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Abstract. The goal of this study was to train an artificial neural network to generate accurate saccades in Listing’s
plane and then determine how the hidden units performed the visuomotor transformation. A three-layer neural
network was successfully trained, using back-prop, to take in oculocentric retinal error vectors and three-dimensional
eye orientation and to generate the correct head-centric motor error vector within Listing’s plane. Analysis of the
hidden layer of trained networks showed that explicit representations of desired target direction and eye orientation
were not employed. Instead, the hidden-layer units consistently divided themselves into four parallel modules: a
dominant “vector-propagation” class (∼50% of units) with similar visual and motor tuning but negligible position
sensitivity and three classes with specific spatial relations between position, visual, and motor tuning. Surprisingly,
the vector-propagation units, and only these, formed a highly precise and consistent orthogonal coordinate system
aligned with Listing’s plane. Selective “lesions” confirmed that the vector-propagation module provided the main
drive for saccade magnitude and direction, whereas a balance between activity in the other modules was required
for the correct eye-position modulation. Thus, contrary to popular expectation, error-driven learning in itself was
sufficient to produce a “neural” algorithm with discrete functional modules and explicit coordinate systems, much
like those observed in the real saccade generator.
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1. Introduction

In the course of generating accurate visually guided
behavior, the brain must transform eye-centered sen-
sory signals into commands for movements relative to
the head or body (Snyder et al., 1998; Soechting and
Flanders, 1989; Batista et al., 1999; Flanders et al.,
1999; Colby et al., 1995; Goldberg and Bruce, 1990).
Most models of the visuomotor transformation address
this reference frameproblem by developing head-
centric visual representations through comparisons
with eye orientation (Zee et al., 1976; Grossberg and

Kuperstein, 1986; Zipser and Andersen, 1988). Alter-
natively, it has been argued that the problem disappears
if visual signals are mapped onto motor commands as
a sequence of vector-displacement codes (Woodwoth,
1899), particularly for simple movements like saccades
(Jürgens et al., 1981; Raphan, 1998). For example,
according one popular model for the generation of sac-
cades, remembered visual targets are remapped relative
to current gaze direction during each saccade, so that
subsequent saccades can be made without any internal
reference to eye position (Moschovakis and Highstein,
1994; Colby and Goldberg, 1999).
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However, when the actual three-dimensional (3-
D) geometry of saccades is considered, vector
displacement signals arenot frame-independent—that
is, the sensory vector is oculocentric, whereas the motor
vector is headcentric. Thus, a fixed visuomotor map-
ping would produce inaccurate saccades, depending
on initial eye position (Crawford and Guitton, 1997).
Since the real saccade generator does not do this (Klier
and Crawford, 1998), it follows that the saccade gener-
ator must be performing the correct position-dependent
transformation. This does not necessarily contradict
the idea of remapping visual targets in retinal coor-
dinates (Colby and Goldberg, 1999), but it does affirm
that such representations—or at least those chosen for
motor execution—must then be put through an eye-
to-head reference frame transformation at some point
downstream (Henriques et al., 1998).

This being the case, the neuroscientist would then
want to know where and how this transformation oc-
curs in the brain. But at this time one is hampered in
answering this question by the lack of any clear no-
tion of what to look for in the neural signals. The
“black-box” aspects of these transformations can be
modeled with the use of operations like quaternion
multiplication and “desired eye orientation” commands
(Crawford and Guitton, 1997), but these are not
likely to accurately represent the detailed operations
of neural networks (Robinson, 1992). One useful ap-
proach, then, might be to first train a neural network
to perform such tasks and determine how it solves
the problem before tackling the physiological system
directly.

Unfortunately, analysis of artificial neural networks
has often proven just as difficult as analysis of real
neural networks. One apparent success story germane
to the current topic was the discovery that homoge-
neously distributed position-dependent “gain fields”
on a retinotopic map can be used to construct either a
map of space in headcentric coordinates or motor com-
mands of the type required for 3-D saccades (Zipser
and Andersen, 1988; Van Opstal et al., 1995; Liu
et al., 1997). One criticism of this approach is that
it still requires output signals (such as, headcen-
tric spatial maps) that are physiologically unrealis-
tic (Moschovakis and Highstein, 1994; Colby and
Goldberg, 1999). But in theory, such codes may not
be necessary (Zipser and Andersen, 1988). For ex-
ample, it seems plausible that a neural network could
use eye-position signals to transform retinally coded
visual displacement signals into headcentric saccade

displacement signals—as in Crawford and Guitton
(1997)—without such intermediaries.

If so, then how would the network do it? Poten-
tially, it could use an algorithm similar to that used in
the “black-box” models (Crawford and Guitton, 1997;
Crawford et al., 2000), an entirely different algorithm,
or one so distributed and nonmodular so as to preclude
meaningful recognition (Robinson, 1992; Stein, 1992),
Most investigations of artificial neural networks have
emphasized the latter possibility. Indeed, except where
specific order was imposed on the network by the in-
vestigators themselves (e.g., Robinson, 1992), it has
been asserted that neural nets do not employ coordi-
nate systems or any other recognizable form of modular
representation (Robinson, 1992).

However, this is at odds with the actual functional
neural anatomy of, for example, the brainstem saccade
generator, which parcels its tasks into relatively neat
functional modules (Crawford and Vilis, 1992; Quaia
et al., 1999). What is the source of this discrepancy?
Does physiological modularity arise from developmen-
tal rules that are lacking in standard network models, or
could the training of artificial neural networks also re-
sult in forms of functional modularity that are critical
to their workings’ and yet masked to casual inspec-
tion? These are crucial issues for anyone interested in
using neural networks to understand brain function,
the mechanisms of representation in distributed neu-
ral nets, and their relationship to the nature-nurture
debate.

The aim of the current investigation was to train
an otherwise unconstrained neural network model to
perform the transformation from visual displacement
signals to motor saccade commands and then analyze
the network to see how this was accomplished. Since
the correct transformation can be modeled explicitly
with the use of known representations and algorithms
(Crawford and Guitton, 1997), a successfully trained
network must somehow be accomplishing the same
thing, albeit not necessarily in the same way. Based on
the recent tradition in modeling neural nets (Robinson,
1992; Stein, 1992) we expected to observe homoge-
nously distributed representations in our network sim-
ulations but were surprised to find instead that our
network achieved a level of functional modularity rem-
iniscent of that observed at the tip of the physiologist’s
electrode. More important, these modules interacted
through a specific algorithmic mechanism with intrigu-
ing implications for the general mechanisms of visuo-
motor transformation.
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2. Methods

2.1. Theoretical Background

Oculomotor physiologists use the termretinal error to
mean the angular displacement between current gaze
direction and desired gaze direction, as signified by the
retinal site stimulated by light from the desired target.
Motor error similarly signifies the motor command sent
to drive the actual movement. Retinal error has been
implicitly assumed to be geometrically synonymous
with motor error and has often been modeled as such
(Jürgens et al., 1981; Waitzman et al., 1991; Raphan,
1998; Moschovakis and Highstein, 1994). Recently,
however, it has been pointed out that when the com-
plete 3-D geometry of the eye and saccades are consid-
ered, motor error must be considered a geometrically
distinct quantity from retinal error (Hepp et al., 1993;
Crawford and Guitton, 1997; Klier and Crawford,
1998).

For example, if the eye is at a special reference
position calledprimary position(described below), a
horizontal target will evoke a purely horizontal retinal
error, and an eye movement based on the corresponding
horizontal motor error will acquire that target. How-
ever, when the eye moves to a nonhorizontal posi-
tion, a purely horizontal retinal error will require a
nonhorizontal motor error to generate an accurate sac-
cade that obeys Listing’s law. Failure to account for
this relationship would result in position-dependent er-
rors in saccade direction (Crawford and Guitton, 1997),
which are not observed in actual saccades (Klier and
Crawford, 1998).

To understand why this is the case, it is helpful
to review Listing’s law. Primary position is a unique
3-D eye orientation often used as a reference from
which to describe the relative eye-rotation vectors to
other positions. Listing’s law states that these rota-
tion vectors will all lie in a head-fixed plane (Listing’s
plane) that is orthogonal to the line of sight at pri-
mary position (see Tweed and Vilis, 1990a). Whereas
the retinal error vector is 2-D and defined in refer-
ence to the eye, the motor error vector is 3-D and
defined in reference to the head since the eyes move
with three degrees of freedom relative to the head and
since motor error vectors normally specify saccades
that lie within the head-fixed Listing’s plane. Thus, al-
though motor error is dependent on retinal error, they
are not identical (Crawford and Guitton, 1997; Klier
and Crawford, 1998). Therefore, to execute a saccade,

retinal error in an eye-centric frame must first be con-
verted into motor error in a head-centric frame. More-
over, it has been demonstrated that this transformation
is essentially independent of plant characteristics—
in particular the existence of fibro-muscular “pulleys”
(Demer et al., 1995; Quaia and Optican, 1998) because
they cannot solve this problem without simultane-
ously disrupting Listing’s law (Crawford and Guitton,
1997).

