
Past research has shown that IT neurons respond selectively to com-
plex shape features or whole objects1–3, carry shape information at
the columnar and population levels4–8, and are modulated by shape-
related behavioral tasks and learning9–12. Despite these significant
advances, the basic principles governing complex shape selectivity in
IT remain to be determined. IT neurons respond differentially to
complex objects, but what information are they conveying about the
shapes of these objects? Can IT responses across a broad range of
stimuli be explained by tuning in shape-related dimensions, in the
same way that higher-level dorsal pathway processing has been char-
acterized in spatial and motion-related dimensions? How are com-
plex IT responses derived from simpler, lower-level inputs? These
questions can only be answered by systematic, quantitative character-
ization of the principles underlying neural selectivity for shape in IT.

The main obstacle to quantifying IT neural selectivity is the
extreme complexity of shape—the variety of possible shapes is virtu-
ally infinite, the neural representation of shape must necessarily be
high-dimensional, and the nature of the dimensions is unknown. In
the face of this complexity, previous investigators have been forced to
rely on small numbers of example stimuli to support qualitative
descriptions of IT shape selectivity. Here we attempt to explain one
aspect of IT responses—selectivity for 2D boundary shape—at a
quantitative level. We focused on more posterior, earlier processing
stages in IT (Brodmann’s areas TEO and posterior TE), where
response properties are less abstract and experience-dependent, and
therefore may be more analytically tractable. Our approach differed
in two important respects from previous investigations. First, we used
large stimulus sets (∼ 1,000 stimuli) in which shape characteristics
varied parametrically, to provide a rich and systematic dataset for
quantitative analysis. Second, we fitted neural responses with tuning

functions on a multidimensional shape domain in order to capture
the full complexity of IT shape tuning. This approach yielded accu-
rate predictions of neural responses and a straightforward explana-
tion of boundary shape selectivity in posterior IT: neurons integrate
information about multiple contour elements, presumably as a step
toward more complete object representations.

RESULTS
To provide adequate data for mathematical analysis of shape selectiv-
ity, we needed a stimulus set covering a wide range of shapes but with
quantifiable gradients of shape similarity between stimuli. To achieve
this, we defined convex, straight and concave contour elements at spe-
cific orientations and object-relative positions, and crossed these basic
geometric elements in a large permutation matrix of smooth, closed
2D silhouette shapes (Fig. 1a and Supplementary Fig. 1 online). The
factorial structure of this stimulus set allowed us to distinguish
between tuning for simple and complex shape elements, and to meas-
ure nonlinearities in responses to conjunctions of elements. A simpler
version of this factorial contour element approach to stimulus con-
struction was effective in characterizing boundary shape coding in
area V4 (ref. 13). We found the approach to be effective in IT as well—
109 out of 137 cells (80%) showed significant selectivity within our
main stimulus set (P < 0.001, ANOVA), and the average maximal
response of these 109 cells was 30 spikes/s (63 spikes/s for the transient
component of the response). The precise curvatures of the contour
elements were varied in auxiliary tests on selected shapes (Fig. 1b);
stimulus orientation, size and position were also sampled at finer reso-
lution in other auxiliary tests (see Supplementary Note online).

