Study Designs

Experimental studies
Observational studies

Analytic studies
Descriptive studies

Randomized Controlled trials
Case control
Cohort
Cross sectional

Cohort Study: Two by two table

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>a</td>
</tr>
<tr>
<td>No</td>
<td>c</td>
</tr>
</tbody>
</table>

Risk of outcome in exposed (R_E) = a / a + b
Risk of outcome in non-exposed ($R_Ē$) = c / c + d
Relative risk (RR) = $\frac{R_E}{R_Ē} = \frac{a}{a + b} \div \frac{c}{c + d}$
Attributable risk (AR) = (R_E) - ($R_Ē$)

Cohort Study: Direction of inquiry

Start with EXPOSURE → Follow up → Check for OUTCOME

Cohort Study: Example 1

Determine the association between smoking while pregnant and low birth weight (LBW) babies:

- **Exposure**: Smoke
- **Outcome**: LBW

- **Sample of people exposed**
 - Pregnant females in first month
 - Smoke
 - LBW
 - Do not smoke
 - No LBW

- **Sample of people not exposed**
 - Pregnant females in first month
 - No LBW

Start
November 2004
End
August 2005
Cohort Study: Example 1

Relative Risk

Relative Risk provides the best estimate of the strength or magnitude of the exposure-outcome association and is useful in making causal inferences.

- **RR = 1** indicates no exposure-outcome association: risk in exposed = risk in non-exposed
- **RR < 1** indicates negative association (protective): risk in exposed < risk in non-exposed
- **RR > 1** indicates positive association (causal): risk in exposed > risk in non-exposed

Attributable Risk

Attributable risk: useful for public health purposes: indicates the frequency with which the outcome can be attributed to exposure in the sample studied.

- Risk among non-exposed
- Risk attributed by smoking
- Risk among exposed

<table>
<thead>
<tr>
<th>Smoking</th>
<th>LBW Yes</th>
<th>LBW No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>12</td>
<td>38</td>
</tr>
<tr>
<td>No</td>
<td>5</td>
<td>45</td>
</tr>
</tbody>
</table>

Risk of outcome in exposed \(R_E\) = \(\frac{a}{a+b} = \frac{12}{50} = 0.24\)

Risk of outcome in non-exposed \(R_{\bar{E}}\) = \(\frac{c}{c+d} = \frac{5}{50} = 0.10\)

Relative Risk = \(\frac{0.24}{0.1} = 2.4\)

The risk of having a LBW baby among smoking mothers is 2.4 times more than non-smoking mothers.

Attributable risk = 0.24 - 0.1 = **0.14** → **14%**
Cohort Study: Example 2

<table>
<thead>
<tr>
<th>Pets</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pets</td>
<td>53</td>
<td>165</td>
</tr>
<tr>
<td>No pets</td>
<td>23</td>
<td>322</td>
</tr>
</tbody>
</table>

- Risk of asthma among exposed = 53/218 = 0.24
- Risk of asthma among non-exposed = 23/345 = 0.07
- Relative Risk for asthma = 0.24/0.07 = 3.9

Children who have pets at home are almost 4 times more likely to develop asthma than children who do not have pets.

Cohort Study: Example 3

<table>
<thead>
<tr>
<th>Breast cancer</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women who breastfed</td>
<td>10</td>
<td>290</td>
</tr>
<tr>
<td>Women who did not breastfeed</td>
<td>45</td>
<td>255</td>
</tr>
</tbody>
</table>

- Risk of breast cancer among breastfed = 10/300 = 0.03
- Risk of breast cancer among women who did not breast feed = 45/300 = 0.15
- Relative Risk = 0.3/0.15 = 0.2

Women who breastfed are 80% less likely to develop breast cancer than those who did not breastfeed.