Crawford and Guitton (1997) modeled this refer-
ence frame transformation by first converting the angu-
lar values for horizontal and vertical retinal error into
target direction in eye coordinates. They then rotated
this target direction vector by the inverse of 3-D eye
position to produce desired gaze in head coordinates.
The desired gaze vector was then input to a Listing’s
law operator (Tweed and Vilis, 1990a) that outputs
desired eye position in Listing’s plane. At this point,
desired eye position was subtracted from initial eye
position to derive the required change in eye position,
or motor error. The first aim of the current study was
to train a neural network to perform the same overall
transformation.

2.2. Model

Whenever one models the brain, it is important to de-
fine the correspondence between the model and the sys-
tem being modeled, including the inevitable limitations
of the model. Although the neural mechanism of the
saccadic reference frame transformation have not yet
been identified, we postulate that it must be complete
before activation of the short-lead burst neurons in the
brainstem reticular formation because the latter appears
to utilize a head-fixed 3-D coordinate system (Henn
et al., 1989; Crawford and Vilis, 1992; Scherberger
et al., 1998). Several recent studies have suggested that
these neurons encode the derivative of 3-D eye orienta-
tion (Crawford and Guitton, 1997; Quaia and Optican,
1998; Hepp et al., 1999). We therefore trained our net-
work to output the signal that would be appropriate
to drive such neurons—that is, a 3-D vectorial change
in eye orientation, defined within head-centric coor-
dinates aligned with Listing’s plane (Crawford and
Guitton, 1997).

The input signal to our neural net was target di-
rection in eye coordinates, more commonly known as
retinal error (Crawford and Guitton, 1997). It is cur-
rently unknown how far downstream such codes might
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persist within the actual visuomotor transformations of
the brain. However, for the time being we will take the
working hypothesis that it may be coded as low as the
output signal of the superior colliculus (this question
is addressed more thoroughly in the discussion sec-
tion). If so, then this retinal error may be coded topo-
graphically, requiring aspatiotemporal transformation
downstream (Tweed and Vilis, 1990b). In this case,
it could be very difficult to separate this mechanism
from the 2-D to 3-D and the reference frame trans-
formations with which we were concerned. Moreover,
one of the goals of this study was to avoid biologi-
cally based input constraints that might trivially lead
to physiologically realistic organization in the hidden-
unit solution set (Robinson, 1992). Therefore, as our
visual input signal, we simply used two signals rep-
resenting the already segregated components of 2-D
retinal error. In this respect, this study differs from pre-
vious studies that looked at position modulations on
neurons with sensory-receptive fields in a retinotopic
map (Zipser and Andersen, 1988;Van Opstal and Hepp,
1995; Krommenhoek and Wiegerinck, 1998).

Another simplification is that we allowed units to
“fire” positively and negatively to represent the push-
pull organization seen in the brainstem oculomotor sys-
tem (Robinson, 1981). Finally, since it is a trivial mat-
ter to use the motor error signal that is output from this
model to drive our saccade burst-generator model and
eye plant (Crawford and Guitton, 1997), we left the
latter transformations out of the results described be-
low. However, for investigators in the oculomotor field
it is worth bearing in mind that the complete version
of this model includes a displacement feedback loop
(Jürgens et al., 1981) whosemedium-lead burst neuron
output encodes the derivative of 3-D eye orientation.
The latter signal can then be used to drive a pulleylike
plant that implements the saccade axes tilts required for
Listing’s law (Crawford and Guitton, 1997; Quaia and
Optican, 1998) or can be modulated by eye position sig-
nals to neurally implement these tilts (Crawford, 1994;
Crawford and Guitton, 1997).

2.3. Network Architecture

Figure 1A represents the three-layer learning neural
network used in this investigation. The open circles (◦)
represent units that are connected by lines of varying
thickness, representing the actual connection weights
in one particular network. The top three units of the
input layer encoded torsional (T), vertical (V), and

Figure 1. Neural network configuration and training set with ex-
emplar retinal error pattern.A: The typical three layer fully con-
nected neural network (N1), where◦ indicates an artificial neuron
and line thickness indicates relative strength of connection. Input
layer (left-hand layer) with (T)orsion, (V)ertical, and (H)orizontal
components of eye position (top three values) and V and H com-
ponents of retinal error (retinal error). Hidden layer (middle layer)
is fully connected to input and output layers. Output layer (right-
hand layer) with T, V, and H components of motor error (motor
error).B: Standard Cartesian graph with 50 degrees maximum ocu-
lomotor range (OMR). Increments on graph are 10 degrees.◦ indi-
cates randomly selected initial eye positions. (—•—) indicates the
up to six retinal errors along each of the indicated directions as-
sociated with each of the initial positions. Each retinal error along
each direction is 10 degrees greater than the former to a maximum
of six retinal errorswhere possibleto remain within the 50 degree
OMR.
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horizontal (H) components of initial eye position, while
the bottom two units encoded the vertical and horizon-
tal components of retinal error. The middle layer usu-
ally contained 35 units (see next section), each of which
connected with every input unit and every output unit.
The output units represented the torsional, vertical, and
horizontal components of 3-D motor error.

Information flowed through the network in only one
direction, from the input through the hidden to the out-
put layer. To avoid introducing systematic bias in the
networks’ beginning state, each connection weight was
randomly intialized (to a value within±.1). Also, the
output of each neuron was limited with the use of a sig-
moid shaped function: a standard practice that allows
neural networks to approximate most functions. To sup-
port training in the networks we used the standard back-
propagation algorithm. We also used an incremental
weight update procedure. This means that the error
was calculated and weights adjusted after the presen-
tation of each training vector. We also used a momen-
tum term with the back-propagation training algorithm.
This modification changes the weight-adjustment pro-
cedure by adding a fraction (in these networks 10%)
of the previous weight adjustment to the current ad-
justment as calculated by the training algorithm. This
reduces the incidence of the network becoming stuck in
local minima—that is, suboptimal solutions (Freeman
and Skapura, 1991; Rumelhart et al., 1986). (See the
appendix for formulas relating to the network.)

We chose back-propagation as a training rule be-
cause it fits with the goals of this study, which were
not primarily to find the global, optimal solution—
for which rules such as the genetic algorithm may
be superior—but rather to describe the effects of
training through sensory feedback and successive
approximation on the functional organization of the
network.

2.4. Network Training

The network was trained on a group of input patterns
specifying initial 3-D eye position in craniotopic coor-
dinates and 2-D retinal error vectors in eye coordinates.
Figure 1B illustrates the eye positions used and a typ-
ical set of associated retinal error vectors. The input
patterns consisted of 25 initial eye positions (◦) ran-
domly presented within a 40 degree oculomotor range.
The torsional component (not shown) was always set
to zero—that is, all initial eye positions were within

Listing’s plane. The origin in Fig. 1B represents pri-
mary position. Associated with each initial eye position
were up to 48 retinal error vectors. These retinal error
vectors were of six magnitudes (10, 20, 30, 40, 50, and
60 degrees) along each of eight directionswhere pos-
siblewithout exceeding±50 degrees from the origin.
For example, the upper right-hand quadrant of Fig. 1B
illustrates a chosen position with the associated reti-
nal errors (•) connected by lines radiating in the eight
indicated directions. Each of the retinal errors along
any one of the directions was presented sequentially
for each initial eye position (◦), from 10 to 60 de-
grees (where possible without exceeding±50 degrees
from the origin) although each direction was presented
randomly.

A corresponding group of correct desired target vec-
tors specifying 3-D motor error vectors in head-centric
coordinates completed the training set. These ideal mo-
tor error vectors were computed for each input set
by converting the angular components of retinal error
into an eye-centric pointing vector and position into a
quaternion and then inputting these values into the al-
gorithm described above and in more detail in Crawford
and Guitton (1997). The output was then converted into
a 3-D displacement vector with angular components.

The network was then trained to minimize the error
between its actual output and these correct motor error
vectors, by a supervised training process resembling
the actual calibration process whereby saccades learn
to be accurate through visual feedback (Fuchs et al.,
1985; Optican and Miles, 1985). Thus, the network
was trained to map a variable set of retinal errors and
positions onto the correct pattern of motor errors for
accurate saccades that obey Listing’s law.

Using the training set outlined above, we trained
several networks in which we varied the number of
hidden units. We began with a minimum of five hid-
den units and increased that number in increments of
five up to a maximum of 40 hidden units. Network
performance was assessed by monitoring the squared-
error between the desired output and the actual output
of the network. Figure 2 shows a typical output error
curve for networks with the various number of hid-
den units. As shown in the figure, with five units in
the hidden layer, average output error reached a sta-
ble minimum of approximately 21 degrees within 200
epochs (an epoch represents one presentation of the
entire training set. With 10 hidden units, output error
was reduced to approximately 8 degrees. With an in-
crease in the number of hidden units to 35, output error
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Figure 2. Output error (difference between actual and ideal per-
formance) from representative networks with varying numbers of
hidden units. Numbered traces indicate quantity of hidden units used
in a representative network. Hidden units in these networks varied
from 5 to 40 in increments of 5. Note that only incremental reduction
of error was achieved by networks with greater than 20 hidden units
and that a stable minimum output error for all networks was reached
within approximately 1,000 epochs.

was further reduced to within 1 degree of ideal per-
formance. Since a network with 40 hidden units pro-
duced only an incremental improvement over one with
35 and since a 1 degree error was within the range of
experimentally observed errors (Klier and Crawford,
1998), we used only those networks with 35 hidden
units (a total of 13 networks (N1–N13)) for further
testing and analysis. Figure 2 also shows that a stable
minimum error for these networks was achieved within
approximately 1,000 epochs. Nevertheless, training
for all networks was allowed to continue for another
10,000 epochs to ensure that a stable minimum for each
network had actually been reached.