The responses of the neuron in Fig. 1a (background gray levels;
see scale bar) were typical in that activity was broadly distributed in
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Underlying principles of visual shape selectivity in
posterior inferotemporal cortex
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Object perception depends on shape processing in the ventral visual pathway, which in monkeys culminates in inferotemporal
cortex (IT). Here we provide a description of fundamental quantitative principles governing neural selectivity for complex shape
in IT. By measuring responses to large, parametric sets of two-dimensional (2D) silhouette shapes, we found that neurons in
posterior IT (Brodmann’s areas TEO and posterior TE) integrate information about multiple contour elements (straight and 
curved edge fragments of the type represented in lower-level areas) using both linear and nonlinear mechanisms. This results 
in complex, distributed response patterns that cannot be characterized solely in terms of example stimuli. We explained these
response patterns with tuning functions in multidimensional shape space and accurately predicted neural responses to the
widely varying shapes in our stimulus set. Integration of contour element information in earlier stages of IT represents an
important step in the transformation from low-level shape signals to complex object representation.
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a complex pattern not defined by any single optimal shape feature.
The complex response pattern was not due to noise, as response
rates exceeded 30 spikes/s and average standard error was only 
1.4 spikes/s. Moreover, as with most cells we tested, shape selectivity
was consistent across substantial variations in retinotopic position
and size (see below). To quantify shape selectivity, we first defined
each contour element in terms of its shape (curvature and orienta-
tion) and x,y position. Selectivity for single or multiple contour ele-
ments was characterized by fitting each cell’s response pattern with a
tuning function composed of 1–6 Gaussian subunits on the shape ×
position domain (Fig. 1c; see Methods). Each subunit represents a
range of contour element shapes and positions that have an excita-
tory (red) or inhibitory (blue, see scale bar) effect on responses. For
this cell, subunit A represents the excitatory effect of concave con-
tour elements (negative curvatures), oriented toward the upper left
(∼ 135°) and positioned at the upper left relative to the object center,
as illustrated by the icon to the right, which corresponds to the
Gaussian peak. Subunit B represents concavities oriented toward the
bottom and positioned to the left. Subunit C represents concavities
oriented toward the lower right and positioned below object center.
Subunit D, the only inhibitory factor in this model, represents sharp
convexities oriented toward and positioned near the upper left. The
full tuning function (summed across all four subunits) is shown at
the bottom (Fig. 1c, SUM), together with the equation describing

how subunit responses are integrated. Our model equations
included a sum of the individual subunits (A, B, C and D) and prod-
ucts of collected same-sign subunits (ABC), in order to account for
simple additive (linear) integration of multiple contour elements as
well as nonlinear interactions between elements that generate
supra-additive responses. (Essentially equivalent results were
obtained with models that included the three pair-wise nonlinear
interaction terms; see Methods.)

The stimuli in Figure 1d (corresponding to asterisks in Fig. 1a)
illustrate how this model captures the neuron’s responses. The first
(top) stimulus contains only one contour element near any of the
model’s excitatory tuning peaks—a concavity that falls on the shoul-
der of subunit C (proximity to peak indicated by color; see scale in
Fig. 1c). The predicted response (based on the ‘C’ term in the model
equation) is relatively weak, similar to the observed response (bar plot
at right). The second stimulus contains A- and B-type excitatory con-
tour elements; the combination of these factors in the equation accu-
rately predicts a moderate response. The third stimulus contains all
three types of excitatory elements, and evokes a strong response
roughly equal to the sum of the individual element responses. The
additive effects of the excitatory elements are reflected in the model
equation, where the linear terms (A, B and C) have strong weights but
the nonlinear interaction term (ABC) has a weight of zero. The fourth
stimulus exemplifies how responses to excitatory elements are sup-
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Figure 1 Quantitative analysis of shape selectivity for a typical IT neuron. (a) Main stimulus set. The shape stimuli (white icons) were generated by
systematically combining convex, straight and concave contour elements at varying orientations and positions (see Methods and Supplementary Note online).
Background gray levels indicate this cell’s mean response to each shape (see gray level scale bar). In the experiments, stimuli were displayed as silhouettes
against a blank background; outlines and background squares are shown here for illustrative purposes only. (b) Auxiliary stimulus set used to test fine-scale
tuning for local curvature (conventions as in a). (c) Optimal model of this cell’s shape selectivity, based on its response profile across 1,687 different stimuli
(see Supplementary Note online). The four Gaussian subunits, three excitatory (red, A–C) and one inhibitory (blue, D), are each depicted by two plots,
showing tuning for shape (curvature × orientation) and for position. For each subunit, the contour element corresponding to the Gaussian peak is shown at
the right, positioned relative to stimulus center of mass (gray dot). The subunits are combined into one set of plots at the bottom (SUM). For each stimulus,
the predicted response derives from the positions of its constituent contour elements on the Gaussian tuning functions. The resulting excitatory and
inhibitory subunit values are combined according to the equation at the bottom, which, for this cell, indicates purely linear summation of contour elements
(0 weight on nonlinear interaction term ABC). (d) Subset of main test stimuli (corresponding to asterisks in a) illustrating model predictions. In the stimulus
icons, the color of each segment represents its proximity to the Gaussian peak indicated by the adjacent letter. Bar plots show observed (left; mean ± s.e.m.)
and predicted (right) responses. (e) Scatterplot showing correlation between observed and predicted response rates for 1,687 stimuli.
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pressed by the inhibitory convexity (D), as predicted by the negative
term in the model equation. The linear summation of excitatory and
inhibitory contour element effects in this model provides a relatively
simple and accurate (cross-validation r = 0.84; Fig. 1e) explanation of
the neuron’s complex response pattern across the main stimulus set
(Fig. 1a) and other stimuli (1,687 stimuli total). This model fit the
data significantly better than simpler models (P < 10–6, partial F test
versus best-fitting three-subunit model).

