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Abstract. The goal of this study was to train an artificial neural network to generate accurate saccades in Listing’s
plane and then determine how the hidden units performed the visuomotor transformation. A three-layer neural
network was successfully trained, using back-prop, to take in oculocentric retinal error vectors and three-dimensional
eye orientation and to generate the correct head-centric motor error vector within Listing’s plane. Analysis of the
hidden layer of trained networks showed that explicit representations of desired target direction and eye orientation
were not employed. Instead, the hidden-layer units consistently divided themselves into four parallel modules: a
dominant “vector-propagation” class'$0% of units) with similar visual and motor tuning but negligible position
sensitivity and three classes with specific spatial relations between position, visual, and motor tuning. Surprisingly,
the vector-propagation units, and only these, formed a highly precise and consistent orthogonal coordinate system
aligned with Listing’s plane. Selective “lesions” confirmed that the vector-propagation module provided the main
drive for saccade magnitude and direction, whereas a balance between activity in the other modules was required
for the correct eye-position modulation. Thus, contrary to popular expectation, error-driven learning in itself was
sufficient to produce a “neural” algorithm with discrete functional modules and explicit coordinate systems, much
like those observed in the real saccade generator.
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1. Introduction Kuperstein, 1986; Zipser and Andersen, 1988). Alter-

natively, it has been argued that the problem disappears
In the course of generating accurate visually guided if visual signals are mapped onto motor commands as
behavior, the brain must transform eye-centered sen-a sequence of vector-displacement codes (Woodwoth,
sory signals into commands for movements relative to 1899), particularly for simple movements like saccades
the head or body (Snyder et al., 1998; Soechting and (Jirgens et al., 1981; Raphan, 1998). For example,
Flanders, 1989; Batista et al., 1999; Flanders et al., according one popular model for the generation of sac-
1999; Colby et al., 1995; Goldberg and Bruce, 1990). cades, remembered visual targets are remapped relative
Most models of the visuomotor transformation address to current gaze direction during each saccade, so that
this reference frameproblem by developing head- subsequent saccades can be made without any internal
centric visual representations through comparisons reference to eye position (Moschovakis and Highstein,
with eye orientation (Zee et al., 1976; Grossberg and 1994; Colby and Goldberg, 1999).



128  Smith and Crawford

However, when the actual three-dimensional (3- displacement signals—as in Crawford and Guitton
D) geometry of saccades is considered, vector (1997)—without such intermediaries.
displacement signals anet frame-independent—that If so, then how would the network do it? Poten-
is, the sensory vector is oculocentric, whereas the motor tially, it could use an algorithm similar to that used in
vector is headcentric. Thus, a fixed visuomotor map- the “black-box” models (Crawford and Guitton, 1997,
ping would produce inaccurate saccades, dependingCrawford et al., 2000), an entirely different algorithm,
on initial eye position (Crawford and Guitton, 1997). or one so distributed and nonmodular so as to preclude
Since the real saccade generator does not do this (Kliermeaningful recognition (Robinson, 1992; Stein, 1992),
and Crawford, 1998), it follows that the saccade gener- Most investigations of artificial neural networks have
ator must be performing the correct position-dependent emphasized the latter possibility. Indeed, except where
transformation. This does not necessarily contradict specific order was imposed on the network by the in-
the idea of remapping visual targets in retinal coor- vestigators themselves (e.g., Robinson, 1992), it has
dinates (Colby and Goldberg, 1999), but it does affirm been asserted that neural nets do not employ coordi-
that such representations—or at least those chosen fomate systems or any other recognizable form of modular
motor execution—must then be put through an eye- representation (Robinson, 1992).
to-head reference frame transformation at some point However, this is at odds with the actual functional
downstream (Henriques et al., 1998). neural anatomy of, for example, the brainstem saccade

This being the case, the neuroscientist would then generator, which parcels its tasks into relatively neat

want to know where and how this transformation oc-
curs in the brain. But at this time one is hampered in
answering this question by the lack of any clear no-
tion of what to look for in the neural signals. The

“black-box” aspects of these transformations can be

functional modules (Crawford and Vilis, 1992; Quaia
et al., 1999). What is the source of this discrepancy?
Does physiological modularity arise from developmen-
tal rules that are lacking in standard network models, or
could the training of artificial neural networks also re-

modeled with the use of operations like quaternion sult in forms of functional modularity that are critical
multiplication and “desired eye orientation”commands to their workings’ and yet masked to casual inspec-
(Crawford and Guitton, 1997), but these are not tion? These are crucial issues for anyone interested in
likely to accurately represent the detailed operations using neural networks to understand brain function,
of neural networks (Robinson, 1992). One useful ap- the mechanisms of representation in distributed neu-
proach, then, might be to first train a neural network ral nets, and their relationship to the nature-nurture
to perform such tasks and determine how it solves debate.
the problem before tackling the physiological system  The aim of the current investigation was to train
directly. an otherwise unconstrained neural network model to
Unfortunately, analysis of artificial neural networks perform the transformation from visual displacement
has often proven just as difficult as analysis of real signals to motor saccade commands and then analyze
neural networks. One apparent success story germanghe network to see how this was accomplished. Since
to the current topic was the discovery that homoge- the correct transformation can be modeled explicitly
neously distributed position-dependent “gain fields” with the use of known representations and algorithms
on a retinotopic map can be used to construct either a (Crawford and Guitton, 1997), a successfully trained
map of space in headcentric coordinates or motor com- network must somehow be accomplishing the same
mands of the type required for 3-D saccades (Zipser thing, albeit not necessarily in the same way. Based on

and Andersen, 1988; Van Opstal et al., 1995; Liu
et al., 1997). One criticism of this approach is that
it still requires output signals (such as, headcen-
tric spatial maps) that are physiologically unrealis-
tic (Moschovakis and Highstein, 1994; Colby and
Goldberg, 1999). But in theory, such codes may not

the recent tradition in modeling neural nets (Robinson,
1992; Stein, 1992) we expected to observe homoge-
nously distributed representations in our network sim-
ulations but were surprised to find instead that our
network achieved a level of functional modularity rem-
iniscent of that observed at the tip of the physiologist’s

be necessary (Zipser and Andersen, 1988). For ex-electrode. More important, these modules interacted

ample, it seems plausible that a neural network could
use eye-position signals to transform retinally coded

through a specific algorithmic mechanism with intrigu-
ing implications for the general mechanisms of visuo-

visual displacement signals into headcentric saccademotor transformation.
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2. Methods retinal error in an eye-centric frame must first be con-
verted into motor error in a head-centric frame. More-