2.5. Network Testing

After training was completed, the networks were tested
with several sets of corresponding input and target pat-
terns. The first set consisted of the patterns used for
training. Testing with this set of patterns allowed us
to assess how well the networks learned the task. An-
other set of test patterns, that were never used during
training, consisted of a randomly generated set of input
vectors (and associated target vectors) and was used to
assess the generalizeability of the networks’ solutions.

In addition to these, we also used a set of testing pat-
terns with specified positions along the diagonal from
the upper left, through the origin, to the lower-right of
a Cartesian coordinate system (see the coordinate sys-
tem in Fig. 1B for an example) and a set of four eye
positions originating at−30,−15, 15, and 30 degrees
along both thex and y axes. Testing with these pat-
terns, which were never used for training, allowed us
to assess a network’s performance along tertiary and
secondary eye positions, respectively.

We also tested the network withstimulationandle-
siontrials. Stimulation of a site upstream from the net-
work encoding retinal error was modeled by varying
eye-position input to the network of any one trial while
holding retinal error constant as if electrically micro-
stimulating an upstream visual site coding a constant
retinal error. For example, if a particular unit had a large
weighting for the vertical component of retinal error
and a zero weighting for the horizontal component of
retinal error, its retinal sensitivity would be represented
by a vertical vector. The lesion trials were conducted
by setting the outputs of selected hidden units to zero
(as described in more detail in the Results section).

Finally, individual hidden unit characteristics were
also examined by plotting the direction and magnitude
of their sensitivity vectors. We defined a hidden unit’s
sensitivity vector as the direction and magnitude of
the weights associated with a particular hidden neu-
ron. Thus, a hidden unit had three sensitivity vectors:
two input vectors (components of position and reti-
nal error) and one output vector (components of motor
error). The results of network training, testing, stimu-
lation, and lesioning were assessed by quantifying the
differences between the actual output of the network
and ideal motor error as a function of direction and
magnitude.

3. Results

This section has two purposes. First, to illustrate the po-
sition dependent relation between retinal error and mo-
tor error in accurate saccades. Note that this has already
been confirmed experimentally (Klier and Crawford,
1998). The second, and more important purpose was to
describe how well our network learned this geometry.

Figure 3 shows the output of network N1 from nine
selected positions thatwere not used in training. In this
and other plots, the horizontal and vertical components
of 3-D angular position are plotted in Listing’s coordi-
nates, but we dispensed with the right-hand convention
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Figure 3. Nine selected positions used to test network performance.
All initial positions (◦) are within 50 degrees OMR shown on standard
Cartesian graph (increments on graph are 10 degrees). Retinal errors
indicated by dashed lines ending in arrows are provided for reference.
Actual network output: solid dots connected by thick dark lines. Ideal
network output shown in thick light lines. Initial positions are in
10 degree increments along the diagonal starting atA (−40◦, 40◦),
to E (0◦, 0◦), to I (40◦, −40◦). Initial position on the origin (E)
corresponds toprimary position(see text). Note that actual network
output and ideal output tilt away from retinal error depending on
initial position and magnitude of retinal error. Actual network output
closely follows ideal and often obscures it.

for simplicity (that is, up is up, and right is right). The
nine positions are staggered in 10 degree horizontal and
vertical steps along the diagonal from the upper left
(40◦, 40◦) in Fig. 3A to the lower right (−40◦, −40◦)
in Fig. 3I. Input to the network for these positions was
2-D retinal error in aneye-centricframe (−→). Note
that these schematically plotted retinal error vectors do
not indicate actual target direction in the head-centric
coordinate system of the figure, but they do show the
direction that the eye would move if retinal error was
not compensated for by eye position (Crawford and
Guitton, 1997). Each initial position in Fig. 3 is asso-
ciated with six retinal errors at 10 degree intervals of
magnitude (where possible without exceeding±50 de-
gree oculomotor range) for each of our eight standard
radial directions and the actual motor error outputs of
the network (—•). For comparison, the computed ideal

motor error showing the correct saccade directions is
indicated by light lines, although these are often ob-
scured by the overlying actual motor error output by
the network.

Motor error diverged from the supplied retinal error
as a function of position eccentricity, direction of reti-
nal error, and magnitude of retinal error. For example,
in Fig. 3A, motor error tends to converge toward the ori-
gin. Saccades at the opposite corner (Fig. 3I) showed
the symmetrically opposite effect, whereas saccades
at intermediate positions (Fig. 3B–H) showed simi-
lar patterns but with intermediate magnitudes. Only in
Fig. 3E, where the initial position was at the origin (pri-
mary position), was there no divergence of motor error
from retinal error as expected. Note that in each of the
panels of Fig. 3, the actual output of the network and
the ideal output are almost indistinguishable.

In summary, motor error and retinal error aligned
with each other at primary position (Fig. 3E) but
showed increasing divergence as the initial position
grew more eccentric. These illustrative initial positions
show that the networks were clearly able to generalize
this position-dependent pattern from the initial train-
ing set to a set of new positions which were never used
during training.

In Fig. 3, all of the eye positions except primary
position (Fig. 3E) aretertiary—that is, oblique. Such
eye positions involve the so-calledfalse torsionfirst
described by von Helmholtz (1925). For example, if
a movement induced a counterclockwise false torsion
of the eye (as would occur at the position illustrated in
Fig. 3A), thenspace horizontalwould be rotated clock-
wise with respect to the horizontal retinal meridian.
Thus, a purely horizontal retinal error may reasonably
be expected to induce a nonhorizontal motor error at
such positions. However, false torsion explains only
part of the position-dependent deviation from retinal
error seen in these data (Crawford et al., 2000). To
demonstrate this, we also simulated saccades from sec-
ondary (that is, vertical and horizontal) positions in
Listing’s plane where there is no false torsion (Fig. 4).
Note that, again, these positions were not used during
training and thus were never seen by the network prior
to this test.

Figure 4 shows the neural network output (dark lines)
with initial eye positions arranged along the vertical
axis in Fig. 4A and the horizontal axis in Fig. 4B. At
these initial positions, retinal errors from−50 to 50
degrees (at 10 degree intervals) were input along the
orthogonal axes (horizontal in A and vertical in B).
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Figure 4. Positions on primary axes (horizontal and vertical) used
to test network output.A: Initial positions arrayed along y-axis at 15
degree intervals from−30 to 30 degrees on 50 degrees OMR Carte-
sian graph. Associated with each position are 10 purely horizontal
retinal errors (- - -◦- - -) five from−50 to 10 degrees and five from 10
to 50 degrees at 10 degree intervals. Actual network output indicated
by dark lines: (—•—). Ideal network output indicated by light lines
(— —). B: Same conventions as inA but initial positions are arrayed
along thex axis. All positions in the figure aresecondaryand cannot
induce false torsion. Therefore, false torsion cannot be the cause of
the pattern of deviation from retinal error seen in the ideal and actual
output of motor error. Note that degree of deviation increases with
eccentricity from primary position (origin) and magnitude of retinal
error.

Despite the absence of false torsion, a deviation be-
tween retinal error and motor error still occurred de-
pending on the magnitude of retinal errororthogonal
to eye position. For example, with eye position at 30

degreesvertical, a 50 degreehorizontal retinal error
(dotted lines) produced a network output that deviated
vertically by about 10 degrees. Note that this deviation
was always in the directionoppositeto the direction
of initial position. A similar but reduced pattern was
seen at an initial position 15 degrees upward. At each
position, increasing the magnitude of retinal error in-
creased the deviation in the network output. The same
patterns of deviation were also seen (but in the opposite
direction) when eye position was initialized at down-
ward positions. Moreover, a similar pattern of motor-
error deviations was seen when eye position was ini-
tialized in the horizontal direction with vertical retinal
errors (Fig. 4B). The main point to note is that when-
ever the eye moves from primary position, retinal error
cannot be trivially mapped onto motor error without a
concomitant reduction in saccade accuracy. Again, the
network learned to correct for this.