Some IT cells had sparse response patterns limited to a few stimuli
with clear shape similarity (as in Fig. 2). This neuron’s responses were
best fit by a highly nonlinear model (Fig. 2c) with a large excitatory
interaction term (ABC) representing co-occurrence of adjacent sharp
concavities oriented toward the lower left (A) and lower right (B),
both positioned to the left, and with shallow-to-flat curvature ori-
ented toward and positioned near the right (C). The conjunction of
these contour elements defines the quadruped-like shapes that
elicited robust responses from this cell. The model also features
inhibitory tuning for concave elements oriented toward and posi-
tioned near the upper left (D). The first two stimuli (top) in Figure 2d
contain only subsets (C and A/B, respectively) of the excitatory con-
tour elements, and elicited relatively weak responses, as predicted.
The third stimulus, containing all three excitatory elements, evoked a
response greater than the sum of the individual element responses, as
predicted by the large nonlinear interaction term (ABC) in the model.
The fourth stimulus illustrates the inhibitory effect of the D-type
concavity. Again, the model accurately predicted responses to a large
number of stimuli (1,882; cross-validation r = 0.89; Fig. 2e) and pro-
vided a significantly better fit than simpler models (P < 10–6, partial F
test versus best-fitting three-subunit model).

Similar models, based on linear-nonlinear integration of 1–6 sub-
units, were used to quantify shape selectivity for 109 neurons in pos-

terior IT. In a cross-validation analysis (used to prevent overfitting;
see Methods) the mean correlation between predicted and observed
responses was 0.70 (Fig. 3a), showing that IT responses to 2D silhou-
ette shapes can be accurately predicted by models based on tuning for
parts-level contour information. Most cells were best characterized by
tuning functions with 2–4 subunits (Fig. 3b), indicating that IT cells
integrate information about multiple contour elements, possibly by
combining lower-level inputs from area V4. Most cells were inhibited
by some range of contour elements14, and for these cells excitatory
and inhibitory influences were roughly equal in magnitude (Fig. 3c).
Our index of nonlinearity for excitatory contour element integration
(Fig. 3d, red bars) indicated two distinct subpopulations of neurons,
one showing purely linear summation (e.g., Fig. 1), and one showing
partially or largely nonlinear integration (e.g., Fig. 2). In contrast,
integration of inhibitory elements was almost exclusively linear 
(Fig. 3d, blue bars). This integration scheme corresponds closely to
what would be expected from a linear-nonlinear cascade model (for
example, linear summation of contour signals, followed by nonlinear
rectification at a spiking threshold value that varies between neu-
rons). Thus, our more general models point toward a specific, biolog-
ically plausible mechanism analogous to successful models of neural
summation in other domains15,16. Nonlinearity was also significantly
correlated with response sparseness across IT neurons (Fig. 3e)—lin-
ear cells typically responded to a broad range of shapes (relatively low
sparseness), whereas nonlinear cells tended to respond to only a few
shapes (relatively high sparseness).