2.1. Theoretical Background over, it has been demonstrated that this transformation
is essentially independent of plant characteristics—

Oculomotor physiologists use the teratinal error to in particular the existence of fibro-muscular “pulleys”

mean the angular displacement between current gaze(Demer et al., 1995; Quaia and Optican, 1998) because
direction and desired gaze direction, as signified by the they cannot solve this problem without simultane-
retinal site stimulated by light from the desired target. ously disrupting Listing’s law (Crawford and Guitton,
Motor error similarly signifies the motor command sent  1997).
to drive the actual movement. Retinal error has been Crawford and Guitton (1997) modeled this refer-
implicitly assumed to be geometrically synonymous ence frame transformation by first converting the angu-
with motor error and has often been modeled as such lar values for horizontal and vertical retinal error into
(Jirgens et al., 1981; Waitzman et al., 1991; Raphan, target direction in eye coordinates. They then rotated
1998; Moschovakis and Highstein, 1994). Recently, this target direction vector by the inverse of 3-D eye
however, it has been pointed out that when the com- position to produce desired gaze in head coordinates.
plete 3-D geometry of the eye and saccades are consid-The desired gaze vector was then input to a Listing’s
ered, motor error must be considered a geometrically law operator (Tweed and Vilis, 1990a) that outputs
distinct quantity from retinal error (Hepp et al., 1993; desired eye position in Listing’s plane. At this point,
Crawford and Guitton, 1997; Klier and Crawford, desired eye position was subtracted from initial eye
1998). position to derive the required change in eye position,
For example, if the eye is at a special reference or motor error. The first aim of the current study was
position calledprimary position(described below), a  to train a neural network to perform the same overall
horizontal target will evoke a purely horizontal retinal transformation.
error, and an eye movement based on the corresponding
horizontal motor error will acquire that target. How-
ever, when the eye moves to a nonhorizontal posi- 2.2. Model
tion, a purely horizontal retinal error will require a
nonhorizontal motor error to generate an accurate sac-Whenever one models the brain, it is important to de-
cade that obeys Listing’s law. Failure to account for finethe correspondence betweenthe model and the sys-
this relationship would result in position-dependent er- tem being modeled, including the inevitable limitations
rors in saccade direction (Crawford and Guitton, 1997), of the model. Although the neural mechanism of the
which are not observed in actual saccades (Klier and saccadic reference frame transformation have not yet
Crawford, 1998). been identified, we postulate that it must be complete
To understand why this is the case, it is helpful before activation of the short-lead burst neurons in the
to review Listing’s law. Primary position is a unique brainstem reticular formation because the latter appears
3-D eye orientation often used as a reference from to utilize a head-fixed 3-D coordinate system (Henn
which to describe the relative eye-rotation vectors to et al., 1989; Crawford and Vilis, 1992; Scherberger
other positions. Listing’s law states that these rota- etal., 1998). Several recent studies have suggested that
tion vectors will all lie in a head-fixed plane (Listing’s these neurons encode the derivative of 3-D eye orienta-
plane) that is orthogonal to the line of sight at pri- tion (Crawford and Guitton, 1997; Quaia and Optican,
mary position (see Tweed and Vilis, 1990a). Whereas 1998; Hepp et al., 1999). We therefore trained our net-
the retinal error vector is 2-D and defined in refer- work to output the signal that would be appropriate
ence to the eye, the motor error vector is 3-D and to drive such neurons—that is, a 3-D vectorial change
defined in reference to the head since the eyes movein eye orientation, defined within head-centric coor-
with three degrees of freedom relative to the head and dinates aligned with Listing’s plane (Crawford and
since motor error vectors normally specify saccades Guitton, 1997).
that lie within the head-fixed Listing’s plane. Thus, al- The input signal to our neural net was target di-
though motor error is dependent on retinal error, they rection in eye coordinates, more commonly known as
are not identical (Crawford and Guitton, 1997; Klier retinal error (Crawford and Guitton, 1997). It is cur-
and Crawford, 1998). Therefore, to execute a saccade,rently unknown how far downstream such codes might
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persist within the actual visuomotor transformations of ———
the brain. However, for the time being we will take the
working hypothesis that it may be coded as low as the —
output signal of the superior colliculus (this question T Bl
is addressed more thoroughly in the discussion sec- ' T
tion). If so, then this retinal error may be coded topo-
graphically, requiring apatiotemporal transformation
downstream (Tweed and Vilis, 1990b). In this case,
it could be very difficult to separate this mechanism
from the 2-D to 3-D and the reference frame trans- H v, \V}
formations with which we were concerned. Moreover, —
one of the goals of this study was to avoid biologi-
cally based input constraints that might trivially lead
to physiologically realistic organization in the hidden-
unit solution set (Robinson, 1992). Therefore, as our
visual input signal, we simply used two signals rep-
resenting the already segregated components of 2-D
retinal error. In this respect, this study differs from pre-
vious studies that looked at position modulations on
neurons with sensory-receptive fields in a retinotopic
map (Zipser and Andersen, 1988;Van Opstal and Hepp,
1995; Krommenhoek and Wiegerinck, 1998). B 50°7 Up
Another simplification is that we allowed units to d
“fire” positively and negatively to represent the push-
pull organization seen in the brainstem oculomotor sys- .
tem (Robinson, 1981). Finally, since it is a trivial mat- o b, e
ter to use the motor error signal that is output from this G
model to drive our saccade burst-generator model and . 3 50°
eye plant (Crawford and Guitton, 1997), we left the — ; \Eight
latter transformations out of the results described be- °
low. However, for investigators in the oculomotor field
it is worth bearing in mind that the complete version
of this model includes a displacement feedback loop
(dirgens et al., 1981) whoseedium-lead burst neuron 1 o
output encodes the derivative of 3-D eye orientation.
The latter signal can then be used to drive a pulleylike
p!ar_1t thatimplements the Sacca_de axestilts reql_'“red for Figure 1 Neural network configuration and training set with ex-
Listing’s law (Crawford and Guitton, 1997; Quaia and  emplar retinal error patterm: The typical three layer fully con-
Optican, 1998) or can be modulated by eye position sig- nected neural network (N1), wheteindicates an artificial neuron