Cohort Study: Example 4

<table>
<thead>
<tr>
<th>MI</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heavy smoker</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>Light smoker</td>
<td>12</td>
<td>88</td>
</tr>
<tr>
<td>Non-smoker</td>
<td>15</td>
<td>185</td>
</tr>
</tbody>
</table>

- Risk of MI in non-smokers = 15/200 = 0.075
- Risk of MI in light smokers = 12/100 = 0.12
- Relative Risk for light smokers = 0.12/0.075 = 1.6
- Attributable risk (AR) for light smokers = 12% – 7.5% = 4.5%

If pets are eliminated from homes, there will be 17% decrease in asthma among children.
Cohort Study: Example 4

<table>
<thead>
<tr>
<th>MI</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heavy smoker</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>Light smoker</td>
<td>12</td>
<td>88</td>
</tr>
<tr>
<td>Non-smoker</td>
<td>15</td>
<td>185</td>
</tr>
</tbody>
</table>

- Risk of MI in heavy smokers = 20/100 = 0.2
- Relative Risk for heavy smokers = 0.2/0.075 = 2.6
- Attributable risk (AR) for heavy smokers = 20% – 7.5% = 12.5%

Cohort Study: Retrospective study

- Investigate the association between noise exposure and noise Induced Hearing Loss (NIHL).
- Starting date of study: February 2007
- Review files of workers at steel-making company (workers employed in 1995)

Prospective study
- Assess Exposure at the present time

Retrospective study
- Assess Exposure in the past through Review of medical records

Cohort Study: Design types

<table>
<thead>
<tr>
<th>1995 Charts</th>
<th>Name</th>
<th>Age</th>
<th>Gender</th>
<th>Department</th>
<th>Transfer department</th>
<th>Years of transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cohort Study: Retrospective study

- Exposure > 85 DBA
- Exposure ≤ 85 DBA

Feb. 2007 – Aug. 2007
Cohort Study

Advantages
- Direct measurement of incidence: The temporal sequence of exposure and disease can be directly addressed
- Possible to examine a range of outcomes
- Suitable for investigation of a rare exposure

Disadvantages
- Costly / time consuming
- If latent period is long, prolonged follow up is required (time consuming).
- Loss to follow-up
- Not suitable for investigation of rare disease

Hypothesis
Is Hockey associated with Asthma?

In-class questions
True or False:
- Cohort studies are adopted to study relationship of one characteristic to different outcomes.
- Cohort studies are good for studying rare exposures.
- One of the main disadvantages of cohort studies is loss to follow up.
- The temporal sequence of exposure and disease can be directly addressed in a cohort design as well as in a cross sectional study.
- Correlational studies cannot directly assess causal inference because they measure disease and exposure in a person at the same point in time.

BACKGROUND: Artificial turf is becoming increasingly popular, although the risk of injury on newer generations of turf is unknown. **AIM:** To investigate the risk of injury on artificial turf compared with natural grass among young female football players.

STUDY DESIGN: Prospective cohort study.

METHODS: 2020 players from 109 teams (mean (SD) 15.4 (0.8) years) participated in the study during the 2005 football season.

RESULTS: 421 (21%) players sustained 526 injuries, leading to an injury incidence of 3.7/1000 playing hours (95% CI 3.4 to 4.0).

The incidence of acute injuries on artificial turf and grass did not differ significantly with respect to match injuries (rate ratio (RR) 1.0, 95% CI 0.8 to 1.3; p = 0.72) or training injuries (RR 1.0, 95% CI 0.6 to 1.5, p = 0.93). In matches, the incidence of serious injuries was significantly higher on artificial turf (RR 2.0, 95% CI 1.3 to 3.2; p = 0.03).

CONCLUSION: In the present study among young female football players, the overall risk of acute injuries was similar between artificial turf and natural grass.

Ankle sprain was the most common type of injury (34% of all acute injuries), and there was a trend towards more ankle sprains on artificial turf than on grass (RR 1.5, 95% CI 1.0 to 2.2; p = 0.06).