Shape tuning, in the sense of relative responses to different
shapes, was consistent across changes in stimulus position and size,
in agreement with previous reports17,18. (Absolute response rates
can change markedly with position and size, as IT neurons typically
have finite receptive fields and some degree of size tuning1,17–19.)
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Figure 2 Quantitative analysis of shape selectivity for a highly selective IT neuron (conventions as in Fig. 1). (a) Main stimulus set. (b) Auxiliary test of
local curvature tuning. (c) Optimal model of this cell’s shape selectivity, based on its response profile across 1,882 different stimuli. The model equation
is notable for its strong nonlinear term (ABC). (d) Subset of main test stimuli illustrating model predictions. (e) Scatterplot showing correlation between
observed and predicted response rates for 1,882 stimuli.
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This is exemplified for the cell in Figure 2 by three stimuli (drawn
from the top, middle and bottom of the cell’s response range) tested
across a 5 × 5 grid of positions (Fig. 4a) and a six-octave range of
sizes (Fig. 4b; see Supplementary Fig. 2 online for similar results for
the cell in Fig. 1). To quantify such consistency, we tested all cells in a
similar manner and calculated an index of position/size consistency
based on separability of tuning in the shape and position/size
dimensions (see Supplementary Note online). The distributions of
index values indicate robust consistency of shape tuning across
position (Fig. 4c) and size (Fig. 4d), within the position and size
ranges to which neurons were responsive.

Previous studies have demonstrated significant changes over time
in IT shape selectivity for small sets of highly familiar, behaviorally
relevant stimuli9,11,12. In our experiments the number of stimuli was
exceptionally large, and the monkeys were never required to perform
a behavioral task involving the stimuli, but they were passively
exposed to the stimuli over a period of months. If passive exposure
produced the tuning properties we observed, model fits should have
improved over time during the recording period, especially in the
case of one monkey for whom the stimuli were novel at the start of
experiments. However, we found no significant correlation between
recording session number and model goodness of fit (r = –0.01,
P = 0.53 for the experienced monkey; r = 0.11, P = 0.29 for the naive
monkey; permutation test), nor were there any apparent nonlinear
relationships. In any case, even the most complex tuning functions
we described were still of such a general nature that they would
encompass a wide range of natural stimuli. Thus, we postulate that
the response properties we observed reflect stable, long-term mecha-
nisms for general shape representation.

DISCUSSION
Our analyses provide the first quantitative explanation of neural
shape tuning properties in IT cortex. We accurately predicted

responses of neurons in posterior IT to 2D silhouette shapes with
tuning function models that are computationally analogous (though
with different input and output dimensions) to successful models of
processing in other cortical areas. Computational analyses of neural
responses in primary visual cortex (V1) to large, complex stimulus
sets have shown how V1 neurons integrate retinotopic luminance
information to generate explicit signals for local orientation and spa-
tial frequency15,20–22. Our analyses show that IT cells integrate infor-
mation about the shapes and relative positions of multiple contour
elements (of the type represented at lower levels in the ventral path-
way like V4; ref. 13) to generate explicit signals for object part rela-
tionships. This result lends general support to parts-based shape
representation theories23–29. It is particularly consistent with those
that posit explicit (as opposed to implicit) coding of structural rela-
tions between parts23–25, and those based on graded, metric tuning
(as opposed to categorical selectivity) for part shape and posi-
tion25–27,29. Our findings speak only to the issue of 2D boundary
shape coding for abstract objects, and not to more complex issues
(realistic objects, natural images, internal detail, color and contrast
variation, 3D shape, cue invariance, scene segmentation, attention
and learning) addressed by previous studies1–6,8–12,30. However, 2D
boundary shape may dominate IT responses to realistic objects31.
Further, it should be possible to extend our analytical methods to
other aspects of shape coding.