nals to neurally implement these tilts (Crawford, 1994; and line thickness indicates relative strength of connection. Input
Crawford and Guitton 1997) layer (left-hand layer) with (T)orsion, (V)ertical, and (H)orizontal
! ’ components of eye position (top three values) and V and H com-

ponents of retinal error (retinal error). Hidden layer (middle layer)
. is fully connected to input and output layers. Output layer (right-
2.3.  Network Architecture hand layer) with T, V, and H components of motor error (motor
error).B: Standard Cartesian graph with 50 degrees maximum ocu-
Figure 1A represents the three-layer learning neural lomotor range (OMR). Increments on graph are 10 degre#sli-
network used in this investigation. The open Cier@S ( cates randomly selected initial eye positions.e—) indicates the

represent units that are connected by lines of varying UP ©© S retinal errors along each of the indicated directions as-

h . . ; sociated with each of the initial positions. Each retinal error along
Fthkness' r_epresentlng the actual connecthn weights each direction is 10 degrees greater than the former to a maximum
in one particular network. The top three units of the of six retinal errorswhere possibléo remain within the 50 degree

input layer encoded torsional (T), vertical (V), and OMR.

Position

KK
' 4

Motor Error

Retinal Error
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horizontal (H) components of initial eye position, while  Listing’s plane. The origin in Fig. 1B represents pri-
the bottom two units encoded the vertical and horizon- mary position. Associated with each initial eye position
tal components of retinal error. The middle layer usu- were up to 48 retinal error vectors. These retinal error
ally contained 35 units (see next section), each of which vectors were of six magnitudes (10, 20, 30, 40, 50, and
connected with every input unit and every output unit. 60 degrees) along each of eight directiovisere pos-
The output units represented the torsional, vertical, and sible without exceedingt50 degrees from the origin.
horizontal components of 3-D motor error. For example, the upper right-hand quadrant of Fig. 1B
Information flowed through the network in only one illustrates a chosen position with the associated reti-
direction, from the input through the hidden to the out- nal errors ) connected by lines radiating in the eight
put layer. To avoid introducing systematic bias in the indicated directions. Each of the retinal errors along
networks’ beginning state, each connection weight was any one of the directions was presented sequentially
randomly intialized (to a value withit:.1). Also, the for each initial eye positiono], from 10 to 60 de-
output of each neuron was limited with the use of a sig- grees (where possible without exceedih§0 degrees
moid shaped function: a standard practice that allows from the origin) although each direction was presented
neural networks to approximate mostfunctions. To sup- randomly.
porttraining in the networks we used the standard back- A corresponding group of correct desired target vec-
propagation algorithm. We also used an incremental tors specifying 3-D motor error vectors in head-centric
weight update procedure. This means that the error coordinates completed the training set. These ideal mo-
was calculated and weights adjusted after the presen-tor error vectors were computed for each input set
tation of each training vector. We also used a momen- by converting the angular components of retinal error
tum term with the back-propagation training algorithm. into an eye-centric pointing vector and position into a
This modification changes the weight-adjustment pro- quaternion and then inputting these values into the al-
cedure by adding a fraction (in these networks 10%) gorithm described above and in more detailin Crawford
of the previous weight adjustment to the current ad- and Guitton (1997). The output was then converted into
justment as calculated by the training algorithm. This a 3-D displacement vector with angular components.
reduces the incidence of the network becoming stuckin ~ The network was then trained to minimize the error
local minima—that is, suboptimal solutions (Freeman between its actual output and these correct motor error
and Skapura, 1991; Rumelhart et al., 1986). (See thevectors, by a supervised training process resembling
appendix for formulas relating to the network.) the actual calibration process whereby saccades learn
We chose back-propagation as a training rule be- to be accurate through visual feedback (Fuchs et al.,
cause it fits with the goals of this study, which were 1985; Optican and Miles, 1985). Thus, the network
not primarily to find the global, optimal solution—  was trained to map a variable set of retinal errors and
for which rules such as the genetic algorithm may positions onto the correct pattern of motor errors for
be superior—but rather to describe the effects of accurate saccades that obey Listing’s law.
training through sensory feedback and successive Using the training set outlined above, we trained
approximation on the functional organization of the several networks in which we varied the number of
network. hidden units. We began with a minimum of five hid-
den units and increased that number in increments of
five up to a maximum of 40 hidden units. Network
2.4. Network Training performance was assessed by monitoring the squared-
error between the desired output and the actual output
The network was trained on a group of input patterns of the network. Figure 2 shows a typical output error
specifying initial 3-D eye position in craniotopic coor- curve for networks with the various number of hid-
dinates and 2-D retinal error vectors in eye coordinates. den units. As shown in the figure, with five units in
Figure 1B illustrates the eye positions used and a typ- the hidden layer, average output error reached a sta-
ical set of associated retinal error vectors. The input ble minimum of approximately 21 degrees within 200
patterns consisted of 25 initial eye position$ fan- epochs (an epoch represents one presentation of the
domly presented within a 40 degree oculomotor range. entire training set. With 10 hidden units, output error
The torsional component (not shown) was always set was reduced to approximately 8 degrees. With an in-
to zero—that is, all initial eye positions were within crease in the number of hidden units to 35, output error
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30 In addition to these, we also used a set of testing pat-
terns with specified positions along the diagonal from
the upper left, through the origin, to the lower-right of
a Cartesian coordinate system (see the coordinate sys-
] 5 tem in Fig. 1B for an example) and a set of four eye
positions originating at-30, —15, 15, and 30 degrees
along both thex andy axes. Testing with these pat-
terns, which were never used for training, allowed us
to assess a network’s performance along tertiary and
secondary eye positions, respectively.
10 We also tested the network wigttimulationandle-
15 siontrials. Stimulation of a site upstream from the net-
work encoding retinal error was modeled by varying
eye-position input to the network of any one trial while
: : ; ! holding retinal error constant as if electrically micro-
0 500 1,000 10,000 11,000 X . - . .
Epochs stimulating an upstream visual site coding a constant
retinal error. For example, if a particular unithad alarge
e ro st e vy mimgat WIS fo the verical component of retinal ero
hci)dden units. Numtfered traces indicate quantity of)f:id%en units used a”q a zero V\_/elght.lng for the honzontal component of
in a representative network. Hidden units in these networks varied €tinal error, its retinal sensitivity would be represented
from 5 to 40 in increments of 5. Note that only incremental reduction by a vertical vector. The lesion trials were conducted
of error was achieved by networks with greater than 20 hidden units by setting the outputs of selected hidden units to zero
ar_1d _thatasta_ble minimum output error for all networks was reached (as described in more detail in the Results section).
within approximately 1,000 epochs. Finally, individual hidden unit characteristics were
also examined by plotting the direction and magnitude
was further reduced to within 1 degree of ideal per- of their sensitivity vectorswe defined a hidden unit's
formance. Since a network with 40 hidden units pro- sensitivity vector as the direction and magnitude of
duced only an incremental improvement over one with the weights associated with a particular hidden neu-
35 and sine a 1 dgree error was within the range of  ron. Thus, a hidden unit had three sensitivity vectors:
experimentally Observed errors (K“er and Cranord, two input vectors (Components Of position and reti_
1998), we used only those networks with 35 hidden na) error) and one output vector (components of motor
units (a total of 13 networks (N1-N13)) for further error). The results of network training, testing, stimu-
teSting and analySiS. Figure 2 also shows that a Stab|e|ati0n, and |esioning were assessed by quantifying the
minimum error for these networks was achieved within differences between the actua' output Of the network