Next, these observations were quantified across net-
works by testing each network with a set of five initial
positions that were not used during training: (1) pri-
mary position (0◦, 0◦), (2) up-right (20◦, 20◦), (3) up-
left (−20◦, 20◦), (4) down-left (−20◦, −20◦), and (5)
down-right (20◦, −20◦), Fig. 5B–F. Each of these po-
sitions was associated with eight retinal error vectors
of 30 degrees magnitude oriented in the same radial
pattern as before. The results of this test were quan-
tified as themean angular differencebetween the di-
rection of actual motor error output by the networks
and the direction of ideal motor error (—̈—) Fig. 5A.
For reference we also quantified the angular difference
between retinal error and ideal motor error (----¦----)
as a measure of the error expected with zero compen-
sation for position (Klier and Crawford, 1998). The
mean error across networks for positions 1 through 5
are plotted in Fig. 5B through F respectively as a func-
tion of retinal error direction in polar coordinates. Thus,
Fig. 5B–F plots actual directional error (—̈—) com-
pared to directional error without position compensa-
tion (----¦----), across eight directions for each such
position.

Figure 5B shows position 1 (0◦, 0◦). At primary posi-
tion there is no need to compensate for position effects,
and this fact is reflected in the pattern of error, which
remains at zero for ideal motor error and close to zero
for actual motor error. In the other plots of Fig. 5, the
pattern of error for a lack of position compensation (¦)
oscillates between±6 degrees for 30 degree saccades.
For example, in Fig. 5C, for a 0 degree angle of retinal
error (purely horizontal and rightward) the error starts
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Figure 5. Angular difference measures across networks.A:
Schematic showing geometric relationship of the angular difference
measures plotted inB–F. The vector labeled “Position not compen-
sated” is the supplied retinal-error vector. The vector labeled “Ideal”
is a hypothetical ideal motor-error output vector, and the vector la-
beled “Actual” is motor-error output from a hypothetical neural net-
work. The mean angular difference measure between retinal error
and ideal motor error is indicated by (----¦----) in A throughF. The
mean angular difference measure across networks between actual
motor error produced by a network and ideal motor error is indicated
by (—¨—) in A throughF. Angular difference measures were taken
from five initial positions on a Cartesian graph:B (0◦, 0◦—primary
position),C (20◦, 20◦), D (−20◦, 20◦), E (−20◦, −20◦), F (20◦,
−20◦). Each position has associated with it eight retinal errors of
30 degree magnitude in the same radial pattern as illustrated in Fig.
1B. Thex axis in the plotsB–F is labeled in accordance with the
angle between the axis and the retinal error with 0 degrees indicating
a purely horizontal and rightward retinal error. The angle between
the axis and the vector increases in a counterclockwise direction.
Thus, 90 degrees indicates a purely vertical and upward retinal error.
Note that perfect agreement between the angular difference mea-
sures would cause the values to lie along thex axis. For example,
with perfect agreement between ideal motor error and retinal error
(----¦----), the trace would lie along thex axis as inB (as expected
in primary position (0◦, 0◦)).

out at−6 degrees, progresses to 6 degrees for a 90
degree angle of retinal error, and then decreases again
to−2 degrees for a purely downward angle of retinal
error. Note, however, that the actual output of the net-
works (̈ ) does not follow this pattern. Rather, the actual
output remains relatively flat, indicating a near-zero
error between the correct ideal behavior and the actual

behavior across networks. A similar pattern can be seen
in each of the other panels. Thus, all of the networks
learned the correct transformation to motor error and
were able to generalize this learning to all of these
positions and all directions of retinal error. In addi-
tion, the torsional behavior (not shown) of these net-
works was also highly precise, showing deviations from
Listing’s plane of only−.229 degrees,±.003 (mean
±SD) across all networks.

3.1. Stimulation Trials

Next, we performed the equivalent of stimulation of
a site on a retinotopic map encoding retinal error up-
stream from our network. We did this by testing the
network using an input set (never used during train-
ing) where retinal error remained constant and only
the initial eye position varied. Initial eye positions were
randomly chosen to remain within a±50 degree oculo-
motor range. Figure 6 displays the results of these trials
where the ideal response is shown in light lines, while

Figure 6. Stimulation trials network 1 (N1). Dark lines: Actual
motor error output from network. Light lines: Ideal motor error out-
put.A: 60 degrees purely rightward retinal error (not shown). Note
converging pattern of actualand ideal motor error. Network output
follows ideal output fairly closely.B: 30 degrees purely rightward
retinal error.C: 30 degrees downward and rightward retinal error.D:
30 degrees purely downward retinal error. Note converging pattern of
motor error is dependent on initial position and magnitude of retinal
error (see text).
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the actual response of the network to the stimulation of
a constant retinal error is shown in dark lines. Figure
6A shows a 60 degree rightward stimulation. Note that
as the initial position becomes more distant from thex
axis the ideal response tilts at a greater angle towards
it. The tilting pattern of the ideal response (light lines)
is closely matched by the actual output of the network
(dark lines).

Figure 6B shows a similar pattern of response for
ideal and actual output from the network for a smaller
30 degree horizontal retinal error. Note that the tilting
effect is less than that seen in Fig. 6A. This lessen-
ing of the tilting effect is due to the smaller retinal
error used in this data set, as expected from the pat-
tern described above. Figure 6C and D demonstrates
that this pattern of convergence toward primary posi-
tion holds for any retinal-error direction. Looked on as
a complete pattern, these diagrams show a converging
effect of motor error that is based on both initial eye
position and retinal error magnitude and that bears a
strong resemblance to studies involving actual stimu-
lation of the superior colliculus and frontal cortex (e.g.,
Freedman and Sparks, 1997; Schlag and Schlag-Rey,
1987; Russo and Bruce, 1993).

To quantify this convergence, we used theorbital
perturbation indexdeveloped by Russo and Bruce
(1993) to quantify the eye-position-dependence of sac-
cades evoked by stimulation of the frontal cortex. This
index was computed separately for the horizontal and
vertical components of eye movements, as the linear
regression of saccadic displacement from each initial
eye position (Kh andKv, respectively). An index value
of 0.0 would indicate a constant vector, while a score
of−1.0 would indicate goal-directed saccades that end
at the same position regardless of the initial eye posi-
tion. This analysis was performed for simulated stim-
ulations of 30 and 60 degree retinal-error sites across
all 13 networks, quantified for both ideal and actual
saccades. The mean results and standard deviations for
actual network output and ideal output across networks
were for 30 degree stimulation: actual= −0.073 (SD
= 0.005), ideal=−0.084 (SD= 0.000). For 60 degree
stimulation the results were actual= −0.245 (SD=
0.008), ideal= −0.306 (SD= 0.000).

3.2. Hidden-Layer Analysis

To assess how the network may be accomplishing the
above transformations, we looked at the input and out-
put weightings of units in the hidden layer of the trained

network. Recall that each input that a hidden unit re-
ceived was multiplied by a scalar value roughly corre-
sponding to a synaptic strength, whereas the weights
of its connections to the output units defined its mo-
tor tuning. We initially hypothesized that the network
accomplished its task through certain three-way corre-
lations between weight components of position, retinal
error, and motor error. However, an analysis of correla-
tions between all combinations of position, retinal er-
ror, and motor error weightings across all of the hidden
units in each network revealed little about how the net-
work accomplished the task. Some correlations were
slightly higher than others, but all were weak. Mean
correlations between components ran from−.03 to .07
with none of them being statistically significant. This
seemed to suggest that the solution was completely
distributed so as to preclude any meaningful analysis
(Robinson, 1992). To investigate further, we next tried
a more physiological approach: the equivalent ofcell
recording. That is, we analyzed each hidden unit by
studying its sensitivity vectors.

By a sensitivity vectorwe mean the vector defined
by the components of a units’ weights. For example,
each neuron in the hidden layer received five weighted
inputs signals from the input layer: three for position
and two for retinal error. We treated these signals as
the components of two vectors: a 3-D position vector
(Fig. 7A: blue vectors) and a 2-D retinal error vector
(Fig. 7A: red vectors). Similarly, the three weighted
signals to the output layer were also considered as the
components of a 3-D motor error vector (Fig. 7A: black
vectors). Figure 7A shows these weight vectors for each
of the 35 hidden units of network N1, for which only
the horizontal and vertical components are plotted; the
third dimension of position and motor error will be
treated in a later section.