Some IT cells were highly selective for specific part combinations,
consistent with previous descriptions of IT selectivity based on criti-
cal features2,8. Other cells exhibited complex response patterns, dis-
tributed across the stimulus set, that could not be reduced to a single
optimal shape feature. We found that these different types of response
profiles could be accurately explained by models differing in linearity
of contour signal integration—linear integration predicted the dis-
tributed response profiles, whereas nonlinear integration predicted
the sparse, combination-selective profiles. It has been proposed that
achieving a sparse representation, in which a relatively small number
of neurons are active at any time, is one goal of sensory processing—
sparse coding is metabolically efficient, facilitates pattern matching,
and increases memory storage capacity32–34. Theoretical33 and empir-
ical34 work has suggested that the nonlinear response properties of V1
cells are instrumental in generating their relatively sparse representa-
tion. Our results suggest that nonlinear integration in IT cells might
act to further increase the sparseness of the ventral pathway shape
representation en route to areas critical for object memory.
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Figure 3 Population summary of IT shape selectivity. (a) Goodness of fit
(correlation between observed and predicted responses based on a cross-
validation procedure described in Supplementary Note online) for optimal
models of shape selectivity for 109 IT neurons. (b) Tuning complexity
(numbers of Gaussian subunits in optimal models). (c) Excitatory/inhibitory
balance (see Methods). Optimal models for some cells indicated excitatory
effects only (open bars). Optimal models for the majority of cells indicated
combined excitatory and inhibitory effects (filled bars). (d) Linearity/
nonlinearity of contour element integration (see Methods). Values for
excitatory (red) and inhibitory (blue) factors are shown separately. Optimal
models for some cells included only a single subunit of a given sign (open
bars) and were necessarily linear. Optimal models including multiple
excitatory subunits (filled red bars) split into distinct groups (P = 0.002,
Hartigan’s dip test for bimodality) showing linear and nonlinear integration,
respectively. Models including multiple inhibitory subunits (filled blue bars)
were mainly linear. (e) Sparseness of responses to main test stimuli as a
function of nonlinearity (for excitatory integration). Linear regression (line)
indicates a significant correlation between sparseness and nonlinearity 
(r = 0.39; P = 0.0001, permutation test).
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dence13,25,39–41 suggests that this is accom-
plished through a transformation to object-
centered coordinates, producing an explicit
representation of part relationships inde-
pendent of retinotopic position.

Thus, the shape and position dimensions
in our analysis were chosen for their simplic-
ity and previously established relevance in

visual coding. Essentially equivalent results would have been obtained
using any other simple geometric description of contour element
shape and position. Tuning in more complex spaces would manifest
as distinctive patterns in these simpler dimensions. For example, it
has been proposed that IT neurons could be tuned for global periodic
variations in boundary orientation (‘Fourier descriptors’)42. In our
analysis, such tuning would show up as patterns of alternating convex
and concave peaks in the tuning function. We did not observe any
such patterns, however (consistent with other negative results for the
Fourier hypothesis43), nor did we detect any other common patterns
that would signify tuning in more complex dimensions.

Other computational studies of IT have addressed different ques-
tions, such as the amount of information available in IT responses at
the single-cell44 and population6,45 levels. Multidimensional scaling
has been used to analyze the arrangement of shape stimuli in the
space defined by IT population responses5,7. These studies have
helped to characterize the general nature of IT shape information,
whereas ours is the first quantitative study to analyze the specific
informational content of IT responses.