approximately 1,000 epochs. Nevertheless, training and ideal motor error as a function of direction and
for all networks was allowed to continue for another magnitude.

10,000 epochsto ensure that a stable minimum for each
network had actually been reached.

Error (degrees)
[3*]
o

-

20 .35
F

3. Results

2.5. Network Testing This section has two purposes. First, to illustrate the po-
sition dependent relation between retinal error and mo-
After training was completed, the networks were tested tor error in accurate saccades. Note that this has already
with several sets of corresponding input and target pat- been confirmed experimentally (Klier and Crawford,
terns. The first set consisted of the patterns used for 1998). The second, and more important purpose was to
training. Testing with this set of patterns allowed us describe how well our network learned this geometry.
to assess how well the networks learned the task. An-  Figure 3 shows the output of network N1 from nine
other set of test patterns, that were never used duringselected positions thatere not used in trainingn this
training, consisted of arandomly generated set of input and other plots, the horizontal and vertical components
vectors (and associated target vectors) and was used taf 3-D angular position are plotted in Listing’s coordi-
assess the generalizeability of the networks’ solutions. nates, but we dispensed with the right-hand convention
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motor error showing the correct saccade directions is
indicated by light lines, although these are often ob-
scured by the overlying actual motor error output by
the network.

Motor error diverged from the supplied retinal error
as a function of position eccentricity, direction of reti-
nal error, and magnitude of retinal error. For example,
in Fig. 3A, motor error tends to converge toward the ori-
gin. Saccades at the opposite corner (Fig. 31) showed
the symmetrically opposite effect, whereas saccades
at intermediate positions (Fig. 3B—H) showed simi-
lar patterns but with intermediate magnitudes. Only in
Fig. 3E, where the initial position was at the origin (pri-
mary position), was there no divergence of motor error
from retinal error as expected. Note that in each of the
panels of Fig. 3, the actual output of the network and
the ideal output are almost indistinguishable.

In summary, motor error and retinal error aligned
with each other at primary position (Fig. 3E) but
showed increasing divergence as the initial position

grew more eccentric. These illustrative initial positions
Fig.ur.e_a N?r_le selected p_osi_tions used to test network performance. show that the networks were clearly able to generalize
AII|n|t|e_1I posmons_(o)arewnhm 50degreesOMRshownonstfandard this position-dependent pattern from the initial train-
Cartesian graph (increments on graph are 10 degrees). Retinal errors; e :
indicated by dashed lines ending in arrows are provided for reference. INJ Set to a set of new positions which were never used
Actual network output: solid dots connected by thick darklines. Ideal - during training.
network output shown in thick light lines. Initial positions are in In Fig. 3, all of the eye positions except primary
10 degree increments along the diagonal starting Gt40°, 40°), position (Fig. 3E) argertiary—that is, oblique. Such
to E (07, 07, to | (40, —40°). Initial position on the origin &) eye positions involve the so-callddlse torsionfirst
corresponds tprimary position(see text). Note that actual network . .
output and ideal output tilt away from retinal error depending on described by von Helmholtz (1925). For example, if
initial position and magnitude of retinal error. Actual network output & movement induced a counterclockwise false torsion
closely follows ideal and often obscures it. of the eye (as would occur at the position illustrated in