Figure 7A shows the sensitivity vectors of each hid-
den unit within network N1 labeled according to the
following scheme. Visual inspection of such data sug-
gested to us that network units may have formed spe-
cific task groups. In many units (1, 3, 4, 5, 6, 7, 8, 9, 12,
13, 15, 16, 20, 21, 22, 24, 33), the retinal-error vectors
and the motor-error vectors were aligned, and the mag-
nitudes of their retinal-error components were about
half the size of their motor-error components. In addi-
tion, these units tended to have a very small position
component. These units seemed to be directly map-
ping retinal error onto a motor response regardless of
position, like many of the vector-displacement models
(Jürgens et al., 1981; Raphan, 1998), so we named these
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Figure 7. Geometric interpretation of hidden unit connection weightings as input/output sensitivity vectors.A: Network 1 (N1). Angle and
magnitude of sensitivity vectors are measured from the origin of a Cartesian axis. Individual plots are labeled according to hidden unit number and
group type, respectively. VP: Vector-propagation group. PO1: Position-opposite group 1. PO2: Position-opposite group 2. SO: Semiorthogonal
group. The different sensitivity vectors are indicated by color: red is retinal error, blue is position, black is motor error.B: All of the above
groups (same conventions) superimposed onto single plots by group, across seven networks (N1–N7). Note that the vector-propagation group
forms a coordinate system rotated∼45 degrees from a standard Cartesian graph.
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units the vector-propagation group. Other units (10, 11,
26, 31, 34, 35) tended to have position and motor errors
in opposite directions with a small retinal-error compo-
nent. A smaller subset of these units also had position
tuning opposite to motor error tuning, but they had a
large retinal error vector (2, 29). We hypothesized that
these latter two groups provided the main position de-
pendent effect on motor error output by the network
(Figs. 4 and 5), since the position-dependent effect on
motor error is in the direction opposite of the orthogo-
nal component of position. Thus, we named these two
groups position-opposite1 and position-opposite2 re-
spectively, since they appeared to perform similar func-
tions. The distinction between these two groups was to
prove useful in further analysis. Finally, the remaining
units (14, 17, 18, 19, 23, 25, 27, 28, 30, 32) tended
to have their motor-error and retinal-error vectors in
quasi-orthogonal directions, while the magnitude of
their motor error, retinal error and position components
tended to be more variable than the other groups. We
hypothesized that these units may provide a fine tun-
ing of the response in all available areas of the solution
space, perhaps modifying the amount of position com-
pensation depending on the length of the retinal error
signal. These we named the semiorthogonal group. The
labeling in Fig. 7A reflects this classification scheme
applied to N1.

To systematize our initial observations of hidden-
unit sensitivity vectors, we developed quantitative cri-
teria to classify the above described units (see Table 1).
Through trial and error, we found that our algorithm
broke the weighting data down into our four classes
and captured 98% of the units in all networks. Using
these criteria, we found that the number of each dif-
ferent type of unit was quite consistent between net-
works: vector-propagation: 17.1±1.5 (mean±SD);
position-opposite1: 5.9 ±1.1; position-opposite2: 2.7
±.6; semi-orthogonal: 9.4±1.1. (Of course, there was

Table 1. Functional criteria for hidden unit classes.

Unit Type Membership Criteria

Vector-propagation Angle between the retinal error and motor error<=10◦ andthe magnitude of
the retinal error> position

Position-opposite1 Angle between the motor error and position>=150◦ andthe magnitude of the
retinal error< position

Position-opposite2 Angle between the retinal error and motor error>= 10◦ andthe angle between
the motor error and position>= 150◦ andthe magnitude of the retinal error
< motor error

Semiorthogonal Angle beween the motor error and position<= 150◦ andthe angle between the
retinal error and motor error<10◦

no correlation between which hidden unit became
which type because the units’ initial weights were ran-
domized). Moreover, when we separated the units of
each network into these classes and then superimposed
their sensitivity, as shown in Fig. 7B for networks N1
to N7, the group distributions of these vectors were
quite consistent between networks. We will return to
Fig. 7B in a later section on population coding, but first
let us consider the objective validity of this classifica-
tion scheme in more depth.

To visualize the separate clustering of these hidden-
unit classes, we replotted their sensitivity vectors in a
way that illustrates all of the data simultaneously, color
coded according to the classification criteria shown in
Table 1. Figure 8 shows these four classes as plot-
ted in 3-D spaces that are defined by the angles be-
tween the eye-position, visual, and motor-sensitivity
vectors (along the horizontal axes) and the magnitudes
of these various vectors (along the vertical axes). The
horizontal plane of the panels in the left column (A,
B, C) plot the visual-motor angle versus the visual-
position angle, whereas the right column (D, E, F) plots
the visual-motor angle versus the position-motor angle
(±180◦ ×±180◦). Note that the opposite sides of each
such plot are really continuous but have been sepa-
rated in the process of mapping this cyclic information
onto a plane. Each of these horizontal planes is then
divided into a 2-D grid of 36× 36 bins of (10◦ × 10◦).
The vertical height of each bin is then specified by the
summed magnitudes of all sensitivity vectors—across
all networks—that fall within that bin. The magnitudes
of the three sensitivity vectors have been plotted sep-
arately, so that the top row (A, D) shows the input
weighting of the visual signal, the middle row (B, E)
shows the input weighting of the position signal, and the
bottom row (C, F) shows the motor output weighting.

For the most part, this plot resulted in clear clusters
of data, with each of our classification groups forming
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Figure 8. Three-dimensional group plots of hidden unit sensitivity vectors across networks. Left-hand column: Floor of graph formed by
angles between (retinal error and motor error) and (retinal error and position), shaded by group—vector-propagation is blue, position-opposite1

is orange, position-opposite2 is red, semiorthogonal is yellow. Small scattered, uncolored peaks represent outlaying units that did not fall into
our classification scheme and had minimal impact on behavior.Y axis records magnitude of sensitivity.A: Retinal error sensitivity.B: Position
sensitivity.C: Motor error sensitivity. Arrow inA indicates viewing direction when comparing Fig. 8. Right-hand column: Floor of graph formed
by angles between (retinal error and motor error) and (position and motor error). Other conventions the same as left-hand column.

a separate “mountain” in sensitivity vector space. The
position-opposite groups 1 and 2 (orange and red,
respectively) formed separate peaks near the edge of
the range. At first glance each of these groups seems
to be divided into two or four separate peaks at op-
posite edges, but note that this is just because of the
wrap-around discontinuity at the edge. Accounting for

this, they are really just forming one peak each. The thin
central blue peaks correspond to the vector-propagation
group, stretching along the line that signifies parallel
visual- and motor-sensitivity vectors. Looking at any
one panel, these blue peaks may sometimes be hard to
distinguish from the yellow semiorthogonal range that
cuts diagonally across the blue range, splaying outward
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from either side. But when one inspects these ranges
across rows, one can see that these two ranges behave
differently—for example, the blue showing larger vi-
sual input (A, D) and less position input (B, E) than the
yellow.

Since the bottom row of this plot gives the magni-
tudes of motor output, this row gives an idea of the
relative behavioral importance of a given hidden-layer
class for a given input. Thus, the huge blue peaks in the
bottom row signify that for a given input, the vector-
propagation units provided the greatest single source of
motor output, as one might expect from a class that ap-
pears to do the main job of mapping the visual stimulus
onto a spatially similar motor output. Clearly, the indi-
vidual peaks corresponding to the other classes would
have less weight on behavior (for a given input), as one
might expect from units that are performing a more
subtle, modulatory role. However. it is also important
to recall that the motor outputs represented in the bot-
tom row depend on the sensory inputs seen in the top
two rows. Thus, the overall input-output relations of
each cluster can only be seen by scanning up and down
the columns in Fig. 8, tending to confirm our original
observations based on individual units.

3.3. Cluster Analysis

Since the preceding analysis relied on visual inspec-
tion, we also performed a formal quantitative clus-
ter analysis on the data. Using the SPSS statistical
package, we performed a standard hierarchical cluster
analysis using within groups linkage and the squared
Euclidean distance between groups. Input to the analy-
sis consisted of three angular values (retinal error ver-
sus motor error, retinal error versus position, and po-
sition versus motor error) as well as three magnitude
measures (retinal error, position, and motor error) for
all hidden units across all networks. However, since
there was a discontinuity at the±180 degree angle, the
angular values were replaced with both the sine and
cosine values for this analysis.

This cluster analysis consistently arrived at four sig-
nificant clusters (even for higher-order fits), and these
clusters agreed substantially with our initial quantita-
tive groupings—for example, showing 91% inclusion
of the vector propagation units in cluster 1, 95% in-
clusion of the position-opposite1 units in cluster 2,
and 100% agreement of the position-opposite2 class
with cluster 3. However, there was one exception: the
cluster analysis did not separate the vector propagation

and semiorthogonal groups but instead treated them as
a continuous range. Considering the subtleties noted
above for distinguishing these blue and yellow ranges
in Fig. 8, this is perhaps not surprising.

One possible explanation for the minor discre-
pancy between our initial scheme and the formal cluster
analysis is that the cluster-analysis algorithm was not
subtle enough to account for the second-order effects
that we felt were important for distinguishing between
the vector-propagation and semiorthogonal groups or,
in other words, that it was fooled by the proximity
of these groups in the horizontal plane illustrated in
Fig. 8. Presumably, one could alter the form and
weightings of the inputs to the cluster analysis until it
agreed with our intuitions, but this would seem to be an
exercise in self-affirmation. Therefore, to test our own
intuitions more rigorously, we graphically analyzed
the hidden units across all 13 networks (13× 35= 455
units) in a way similar to that shown in Fig. 8., but this
time looking at the individual units rather than entire
populations.

Figure 9 illustrates the input magnitudes as a func-
tion of the angle between their sensitivity vectors—
that is, retinal error versus motor error (left column)
and position versus motor error (right column). The
rows further quantify the properties of each unit by
showing themagnitudeof its visual-sensitivity vec-
tor (row 1) and its position-input vector (row 2).
Note that these plots show individual units, cate-
gorized as vector-propagation (•), position-opposite1
(¦), position-opposite2 (¨), and semi-orthogonal (◦)
groups according to our original criteria (Table 1).

