text { I }}$	Yes	14	6
	No	58	123
	Total	72	129

d) $\mathrm{OR}=(14 \times 123) /(58 \times 6)=4.95$

Question 3

Abstract 2

a) Study design: Case control study
b) Dependent variable: Hepatitis A virus (HAV) infection I ndependent variable: Attending child care, food exposure, waterborne exposure, cross border travel, other international travel and travel related activities.

Question 3

Abstract 2
c) Two by Two table:

		HAV	No HAV
	Yes	88	89
	No	44	265
	Total	132	354

d) $O R=(88 \times 265) /(89 \times 44)=5.96$