Fig. 3A), thenspace horizontalould be rotated clock-

wise with respect to the horizontal retinal meridian.
for simplicity (that is, up is up, and right is right). The Thus, a purely horizontal retinal error may reasonably
nine positions are staggered in 10 degree horizontal andbe expected to induce a nonhorizontal motor error at
vertical steps along the diagonal from the upper left such positions. However, false torsion explains only
(400, 40) in Fig. 3A to the lower right £40°, —40°) part of the position-dependent deviation from retinal
in Fig. 3l. Input to the network for these positions was error seen in these data (Crawford et al., 2000). To
2-D retinal error in areye-centridframe (—). Note demonstrate this, we also simulated saccades from sec-
that these schematically plotted retinal error vectors do ondary (that is, vertical and horizontal) positions in
not indicate actual target direction in the head-centric Listing’s plane where there is no false torsion (Fig. 4).
coordinate system of the figure, but they do show the Note that, again, these positions were not used during
direction that the eye would move if retinal error was training and thus were never seen by the network prior
not compensated for by eye position (Crawford and to this test.
Guitton, 1997). Each initial position in Fig. 3 is asso- Figure 4 shows the neural network output (dark lines)
ciated with six retinal errors at 10 degree intervals of with initial eye positions arranged along the vertical
magnitude (where possible without exceedirfs) de- axis in Fig. 4A and the horizontal axis in Fig. 4B. At
gree oculomotor range) for each of our eight standard these initial positions, retinal errors from50 to 50
radial directions and the actual motor error outputs of degrees (at 10 degree intervals) were input along the
the network (—s). For comparison, the computed ideal orthogonal axes (horizontal in A and vertical in B).



134  Smith and Crawford

50°; Up

- 5:0D
Right

Figure 4 Positions on primary axes (horizontal and vertical) used
to test network outpufA: Initial positions arrayed along y-axis at 15
degree intervals from-30 to 30 degrees on 50 degrees OMR Carte-
sian graph. Associated with each position are 10 purely horizontal
retinal errors (- -e- - -) five from —50 to 10 degrees and five from 10

to 50 degrees at 10 degree intervals. Actual network output indicated

by dark lines: (—e—). Ideal network output indicated by light lines
(—#=—). B: Same conventions as#but initial positions are arrayed
along thex axis. All positions in the figure argecondaryand cannot

degreesvertical, a 50 degrednorizontal retinal error
(dotted lines) produced a network output that deviated
vertically by about 10 degrees. Note that this deviation
was always in the directionppositeto the direction

of initial position. A similar but reduced pattern was
seen at an initial position 15 degrees upward. At each
position, increasing the magnitude of retinal error in-
creased the deviation in the network output. The same
patterns of deviation were also seen (but in the opposite
direction) when eye position was initialized at down-
ward positions. Moreover, a similar pattern of motor-
error deviations was seen when eye position was ini-
tialized in the horizontal direction with vertical retinal
errors (Fig. 4B). The main point to note is that when-
ever the eye moves from primary position, retinal error
cannot be trivially mapped onto motor error without a
concomitant reduction in saccade accuracy. Again, the
network learned to correct for this.

Next, these observations were quantified across net-
works by testing each network with a set of five initial
positions that were not used during training: (1) pri-
mary position (0, 0°), (2) up-right (20, 20°), (3) up-
left (—20°, 20°), (4) down-left 20°, —20°), and (5)
down-right (20, —20°), Fig. 5B—F. Each of these po-
sitions was associated with eight retinal error vectors
of 30 degrees magnitude oriented in the same radial
pattern as before. The results of this test were quan-
tified as themean angular differencbetween the di-
rection of actual motor error output by the networks
and the direction of ideal motor error (¢—) Fig. 5A.

For reference we also quantified the angular difference
between retinal error and ideal motor erres{o----)

as a measure of the error expected with zero compen-
sation for position (Klier and Crawford, 1998). The
mean error across networks for positions 1 through 5
are plotted in Fig. 5B through F respectively as a func-
tion of retinal error direction in polar coordinates. Thus,
Fig. 5B—F plots actual directional error ¢#—) com-
pared to directional error without position compensa-
tion (----¢----), across eight directions for each such

induce false torsion. Therefore, false torsion cannot be the cause of position_

the pattern of deviation from retinal error seen in the ideal and actual
output of motor error. Note that degree of deviation increases with
eccentricity from primary position (origin) and magnitude of retinal
error.

Despite the absence of false torsion, a deviation be-

tween retinal error and motor error still occurred de-
pending on the magnitude of retinal ermithogonal
to eye position. For example, with eye position at 30

Figure 5B shows position 1 {00°). At primary posi-
tion there is no need to compensate for position effects,
and this fact is reflected in the pattern of error, which
remains at zero for ideal motor error and close to zero
for actual motor error. In the other plots of Fig. 5, the
pattern of error for a lack of position compensatiof (
oscillates betweett6 degrees for 30 degree saccades.
For example, in Fig. 5C, foa 0 dgree angle of retinal
error (purely horizontal and rightward) the error starts
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Figure 5 Angular difference measures across networks.
Schematic showing geometric relationship of the angular difference
measures plotted iB—F. The vector labeled “Position not compen-
sated” is the supplied retinal-error vector. The vector labeled “Ideal”
is a hypothetical ideal motor-error output vector, and the vector la-
beled “Actual” is motor-error output from a hypothetical neural net-
work. The mean angular difference measure between retinal error
and ideal motor error is indicated by (-¢>----) in A throughF. The

mean angular difference measure across networks between actual 5g°

motor error produced by a network and ideal motor error is indicated
by (——) in A throughF. Angular difference measures were taken
from five initial positions on a Cartesian grafgh(0°, 0°—primary
position),C (20°, 20°), D (-2, 20°), E (—20°, —20°), F (207,
—20°). Each position has associated with it eight retinal errors of
30 degree magnitude in the same radial pattern as illustrated in Fig.
1B. Thex axis in the plotB-F is labeled in accordance with the
angle between the axis and the retinal error with 0 degrees indicating
a purely horizontal and rightward retinal error. The angle between
the axis and the vector increases in a counterclockwise direction.
Thus, 90 degrees indicates a purely vertical and upward retinal error.

Note that perfect agreement between the angular difference mea-

sures would cause the values to lie along xhexis. For example,
with perfect agreement between ideal motor error and retinal error
(----©----), the trace would lie along theaxis as inB (as expected

in primary position (0, 0°)).
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behavior across networks. A similar pattern can be seen
in each of the other panels. Thus, all of the networks
learned the correct transformation to motor error and
were able to generalize this learning to all of these
positions and all directions of retinal error. In addi-
tion, the torsional behavior (not shown) of these net-
works was also highly precise, showing deviations from
Listing’s plane of only—.229 degreest.003 (mean
+SD) across all networks.