The parts integration mechanisms we have described in posterior
IT could culminate with holistic coding in anterior IT, that is, with
each neuron representing information about global object
shape3,27,46. Alternatively, parts-level population coding may itself be
the ultimate form of neural shape representation, and may just
become increasingly complex and sparse at higher levels8,29,47. We
found no evidence for holistic coding in our data—most posterior IT
cells conveyed information about only a few contour elements, and
even the most selective cells in our sample responded to a variety of
global shapes (e.g., Fig. 2 and Supplementary Fig. 1). Many of our
neurons were tuned for object-relative position of contour elements,
which does depend on at least crude global information (e.g., lumi-

We observed that IT neurons integrate highly specific information
about the curvatures, orientations and positions (in both retinotopic
and object-relative coordinates) of multiple (typically 2–4) contour
fragments, resulting in complex shape selectivity and thus providing
signals useful for high-level object representation. This phenomenon
is different from previously described V1 facilitation and suppres-
sion effects that depend in a general way on collinearity with con-
tours outside the classical receptive field and do not produce specific
selectivity for complex shapes. These V1 collinearity effects, which
peak at an inter-element separation of less than 1 degree and are pre-
dominantly suppressive at supra-threshold contrasts35,36, serve to
modulate V1 orientation signals depending on local contour conti-
nuity and orientation contrast. Contour representation at early (V1)
and intermediate (V4)13 stages is considerably simpler than what we
have observed in IT.

The basic finding of our study is that IT neurons integrate informa-
tion about the shapes and relative positions of contour elements. We
quantified local contour shape with simple geometric dimensions
known to be fundamental to visual coding: orientation and curvature
(the first and second derivatives of contour position). Orientation is
strongly represented throughout visual cortex; curvature is strongly
represented at intermediate levels of the ventral pathway13,37 and has
been identified psychophysically as a basic dimension of visual per-
ception26,38. We measured contour position in both retinotopic and
object-centered coordinates. All of these dimensions were critical for
describing the response patterns of most neurons, although tuning
for retinotopic position was broadest and weakest (see
Supplementary Fig. 3 online). Selectivity for retinotopic position
gradually decreases through successive stages of the ventral pathway,
though selectivity for object shape is consistent across the larger
receptive fields found at higher levels1,17–19 (Fig. 4). Recent evi-
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Figure 4 Consistency of shape selectivity across
position and size changes. (a) Responses of the
example neuron in Figure 2 to three shapes
spanning its response range, presented at a 5 × 5
grid of retinotopic positions. Gray level indicates
actual responses; overlaid red contours show
response predictions based on this neuron’s
optimal model. The icon above each gray level 
plot shows the shape used to generate it. Crosses
represent center of gaze. (b) Responses of the
Figure 2 neuron to three shapes across a six-octave
range of sizes. The icons above the plot show
stimulus sizes, relative to estimated receptive field
(dashed circle), at three selected points within the
tested range. The gray level of each size-tuning
function corresponds to the gray level of the
corresponding shape icon above. Dotted lines 
show standard error of the mean. (c) Population
distribution of position consistency index values
(see Supplementary Note online). Arrows labelled
‘1’ and ‘2’ indicate values for the Figure 1 and 2
example neurons, respectively. (d) Population
distribution of size consistency index values.
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nance integration to derive center-of-mass). By ‘holistic’ shape cod-
ing, however, we and other authors12 mean specific shape informa-
tion that could support object recognition and discrimination.
Center-of-mass is not specific (because many different shapes could
have the same center-of-mass) and could not by itself support recog-
nition. Holistic shape coding may evolve only for familiar or behav-
iorally relevant shapes12. A complete understanding of shape
representation will depend on quantitative analysis at multiple corti-
cal levels under multiple sensory and behavioral conditions.

METHODS
Behavioral and neurophysiological methods. We recorded spike activity of well-
isolated single neurons in the left hemispheres of two awake rhesus monkeys
(Macaca mulatta) trained to maintain fixation within a 0.75°-radius window.
Eye position was monitored using an infrared eye tracker (IScan). Epoxy-coated
tungsten microelectrodes (A-M Systems) were inserted through a transdural
guide tube. Extracellular action potentials were isolated on-line using a dual
time-amplitude window discriminator, and spike times were saved with a tem-
poral resolution of 1 ms. Neurons were sampled in an unbiased manner from IT
cortex, in the posterior to central lower bank and lip of the superior temporal
sulcus (from –5 mm posterior to +8.5 mm anterior to the interaural line), corre-
sponding to functionally defined areas PIT and CIT (cytoarchitectural areas
TEO and posterior TE, respectively). IT cortex was identified based on neurons’
receptive field (RF) sizes and response properties, the pattern of gray-white mat-
ter transitions during the penetration, and by reference to structural MRIs
obtained from each animal prior to the recording experiments. No clear differ-
ences in tuning properties along the anterior-posterior axis were observed; all
neurons were therefore grouped together in our analyses. All procedures were
approved by the Johns Hopkins animal care committee and conformed to
National Institutes of Health and US Department of Agriculture guidelines.