In panels A and C, both the semiorthogonal (◦)
and vector-propagation (•) groups are intermeshed and
seeminglyrange over a continuum, so again, it is easy
to see how a cluster analysis influenced by these views
would put them together. However, that these are two
different groups becomes apparent in plots B and D.
The response magnitude of the semiorthogonal (◦)
group in these plots remains relatively constant and
clustered near the center of the graph, while the vector-
propagation group (•) forms a tight line, which is par-
ticularly separate in plot D. This suggested to us that our
initial classification scheme was essentially correct, de-
spite the one discrepancy from the formal cluster anal-
ysis. Moreover, as we shall see in the following sec-
tions, the distinction between the vector-propagation
and semi-orthogonal groups proved to be important in
further analysis where these groups showed very dif-
ferent population characteristics and functional roles.
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Figure 9. Sensitivity magnitudes plotted as a function of angular
differences between hidden unit sensitivity vectors across networks.
The x axis of each plot shows the angle between hidden unit sen-
sitivity vectors: retinal error (RE) and motor error (ME)—left-hand
column, and position (POS) and motor error—right-hand column.
They axis of each plot shows the magnitude of the input-sensitivity
vectors: retinal error (first row) and position (second row). Each
point represents a single hidden unit so that all hidden units for all
networks are represented in each graph. Points are labeled according
to our quantitative criteria: VP: vector-propagation•. PO1: position-
opposite1 ¦. PO2: position-opposite2¨. SO: semiorthogonal◦. By
scanning the different graphs, it can be seen that points form clusters
rather than an amorphous distribution and that groups that seem to
be continuous in one view can be distinguished from each other in
another view (e.g., PO1 and PO2 in plots B and D).

3.4. Population Coding and Coordinate Systems

Having established that the network’s hidden layer
could be legitimately divided into four parallel groups,
we then asked how these populations coded for sac-
cade direction. To do this, we overlapped the sen-
sitivity vectors for each network separately for each
type of group. Figure 7B shows these groupings for
networks N1 to N7. Other networks (not shown) dis-
played very similar patterns of sensitivity groupings.
The top row depicts the semiorthogonal group, the sec-
ond and third rows show the position-opposite1 and
position-opposite2 groups, and the last row displays
the vector-propagation group. Otherwise, conventions
are the same as in Fig. 7A.

One reason to plot the sensitivity vectors in this way
was to see if these different unit populations coded
sensory and motor directions using a distributed vector

code, as observed in many topographic neural struc-
tures (e.g., Sparks, 1989) or if they used a coordinate
system, as observed in some brainstem oculomotor
structures (e.g., Crawford 1994). Looking at Fig. 7B,
one can see that the semiorthogonal and position-
opposite1 groups showed no sign of forming a coor-
dinate system but rather showed a fairly even distribu-
tion of directions in all of their sensitivity vectors, as
predicted by Robinson (1992). The PO2 group showed
somewhat less variability in direction with a slight ten-
dency to align with the standard Cartesian axes, but
these were not numerous enough in a given network to
make a definite judgment.

In contrast, the vector-propagation group (bottom
row) showed a strikingly consistent coordinate system,
rotated about the origin∼45 degrees from the standard
Cartesian graph coordinates, in both the retinal-error-
and motor-error-sensitivity vectors. This occurred in
all trained networks, independent of the random ini-
tial weightings. This further served to distinguish this
population from the SO group. Thus, across networks,
each unit could be assigned to one of the four groups
based on consistent characteristics of their sensitivity
vectors, with one population—and only one—forming
a clear coordinate system.

Although we have focused on the 2-D properties of
the unit sensitivity vectors so far, at this point we took
the opportunity to look at their torsional components to
see how these balanced to give Listing’s law. In general,
the torsional tuning of motor error in these units (not
shown) was somewhat variable, even for the vector-
propagation group. Overall, however, torsion varied
only slightly from Listing’s plane: mean= −.229 de-
grees SD= .003 degrees. However, the fact that the
torsional motor-error component of these networks was
negligible in the actual behavior shows that the positive
and negative tilts were perfectly balanced in the overall
activation pattern of the units.

These analyses allowed us to characterize individual
units as belonging to distinct groups, but they provided
only a rough approximation as to thefunctionof each
group. It was now clear that the network’s solution to
the reference frame transformation was not completely
distributed. Instead, the network developed particular
groups of units that processed a particular aspect of
the solution. Again, we hypothesized that the vector-
propagation group provided the main response to get
saccades on target, whereas the main position depen-
dent deviation (that is, convergence toward center) was
provided by the position-opposite groups. The role of
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the semiorthogonal group was less clear, but it seemed
to be the only group that could provide fine tuning such
as greater position dependent tilts for greater magni-
tudes of retinal error.

3.5. Lesion Studies

To test our hypotheses and characterize group function
more completely, we conductedlesion studies. That
is, we removed one or more groups of units from the
network’s hidden layer and noted the results. First, we
conducted control tests in which we randomly lesioned
either 25%, 50%, or 75% of units within the networks
(not shown). As expected, the results showed a reduc-
tion in the magnitude of response with varying degrees
of disruption of the position-dependent pattern. These
results varied over networks and trials. That is, the mag-
nitude of response was consistently reduced while the
amount of disruption to the position-dependent pat-
tern depended on initial position. Thus, no clear pattern
emerged from these random lesion controls.

Next we lesioned the vector-propagation group. Re-
call that we hypothesized that these units represent the
main drive to get saccades on target. If this hypothe-
sis was correct, we should see massive degradation of
network output in both direction and magnitude of re-
sponse as a result of such a lesion. Furthermore, if our
characterization of the vector-propagation coordinate
system is correct, it should be possible to affect one
direction selectively without affecting the orthogonal
direction.

Figure 10 shows the results of various hidden unit
lesions within the vector-propagation group for a par-
ticular initial position that was never used during train-
ing (25 degrees right and 15 degrees up) and the set of
retinal errors that was used with that position. The ac-
tual output of the network is shown with thick dark
lines, while ideal motor error output is shown with
thick light lines. The supplied retinal error is shown
in thin dark lines (Fig. 10A only) to highlight the re-
quired deviation from a direct retinal-error to motor-
error mapping if saccades are to be accurate from all
initial positions. Note that after lesioning the network a
specific correspondence between network output (dark
thick lines) and ideal output (light thick lines) may be
difficult since the close correspondence between the
ideal pattern and the actual pattern has been disrupted.
However, what is important in these lesion studies is not
the specific correspondence of each trace in the graph
but rather how closely the general pattern of the net-

Figure 10. Vector-propagation cell lesions for selected position
network 1 (N1). Initial position (25◦, 15◦). Thick dark lines: Ac-
tual network motor error output. Thick light lines: Ideal motor error
output. Thin dark lines: Supplied retinal error (plotA only). The
position has associated with it six retinal errors along each of eight
directions where possible without exceeding 50 degree OMR from
origin (primary position). Supplied retinal errors are in the same
directions as those indicated in Fig. 1B.A: Control condition: no le-
sion. Note that inset axis (all plots) indicates quadrant where vector-
propagation units are leftintact. B: All vector-propagation units le-
sioned. Note complete obliteration of any pattern in response.C:
Vector-propagation units in Q1 and Q3 lesioned. Note response in
the lesioned quadrants are most compromised while those in the other
two quadrants are spared.D: Vector-propagation units in Q2 and Q4
lesioned.

work response follows that of the ideal response. Also
shown in each graph is an inset with directional arrows
indicating in which quadrant of the graph the response
of vector-propagation units was leftintact.(Recall that
the vector-propagation units use a coordinate system
aligned with 45 degree oblique directions).

Figure 10A shows the control condition in which
the response of all units within the vector-propagation
group (and all other groups) are left intact. Note that,
in this plot, the actual output of the network (thick dark
lines) closely follows the ideal output (thick light lines)
in both direction and magnitude such that a correspon-
dence between the dark lines and the light lines is appa-
rent. Figure 10B shows the effect of lesioning (setting
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output to 0) the entire population of vector-propagation
units. The result of this lesion was a complete oblit-
eration of the normal pattern, even though∼50% of
hidden-unit output (from semiorthogonal and position-
opposite groups) was unaffected. The only remaining
effect of these intact groups were weak movements to-
ward center.

Next, we lesioned vector-propagation units whose
response lies in the up-left and down-right quadrants.
The result is shown in Fig. 10C. Note that both the di-
rection and magnitude components of responses within
the quadrant containing the lesion are severely dis-
rupted, whereas output from the network in the up-
right/down-left quadrants is less affected, particularly
along the intact diagonal coordinate. Similarly, when
the opposite coordinates were selectively lesioned (Fig.
10D), saccades in the opposite two quadrants were af-
fected. This confirmed our hypothesis that these units
were the main drive to get saccades moving with the
right magnitude with approximately the correct di-
rection, as specified componentwise in their intrinsic
coordinate system.