3.1. Stimulation Trials

Next, we performed the equivalent of stimulation of
a site on a retinotopic map encoding retinal error up-
stream from our network. We did this by testing the
network using an input set (never used during train-
ing) where retinal error remained constant and only
the initial eye position varied. Initial eye positions were
randomly chosen to remain withinieb0 degree oculo-
motor range. Figure 6 displays the results of these trials
where the ideal response is shown in light lines, while

A 50° Up B —
T — b T —
————
— [ T—
;;;;;;;;
s S I
Left et

Figure 6 Stimulation trials network 1 (N1). Dark lines: Actual

out at —6 degrees, progresses to 6 degrees for a 90 motor error output from network. Light lines: Ideal motor error out-
degree angle of retinal error, and then decreases agairput.A: 60 degrees purely rightward retinal error (not shown). Note

to —2 degrees for a purely downward angle of retinal
error. Note, however, that the actual output of the net-
works (#) does not follow this pattern. Rather, the actual
output remains relatively flat, indicating a near-zero

converging pattern of actuahdideal motor error. Network output
follows ideal output fairly closelyB: 30 degrees purely rightward
retinal errorC: 30 degrees downward and rightward retinal eror.

30 degrees purely downward retinal error. Note converging pattern of
motor error is dependent on initial position and magnitude of retinal

error between the correct ideal behavior and the actual error (see text).
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the actual response of the network to the stimulation of network. Recall that each input that a hidden unit re-
a constant retinal error is shown in dark lines. Figure ceived was multiplied by a scalar value roughly corre-
6A shows a 60 degree rightward stimulation. Note that sponding to a synaptic strength, whereas the weights
as the initial position becomes more distant fromxhe  of its connections to the output units defined its mo-
axis the ideal response tilts at a greater angle towardstor tuning. We initially hypothesized that the network
it. The tilting pattern of the ideal response (light lines) accomplished its task through certain three-way corre-
is closely matched by the actual output of the network lations between weight components of position, retinal
(dark lines). error, and motor error. However, an analysis of correla-

Figure 6B shows a similar pattern of response for tions between all combinations of position, retinal er-
ideal and actual output from the network for a smaller ror, and motor error weightings across all of the hidden
30 degree horizontal retinal error. Note that the tilting units in each network revealed little about how the net-
effect is less than that seen in Fig. 6A. This lessen- work accomplished the task. Some correlations were
ing of the tilting effect is due to the smaller retinal slightly higher than others, but all were weak. Mean
error used in this data set, as expected from the pat- correlations between components ran fret3 to .07
tern described above. Figure 6C and D demonstrateswith none of them being statistically significant. This
that this pattern of convergence toward primary posi- seemed to suggest that the solution was completely
tion holds for any retinal-error direction. Looked on as distributed so as to preclude any meaningful analysis
a complete pattern, these diagrams show a converging(Robinson, 1992). To investigate further, we next tried
effect of motor error that is based on both initial eye a more physiological approach: the equivalentel
position and retinal error magnitude and that bears a recording That is, we analyzed each hidden unit by
strong resemblance to studies involving actual stimu- studying its sensitivity vectors.

lation of the superior colliculus and frontal cortex (e.g., By a sensitivity vectowve mean the vector defined

Freedman and Sparks, 1997; Schlag and Schlag-Reyby the components of a units’ weights. For example,

1987; Russo and Bruce, 1993). each neuron in the hidden layer received five weighted
To quantify this convergence, we used thrbital inputs signals from the input layer: three for position

perturbation indexdeveloped by Russo and Bruce and two for retinal error. We treated these signals as
(1993) to quantify the eye-position-dependence of sac- the components of two vectors: a 3-D position vector
cades evoked by stimulation of the frontal cortex. This (Fig. 7A: blue vectors) and a 2-D retinal error vector
index was computed separately for the horizontal and (Fig. 7A: red vectors). Similarly, the three weighted
vertical components of eye movements, as the linear signals to the output layer were also considered as the
regression of saccadic displacement from each initial components of a 3-D motor error vector (Fig. 7A: black
eye position Ky, andK,, respectively). Anindex value  vectors). Figure 7A shows these weight vectors for each
of 0.0 would indicate a constant vector, while a score of the 35 hidden units of network N1, for which only
of —1.0 would indicate goal-directed saccades that end the horizontal and vertical components are plotted; the
at the same position regardless of the initial eye posi- third dimension of position and motor error will be
tion. This analysis was performed for simulated stim- treated in a later section.

ulations of 30 and 60 degree retinal-error sites across Figure 7A shows the sensitivity vectors of each hid-
all 13 networks, quantified for both ideal and actual den unit within network N1 labeled according to the
saccades. The mean results and standard deviations fofollowing scheme. Visual inspection of such data sug-
actual network output and ideal output across networks gested to us that network units may have formed spe-
were for 30 degree stimulation: actual—0.073 (SD cific task groups. In many units (1, 3,4, 5,6, 7, 8, 9, 12,
=0.005), ideak= —0.084 (SD= 0.000). For 60 degree 13, 15, 16, 20, 21, 22, 24, 33), the retinal-error vectors

stimulation the results were actual —0.245 (SD= and the motor-error vectors were aligned, and the mag-

0.008), ideak= —0.306 (SD= 0.000). nitudes of their retinal-error components were about
half the size of their motor-error components. In addi-