Shape stimuli. We generated parametric stimulus sets in which basic geometric
elements were varied systematically and permuted into a large number of com-
binations (see Supplementary Note online). Stimuli were displayed as high
luminance contrast (white, black or colored) silhouettes against a gray back-
ground (2.5 cd/m2). Each cell was studied with the stimulus set shown (Figs. 1a
and 2a; 66 cells), with a modified version in which one end of each stimulus was
centered in the RF (for 33 cells that were more sensitive to absolute position of
object parts; Supplementary Fig. 1 online) or, whenever possible, with both
stimulus sets (10 cells). For each cell, these stimulus sets were optimized for
color, orientation, local curvature, retinotopic position and size, based on pre-
liminary tests. Post hoc auxiliary tests (Figs. 1b and 4a,b), involving a selection of
high- and low-response shapes from the main stimulus sets, were used to exam-
ine fine-scale tuning along those same dimensions and to confirm that shape
tuning properties generalized across those dimensions. Across our sample of IT
neurons, optimal retinotopic positions (RF centers) covered most of the con-
tralateral visual hemifield, with a strong bias toward foveal and parafoveal loca-
tions (median eccentricity: 3.0°; 10th percentile: 0°; 90th percentile: 12.5°). For
cells with RFs including the fovea, the 0.1° diameter fixation marker was
dimmed to near-threshold luminance and occluded by any overlapping stimuli.
In all tests, stimuli were flashed for 500 ms each, with a 250-ms interstimulus
interval, in random order, during 4.5 s fixation trials (6 stimuli/trial).

Data analysis. For each stimulus, response rate was calculated by summing
spikes over the 500-ms presentation period and averaging across 2–8 repeti-
tions (mean: 4.1). We isolated and studied 137 cells, of which 109 (80%)
showed significant selectivity (P < 0.001; ANOVA) across the main stimulus
set. These selective cells constitute the neural sample described in this paper.

To quantify shape tuning, we first characterized the stimuli in terms of their
component contour elements. This approach, used in a number of mathemat-
ical shape formulations48–50, provides a versatile, compact, low-level geomet-
ric description with the capacity to represent more complex object parts as
well as overall object shape. Contour elements of approximately constant cur-
vature were defined by segmenting the stimulus boundary at points of rapid
change in curvature. Each contour element was described by six values: mean
curvature (rate of change in tangent angle per unit contour length, scaled to a

range of [–1,1] using a sigmoidal mapping function13), orientation (of a per-
pendicular bisector pointing outward from the object interior), object-relative
position (x,y relative to the object’s center of mass) and absolute position (x,y
in retinotopic coordinates; see ref. 19 for comparison; see Supplementary
Note online). Thus, each element could be described as a point in a six-dimen-
sional (6D) shape space, and each stimulus was represented by a set of such
points corresponding to its constituent elements.

We modeled each cell’s shape selectivity with a combination of excitatory
and inhibitory Gaussian subunits on this 6D domain (analogous to the ON
and OFF lobes in a V1 simple cell RF). For a given stimulus, the response com-
ponent predicted by each subunit was the sum of Gaussian amplitude values at
the points corresponding to the stimulus contour elements (inner product
between Gaussian and contour element points):

(1)

where kc, θc, rxc, ryc, axc and ayc are the (fixed) curvature, orientation, relative
position and absolute position values for each contour element in the stimu-
lus, µ and σ are the fitted Gaussian centers and standard deviations on each of
these six dimensions, and A is the fitted Gaussian amplitude (positive (excita-
tory) or negative (inhibitory)). Similar results were obtained when a maxi-
mum operation (using only the contour element closest to the Gaussian
center) was used instead of the sum.