To further test this and the role of the remaining
groups, we performed the opposite lesion—leaving the
vector-propagation group intact while removing other
groups. Figure 11 shows the results of these lesions
using a different initial position (never used for train-
ing: 30 degrees down and 30 degrees right) than that
used in our vector-propagation lesions. This position
was selected to further highlight the position depen-
dent divergence between retinal error and motor er-
ror discussed above. Conventions for actual network
output, ideal output, and retinal error are the same as
Fig. 10. Figure 11A again shows the control where the
output from all groups is intact. Figure 11B shows the
network output with only the vector-propagation units
intact—that is, position-opposite1, position-opposite2,
and semiorthogonal groups did not contribute to
the network’s performance. Note that direction and
magnitude are reasonably intact but there is almost no
position-dependent modification of motor output. This
again confirmed that the vector-propagation units were
the major drive for the correct direction and magnitude
of motor error but did not contribute to the required
position-dependent modification of motor error.

Figure 11C shows the result of our lesioning the
position-opposite1 and position-opposite2 units, leav-
ing both the vector-propagation and semiorthogonal
groups intact (we did not attempt to distinguish be-
tween the two position-opposite classes because of the

Figure 11. Group lesions. Conventions same as in Fig. 10.A: Con-
trol: no lesions.B: PO1 position-opposite1, PO2 position-opposite2,
and SO semiorthogonal lesions (VP vector-propagation group,
intact).C: PO1 and PO2 lesions.D: SO lesions.

very low number of units in the second class and their
concomitantly small effect on behavior). Surprisingly,
although∼80% of the units were still functional, we
saw a severe compromise of direction and no capacity
of the network to perform the position-dependent mod-
ification of motor error. Saccade direction diverged
wildly from center as if a constant convergence bias
had been lost and centrifugal saccade magnitude was
greatly enhanced. Note also that this divergence was
much stronger forshortersaccades such that the pat-
tern was more spread out.

When we lesioned only the semiorthogonal group
(leaving∼70% of hidden units intact: Fig. 11D), we
saw an equally devastating effect on direction, but this
time there was too much convergence. But note that
the level of convergence was the same for all sac-
cade magnitudes. Thus surprisingly, a lesion to one
of the population groups (semiorthogonal or position-
opposite) produced a greater effect than lesioning them
both. This led us to conclude that position modulation
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was actually being carried out by abalancebetween
the contribution of the semiorthogonal and position-
opposite groups. Furthermore, whereas the position-
opposite group added a constant convergence factor
when left intact without the SO group (Fig. 11D),
the semiorthogonal group produced less divergence in
longer saccades, leading to the phenomenon that longer
saccades normally converge more when the two groups
work in concert, as required for the ideal geometry
(Fig. 11A).

We quantified these observations across networks by
testing the networks with the same input set as above,
but within each network the PO and SO groups were
lesioned (as in Fig. 11B). That is, only the vector-
propagation group remained intact. Figure 12 shows
the results of this test employing the same conventions
used in Fig. 5, except that they axis has a larger range.
(¦) shows predictions of a vector-displacement model
with no position compensation. Figure 12B is the con-
trol condition (primary position) where the vector dis-
placement model (¦) shows no errors, since no po-
sition modification is required at that special position.

Figure 12. Angular difference measures with vector-propagation
lesion across networks. Conventions and initial positions the same as
Fig. 5. Note the larger range of they axis. Graph shows that no eye-
position compensation takes place without the vector-propagation
group (see text for an explanation).

The actual output of the networks (¨) also hovers within
±3 degrees of this response. Looking at Fig. 12C
(20◦, 20◦) we note that errors in the vector displace-
ment model (----¦----) follow the same pattern as in
Fig. 5. However, unlike the intact network illustrated
in Fig. 5, the actual response of the lesioned networks
(—¨—) now more or less followed the incorrect pat-
tern of the vector-displacement model. Thus, in the
absence of the semiorthogonal and position-opposite
groups, there was no longer any position-dependent
modification of response taking place within any of the
networks.

4. Discussion

This investigation addressed two main questions. First,
can neural networks perform an eye-to-head reference-
frame transformation without ever developing head-
centric representations of target direction? Second,
if so, what type of algorithm is used—a completely
distributed transformation or one with recognizable
modules?

4.1. The Oculomotor Reference-Frame
Transformation

Most theoretical studies of oculomotor reference frame
transformations have focused on the problem of re-
membering target locations across saccades. Tradition-
ally, these have assumed that the system develops a
head-centric map of visual space to remember targets
independently of subsequent saccades (Soechting and
Flanders, 1992; Zee et al., 1976; Howard, 1982). Even
the original implicit gain-field model of Zipser and
Andersen (1988) employed such a map in the model’s
output layer (although the authors suggested that this
might be avoided in the real system). Unfortunately,
this is at odds with the known physiology of the sac-
cade generator, which seems to rely largely on dis-
placement signals (Moschovakis and Highstein, 1994;
Colby and Goldberg, 1999). Moreover, recent studies
have shown that target directions can be remembered
across saccades without a headcentric map by “remap-
ping” their representations retinotopically (Bozis and
Moschovakis, 1998; Duhamel et al., 1992; Goldberg
and Bruce, 1990; Krommenhoek et al., 1993; Waitzman
et al., 1991; Henriques et al., 1998; Batista et al., 1999).
Be this as it may, the eye-to-head reference-frame
transformation problem does not go away so easily.
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The oculomotor system would still require an eye-
to-head reference-frame transformation—downstream
from the remapping mechanisms—to deal with the
3-D geometry of saccade execution. For saccades to
be accurate and obey Listing’s law, 2-D oculocen-
tric retinal saccade signals must be correctly trans-
formed into 3-D head-centric motor-error commands in
Listing’s plane (Crawford and Guitton, 1997; Klier and
Crawford, 1998). Crawford and Guitton (1997) model-
ed this with the use of explicit representations of gaze
direction and 3-D eye position in head coordinates to
perform this transformation. But this still conflicts with
the known physiology. Therefore, we asked if a neural
network model trained to perform the same task could
provide an alternative solution.

The neural network in the current study clearly
learned the correct position dependent modification of
retinal error to provide the reference-frame transfor-
mation for accurate motor-error commands, but it did
so without an explicit representation of desired 3-D
eye orientation or target direction in head coordinates.
That is, no one unit coded for a specific spatial location
or direction of retinal error. This may not answer the
question of whether the brain actually uses head-centric
representations of target direction or desired eye orien-
tation, but it does answer the question of whether it
must do so to perform an eye-to-head reference-frame
transformation. The answer to that question is a definite
no. This is not to say that other nonsaccadic systems do
not use head-centric maps (Duhamel et al., 1997), but
it goes a long way to explaining why they are not ne-
cessary in the saccade generator (Colby and Goldberg,
1999).

4.2. Modularity and Coordinate Systems

There has been a general consensus, at least in the
visuomotor field, that artificial neural networks do
not employ recognizable algorithms or representa-
tions (Robinson, 1992; Stein et al., 1992) but rather
produce highly distributed solutions. However, this
may have been a product of the network analysis
used.

In our network, a physiological type of approach
proved to be more fruitful than a statistical analysis
of relationships between input, output, and program
weights. Remarkably, this showed that individual hid-
den units within the network did have understand-
able functions. The solution to the reference-frame

transformation problem was not completely distributed
throughout the network, but neither was it solved us-
ing a unitary multiplication algorithm as proposed by
Crawford et al. (2000) for similar transformations in
the cortex. Rather, it was solved by parallel groups,
or modules, where each of these parallel modules per-
formed a specific subtask.

Our analysis suggested that the dominant mod-
ule (vector-propagation) simply performed the first-
order linear mapping between retinal and motor error,
whereas higher order nonlinearities were handled by
the other modules. The second-order convergence ef-
fect (Figs. 3, 4, and 6) was handled by the actions of the
position-opposite groups, which mainly directed mo-
tor error in the direction opposite to initial position.
However, this was insufficient because the amount of
convergence also depended on retinal error magnitude
and direction (e.g., Fig. 4). Thus, a third major group
(semiorthogonal) was required to modulate the effects
of the position-opposite groups through a system of
balance. Clearly, more than one unit was required to
implement each of these groups, which accounted for
the disproportionately low number of functional groups
compared with the number of hidden units.

Among these groups, only the vector-propagation
group consistently formed the same orthogonal coor-
dinate system in each network, despite random initial
settings. Moreover, this coordinate system aligned with
Listing’s plane, as observed in the coordinates of the
real saccade generator (Crawford, 1994; Crawford and
Vilis, 1992). Although the mathematical reason for the
development of this coordinate system is unclear at this
time, this result is difficult to trivialize because this dia-
gonal coordinate system differed from the Cartesian co-
ordinates used to input data and was not observed in
the other unit types. Moreover, since coordinates are not
required to specify direction (Soechting and Flanders,
1992; Sparks, 1989; Georgopulos et al., 1982), they
must have conferred some specific advantage—such as
economy of directional representation among a small
number of units.