3.2. Hidden-Layer Analysis tion, these units tended to have a very small position

component. These units seemed to be directly map-
To assess how the network may be accomplishing the ping retinal error onto a motor response regardless of
above transformations, we looked at the input and out- position, like many of the vector-displacement models
put weightings of unitsin the hidden layer of the trained (Jirgensetal., 1981; Raphan, 1998), so we named these
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Figure 7. Geometric interpretation of hidden unit connection weightings as input/output sensitivity véctdtstwork 1 (N1). Angle and

magnitude of sensitivity vectors are measured from the origin of a Cartesian axis. Individual plots are labeled according to hidden unit number and
group type, respectively. VP: Vector-propagation group; Hsition-opposite group 1. BOPosition-opposite group 2. SO: Semiorthogonal

group. The different sensitivity vectors are indicated by color: red is retinal error, blue is position, black is motdB:efibiof the above

groups (same conventions) superimposed onto single plots by group, across seven networks (N1-N7). Note that the vector-propagation group
forms a coordinate system rotated5 degrees from a standard Cartesian graph.
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units the vector-propagation group. Other units (10, 11, no correlation between which hidden unit became
26, 31, 34, 35) tended to have position and motor errors which type because the units’ initial weights were ran-
in opposite directions with a small retinal-error compo- domized). Moreover, when we separated the units of
nent. A smaller subset of these units also had position each network into these classes and then superimposed
tuning opposite to motor error tuning, but they had a their sensitivity, as shown in Fig. 7B for networks N1
large retinal error vector (2, 29). We hypothesized that to N7, the group distributions of these vectors were
these latter two groups provided the main position de- quite consistent between networks. We will return to
pendent effect on motor error output by the network Fig. 7B in alater section on population coding, but first
(Figs. 4 and 5), since the position-dependent effect on let us consider the objective validity of this classifica-
motor error is in the direction opposite of the orthogo- tion scheme in more depth.

nal component of position. Thus, we named these two  To visualize the separate clustering of these hidden-
groups position-oppositeand position-oppositere- unit classes, we replotted their sensitivity vectors in a
spectively, since they appeared to perform similar func- way thatillustrates all of the data simultaneously, color
tions. The distinction between these two groups was to coded according to the classification criteria shown in
prove useful in further analysis. Finally, the remaining Table 1. Figure 8 shows these four classes as plot-
units (14, 17, 18, 19, 23, 25, 27, 28, 30, 32) tended ted in 3-D spaces that are defined by the angles be-
to have their motor-error and retinal-error vectors in tween the eye-position, visual, and motor-sensitivity
quasi-orthogonal directions, while the magnitude of vectors (along the horizontal axes) and the magnitudes
their motor error, retinal error and position components of these various vectors (along the vertical axes). The
tended to be more variable than the other groups. We horizontal plane of the panels in the left column (A,
hypothesized that these units may provide a fine tun- B, C) plot the visual-motor angle versus the visual-
ing of the response in all available areas of the solution position angle, whereas the right column (D, E, F) plots
space, perhaps modifying the amount of position com- the visual-motor angle versus the position-motor angle
pensation depending on the length of the retinal error (+180 x £180). Note that the opposite sides of each
signal. These we named the semiorthogonal group. Thesuch plot are really continuous but have been sepa-
labeling in Fig. 7A reflects this classification scheme rated in the process of mapping this cyclic information

applied to N1.
To systematize our initial observations of hidden-
unit sensitivity vectors, we developed quantitative cri-

teria to classify the above described units (see Table 1).

Through trial and error, we found that our algorithm
broke the weighting data down into our four classes
and captured 98% of the units in all networks. Using
these criteria, we found that the number of each dif-
ferent type of unit was quite consistent between net-
works: vector-propagation: 17.£1.5 (mean+SD);
position-opposite 5.9 +1.1; position-opposite 2.7
=+.6; semi-orthogonal: 9.41.1. (Of course, there was

onto a plane. Each of these horizontal planes is then
divided into a 2-D grid of 36« 36 bins of (10 x 10°).
The vertical height of each bin is then specified by the
summed magnitudes of all sensitivity vectors—across
all networks—that fall within that bin. The magnitudes
of the three sensitivity vectors have been plotted sep-
arately, so that the top row (A, D) shows the input
weighting of the visual signal, the middle row (B, E)
shows the input weighting of the position signal, and the
bottom row (C, F) shows the motor output weighting.
For the most part, this plot resulted in clear clusters
of data, with each of our classification groups forming

Table 1  Functional criteria for hidden unit classes.

Unit Type

Membership Criteria

Vector-propagation
the retinal error= position
Position-opposite
retinal error< position
Position-opposite

Angle between the retinal error and motor erset0® andthe magnitude of
Angle between the motor error and positise=150" andthe magnitude of the

Angle between the retinal error and motor ertoe 10° andthe angle between

the motor error and positioa= 150° andthe magnitude of the retinal error

< motor error
Semiorthogonal

Angle beween the motor error and positien150° andthe angle between the

retinal error and motor erroe10°
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Figure 8 Three-dimensional group plots of hidden unit sensitivity vectors across networks. Left-hand column: Floor of graph formed by
angles between (retinal error and motor error) and (retinal error and position), shaded by group—vector-propagation is blue, positign-opposite
is orange, position-opposités red, semiorthogonal is yellow. Small scattered, uncolored peaks represent outlaying units that did not fall into
our classification scheme and had minimal impact on behaviaxis records magnitude of sensitivity. Retinal error sensitivityB: Position
sensitivity.C: Motor error sensitivity. Arrow irA indicates viewing direction when comparing Fig. 8. Right-hand column: Floor of graph formed

by angles between (retinal error and motor error) and (position and motor error). Other conventions the same as left-hand column.