For each cell, we fitted models based on combinations of 1–6 Gaussian sub-
units, which sufficed to capture the range of response complexity we observed
in IT. A model’s predicted response to each stimulus was a weighted combina-
tion of the individual subunit responses (the linear component) and products
of subunit responses of the same sign (the nonlinear component). By varying
these weights, our models could range continuously from linear summation
across contour elements to nonlinear selectivity for element combinations. In
equation form, the predicted response was:

(2)

where Rs is the unweighted response predicted by each subunit alone (derived
from equation 1), ws is the fitted linear weight (amplitude) for each subunit,
wNL+ and wNL– are the fitted weights for the excitatory and inhibitory nonlin-
ear terms, respectively, b0 is the baseline neuronal firing rate, and the brackets
represent rectification of the predicted response at 0 spikes/s. The total num-
bers of fitted parameters for models with 1–6 subunits were 12, 18, 23, 29, 34
and 39 respectively.

These models were fitted to each cell’s response data (main and auxiliary
stimulus sets) using an iterative nonlinear least-squares algorithm (Matlab,
lsqnonlin function; Mathworks Inc.) to minimize the sum of squared differ-
ences between observed and predicted responses. For each neuron, we used a
stepwise regression procedure to determine the minimum number of tuning
subunits needed to explain responses. We calculated the additional amount of
data variance explained by each additional subunit; if this was ≥2.5% of total
variance, then the subunit was added and the process was repeated, up to a
maximum of six subunits (beyond which the threshold increase in explained
variance was never observed). This procedure was much more conservative
than other criteria commonly used to constrain model complexity. All multi-
ple subunit models described here produced a significant improvement in fit
relative to models containing one less subunit (P < 0.01, partial F test). To eval-
uate model goodness of fit, we calculated the correlation between observed
and predicted responses, using a standard cross-validation procedure to con-
trol for overfitting (see Supplementary Note online).
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To characterize the relative contributions of excitation and inhibition, we
calculated an excitatory/inhibitory index for each cell:

(3)

An E/I index value of 1 indicates a lack of inhibitory influences, and 0.5 indi-
cates that total excitation and inhibition were balanced in magnitude. To char-
acterize the degree of linearity/nonlinearity in responses to multiple contour
elements, we calculated a nonlinearity index for each cell:

(4)

This index was calculated separately for the excitatory and inhibitory terms in
each model. It has a value of 0 for purely linear summation and 1 for purely mul-
tiplicative, nonlinear responsiveness to contour element combinations; values in
between correspond to supra-linear (greater than additive) summation.
Response sparseness was defined for each neuron as the kurtosis of the distribu-
tion of its responses across the main stimulus set; to convert observed response
distributions into symmetric, unimodal distributions appropriate for calcula-
tion of kurtosis, we reflected the data about the origin (see ref. 34 for details).

We used the particular model form described above (equation 2), with one
catch-all (nth order) nonlinear interaction term for each sign, because it effec-
tively and parsimoniously characterized nonlinear integration in our IT cells.
Essentially equivalent results were obtained with models that included terms
characterizing all 2nd order nonlinear interactions between pairs of same-sign
subunits: mean goodness of fit (r) increased by only 0.005, mean optimal
number of subunits was virtually identical (3.17 versus 3.18), inhibitory inte-
gration remained almost exclusively linear (mean NLi index: 0.13 versus 0.11),
linearity of excitatory integration exhibited a similar bimodal distribution
(mean NLe index: 0.09 versus 0.04 and 0.72 versus 0.74 for linear and nonlin-
ear subpopulations, respectively), and nonlinearity was similarly correlated
with sparseness (r: 0.42 versus 0.39).

Note: Supplementary information is available on the Nature Neuroscience website.
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