In any case, although the overall reference frame
transformation was implicit across these parallel mod-
ules, the network did employ an identifiable algorithm
and explicit coordinate system to do so, contrary to
general expectation (Robinson, 1992). Clearly, devel-
opmental rules also contribute to the organization of
the saccade generator, but this study shows that error-
driven training alone is sufficient to give rise to a con-
siderable amount of functional modularity.
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4.3. Implications for Oculomotor Physiology

Where then might a neurophysiologist look for the
functional modules observed in our network’s hidden-
unit layer? To begin with, we need to consider how the
input and output layers of our network might corres-
pond to functional neuroanatomy. First the outputs. If
oculomotor short-lead burst neurons encode the deriva-
tive of eye orientation rather than angular velocity—
as suggested in several recent studies (Crawford and
Guitton 1997; Quaia and Optican, 1998; Hepp et al.,
1999)—then the motor-error output of our network
would be the appropriate signal to drive these neurons.
Thus, we would interpret the output layer of our net-
work as representing the total ensemble of inputs to
short-lead burst neurons, which would include inputs
from the superior colliculus and other sources (e.g.,
Quaia et al., 1999; Helmchen et al., 1996).

The visual signal starts out coded in oculocen-
tric coordinates—as in our input layer, albeit repre-
sented in a more distributed topographic form. But
how far downstream does such a code persist? One
clue is that the pattern of converging saccades that we
simulated for stimulation of sites coding a fixed
oculocentric retinal error (Fig. 6) resembles the pat-
tern of saccades evoked by stimulation of various cor-
tical and subcortical sites (Schlag and Schlag-Rey,
1987; Bon and Luchetti, 1992; Schall, 1991; Freedman
et al., 1996; Russo and Bruce, 1993). In particular, in the
study by Russo and Bruce (1993), it was shown that sac-
cades induced by electrical stimulation of frontal eye
fields and supplementary eye fields in macaque mon-
keys showed an orbital perturbation index (defined in
the Results section) ranging between∼0.0 to−0.5 with
a mean Kh of−0.13 (SD= 0.11) for SEF site stimula-
tions and−0.16 (SD= 0.11) for FEF site stimulations.
These values are comparable to those that were ob-
served with our model, and close inspection of their
data also reveals that the convergence index increased
with saccade size—as in our model. When observed
experimentally, such convergence patterns have gener-
ally been interpreted to signify some artifact (that is,
error) in the downstream structures that account for eye
position (e.g., Russo and Bruce, 1993). However, the
current analysis suggests that orbital convergence like
that reported by Russo and Bruce could mean that these
sites are simply coding true retinal error, with thecor-
rectgeometric transformations occurring downstream.

If so, could this retinal code persist as far as the su-
perior colliculus? In their 1991 study of the colliculus,

Van Opstal et al. did not distinguish between the kind
of retinal-error and motor-error signals that were used
in our model, so this question remains open. More-
over, in another study (Van Opstal et al., 1995), they
showed that the superior colliculus possesses eye-
position-dependent “gain fields” that in theory could
be used to construct many different types of spatial
codes. However, the head-free colliculus stimulation
data of Freedman et al. (1996) shows a pattern of con-
vergence that could be consistent with a retinal code.
Furthermore, preliminary results of a very recent study
designed to test this specificially by computing the 3-
D geometry of such movements support this conclu-
sion (Klier et al., 2000). Therefore, our current think-
ing is that the input layer of our neural network could
correspond to the output code of the superior
colliculus—broken down into its horizontal and ver-
tical components—with our hidden layer intervening
(synaptically) between this and the short-lead burst
neurons.

Before testing this specific scheme, it is important
to note that we simplified our feed-forward model con-
siderably to facilitate analysis and that the inputs to
the model were simplified vector components of reti-
nal error and eye position. The real brainstem sac-
cade generator, besides having many more neurons,
also faces other problems related to the spatiotempo-
ral mapping from the retinotopic map of the colliculus
to reticular formation burst neurons (Van Opstal and
Van Gisbergen, 1981; Tweed and Vilis, 1990b; Quaia
and Optican, 1997). Among these are temporal dynam-
ics (Van Gisbergen et al., 1981; Munoz and Wurtz,
1995), dealing with deviations of torsion from Listing’s
plane (Crawford and Vilis, 1991; Tweed et al., 1998;
Crawford et al., 1999), and using additional lateral
connections and feedback control (Quaia et al., 1998).
However, our network shares one important character-
istic with the real brain (that is, the connections between
the superior colliculus and burst neurons) in that it had
to solve the reference frame problem within approxi-
mately two synapses, perhaps aided by certain parallel
streams.

For this reason, the networks’ method of dividing
the job into parallel task modules may reflect a real-
istic physiological strategy. It therefore seems reason-
able that the brainstem would employ a main channel
resembling the vector-propagation units in our network
(units with similar sensory and motor on-directions
that develop a coordinate system—like the progres-
sion seen from colliculur burst neurons to short lead
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burst neurons) to do the “main job” of getting the sac-
cade going in the general direction of retinal error.
Likewise, the position-dependent modulations that we
observed in our position-opposite and semiorthogonal
units could likely be implemented in some side-path
within the reticular formation or perhaps the cerebel-
lum (Vilis and Hore, 1981; Russo and Bruce, 1993;
Quaia et al., 1998). Investigators interested in such a
process should look for cells with eye-position sensi-
tivity opposite to its saccade tuning (position-opposite
type) and cells with visual, eye position, and saccade
sensitivity in pseudorandom, nonparallel arrangements
(semiorthogonal). Moreover, if the real brain employs
the same system of balance between such cells, then
it may be possible for experimental or clinical lesions
to uncouple this balance (Fig. 11), with the potentially
devastating effects that were simulated in the results
section. But now that the current study has established
a basic theoretical framework, it will also be important
to repeat these simulations in a more constrained net-
work designed to more closely emulate the properties
of neurons in the superior colliculus and brainstem.

4.4. General Implications

This study has two important general implications. The
first is that visuomotor transformations can accomplish
the reference-frame transformations required for accu-
rate motor behavior without the need for intermediate
spatial maps. Although we demonstrated this for the
oculomotor system, the same principle applies to, for
example, the arm-control system, where visual signals
must be transformed from a retinal frame in the pari-
etal cortex (Batista et al., 1999) and premotor cortex
(Mushiake et al., 1997) to body-centric vector codes
in the motor cortex (Georgopulos et al., 1982). Our
network demonstrates that this can be done simply by
modulating vector codes by position inputs. However,
contrary to one suggestion (Crawford et al., 2000), our
network suggests that some of these modulations may
be performed by parallel modules rather than entirely
intrinsic network computations.

Second, this study shows that neural networks can
develop task-related modules like those observed in the
real brain, simply through the use of a training algo-
rithm, without the need of additional developmental or
anatomic constraints. It should be noted that thefunc-
tional modules discovered in our network differ from
the spatial clustering of units with similar temporal
spiking patterns found in some artificial neural network

models (Parodi et al., 1998; Draye et al., 1997; Xing
et al., 1996). Closer results to the functional organi-
zation of hidden units found in this investigation may
be models involving the organization of visual cortex
cells (Ernst et al., 1999; Bell and Sejnowski, 1997).

Currently, it is unclear whether the apparent lack of
reports of such specialization in many previous net-
work models is due to a fundamental difference (such
as our simplified vector inputs of retinal error and eye
position), or whether this discrepancy is due to differ-
ences in the way that the network models were ana-
lyzed. Thus, our next step is to investigate whether a
similar model will produce such functional specializa-
tion while using more realistic input values. Neverthe-
less, the current approach provides a more optimistic
view than popular expectation for analysing real neural
networks and for further theoretical studies of geneti-
cally programmed anatomy and learning, in determin-
ing function modularity.

Appendix

The following gives a summary of the mathemati-
cal formulas used in designing the networks in this
study.

Transfer Function

Each of the three layers (input, hidden, and output) of
the network used a sigmoid transfer function given by

f (x) = γ

1+ exp(−σ x)
− η, (1)

whereγ is range of the transfer functionσ is slope pa-
rameter (steepness of the transfer function),η is maxi-
mum value of the transfer function.

The derivative of the transfer function was used in
back-propagating error through the network:

f ′(x) = σ

γ
[η + f (x)][γ − η − f (x)]. (2)

Error Term

The error term for each unit in the output layer was
calculated using

erri = (ti − z outk) f ′(z ini ), (3)
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wherei is output unit,t is target vector,z out is output
layer output,z in is output layer input.

Each unit in the hidden layer calculated the change
term using the error term from the output layer multi-
plied by the current hidden layer weight for that
unit:

c in j =
m∑

k=1

errkwjk, (4)

where j is unit j in hidden layer,k is unit k in output
layer,c in is change term,errk is error term from output
unit k, wjk is weight between hidden unitj and output
unit k.

The error term for the hidden layer is given by

err j = c in j f ′(y in j ), (5)

where j is unit j in hidden layer,c in is change term,
y in is input of hidden unit.

Weight Update with Momentum

The weight correction term (output layer shown) was
calculated by

1wjk = αδkyj , (6)

whereα is learning rate,δ is error term,y is output of
hidden unit.

A momentum term (10%) was added to the weight
update procedure:

1wjk(t + 1) = α1kyj + µδwjk(t), (7)

where the change in weightwjk at time(t + 1) is the
sum of the weight correction term(#5) and the product
of the momentum term(µ) with change in weightwjk

at timet .
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