a separate “mountain” in sensitivity vector space. The this, they are really just forming one peak each. The thin
position-opposite groups 1 and 2 (orange and red, central blue peaks correspond to the vector-propagation
respectively) formed separate peaks near the edge ofgroup, stretching along the line that signifies parallel
the range. At first glance each of these groups seemsvisual- and motor-sensitivity vectors. Looking at any
to be divided into two or four separate peaks at op- one panel, these blue peaks may sometimes be hard to
posite edges, but note that this is just because of thedistinguish from the yellow semiorthogonal range that
wrap-around discontinuity at the edge. Accounting for cuts diagonally across the blue range, splaying outward
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from either side. But when one inspects these rangesand semiorthogonal groups but instead treated them as
across rows, one can see that these two ranges behava continuous range. Considering the subtleties noted
differently—for example, the blue showing larger vi- above for distinguishing these blue and yellow ranges
sual input (A, D) and less position input (B, E) than the in Fig. 8, this is perhaps not surprising.
yellow. One possible explanation for the minor discre-
Since the bottom row of this plot gives the magni- pancy between our initial scheme and the formal cluster
tudes of motor output, this row gives an idea of the analysis is that the cluster-analysis algorithm was not
relative behavioral importance of a given hidden-layer subtle enough to account for the second-order effects
class for a given input. Thus, the huge blue peaks in the that we felt were important for distinguishing between
bottom row signify that for a given input, the vector- the vector-propagation and semiorthogonal groups or,
propagation units provided the greatest single source of in other words, that it was fooled by the proximity
motor output, as one might expect from a class that ap- of these groups in the horizontal plane illustrated in
pears to do the main job of mapping the visual stimulus Fig. 8. Presumably, one could alter the form and
onto a spatially similar motor output. Clearly, the indi- weightings of the inputs to the cluster analysis until it
vidual peaks corresponding to the other classes would agreed with our intuitions, but this would seem to be an
have less weight on behavior (for a given input), as one exercise in self-affirmation. Therefore, to test our own
might expect from units that are performing a more intuitions more rigorously, we graphically analyzed
subtle, modulatory role. However. it is also important the hidden units across all 13 networks §.35= 455
to recall that the motor outputs represented in the bot- units) in a way similar to that shown in Fig. 8., but this
tom row depend on the sensory inputs seen in the top time looking at the individual units rather than entire
two rows. Thus, the overall input-output relations of populations.
each cluster can only be seen by scanning up and down Figure 9 illustrates the input magnitudes as a func-
the columns in Fig. 8, tending to confirm our original tion of the angle between their sensitivity vectors—

observations based on individual units. that is, retinal error versus motor error (left column)
and position versus motor error (right column). The
3.3. Cluster Analysis rows further quantify the properties of each unit by

showing themagnitudeof its visual-sensitivity vec-

Since the preceding analysis relied on visual inspec- tor (row 1) and its position-input vector (row 2).
tion, we also performed a formal quantitative clus- Note that these plots show individual units, cate-
ter analysis on the data. Using the SPSS statistical gorized as vector-propagatios)( position-opposite
package, we performed a standard hierarchical cluster(¢), position-oppositg (#), and semi-orthogonalo)
analysis using within groups linkage and the squared groups according to our original criteria (Table 1).
Euclidean distance between groups. Inputtothe analy- In panels A and C, both the semiorthogona) (
sis consisted of three angular values (retinal error ver- and vector-propagatios) groups are intermeshed and
sus motor error, retinal error versus position, and po- seeminglyange over a continuum, so again, it is easy
sition versus motor error) as well as three magnitude to see how a cluster analysis influenced by these views
measures (retinal error, position, and motor error) for would put them together. However, that these are two
all hidden units across all networks. However, since different groups becomes apparent in plots B and D.
there was a discontinuity at tHe180 degree angle, the The response magnitude of the semiorthogonal (
angular values were replaced with both the sine and group in these plots remains relatively constant and
cosine values for this analysis. clustered near the center of the graph, while the vector-

This cluster analysis consistently arrived at four sig- propagation groupse() forms a tight line, which is par-
nificant clusters (even for higher-order fits), and these ticularly separate in plot D. This suggested to us that our
clusters agreed substantially with our initial quantita- initial classification scheme was essentially correct, de-
tive groupings—for example, showing 91% inclusion spite the one discrepancy from the formal cluster anal-
of the vector propagation units in cluster 1, 95% in- ysis. Moreover, as we shall see in the following sec-
clusion of the position-oppositeunits in cluster 2, tions, the distinction between the vector-propagation
and 100% agreement of the position-oppgsitkass and semi-orthogonal groups proved to be important in
with cluster 3. However, there was one exception: the further analysis where these groups showed very dif-
cluster analysis did not separate the vector propagationferent population characteristics and functional roles.
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Figure 9 Sensitivity magnitudes plotted as a function of angular
differences between hidden unit sensitivity vectors across networks.
The x axis of each plot shows the angle between hidden unit sen-
sitivity vectors: retinal error (RE) and motor error (ME)—Ileft-hand
column, and position (POS) and motor error—right-hand column.
They axis of each plot shows the magnitude of the input-sensitivity
vectors: retinal error (first row) and position (second row). Each
point represents a single hidden unit so that all hidden units for all
networks are represented in each graph. Points are labeled accordin
to our quantitative criteria: VP: vector-propagatenPO; : position-
oppositg . PO,: position-oppositge. SO: semiorthogonad. By
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code, as observed in many topographic neural struc-
tures (e.g., Sparks, 1989) or if they used a coordinate
system, as observed in some brainstem oculomotor
structures (e.g., Crawford 1994). Looking at Fig. 7B,
one can see that the semiorthogonal and position-
oppositg groups showed no sign of forming a coor-
dinate system but rather showed a fairly even distribu-
tion of directions in all of their sensitivity vectors, as
predicted by Robinson (1992). The P@oup showed
somewhat less variability in direction with a slight ten-
dency to align with the standard Cartesian axes, but
these were not numerous enough in a given network to
make a definite judgment.

In contrast, the vector-propagation group (bottom
row) showed a strikingly consistent coordinate system,
rotated about the origit45 degrees from the standard
Cartesian graph coordinates, in both the retinal-error-
and motor-error-sensitivity vectors. This occurred in
all trained networks, independent of the random ini-
tial weightings. This further served to distinguish this
population from the SO group. Thus, across networks,
each unit could be assigned to one of the four groups
based on consistent characteristics of their sensitivity
vectors, with one population—and only one—forming

R clear coordinate system.

Although we have focused on the 2-D properties of
the unit sensitivity vectors so far, at this point we took

scanning the different graphs, it can be seen that points form clusters the opportunity to look at their torsional components to

rather than an amorphous distribution and that groups that seem to

be continuous in one view can be distinguished from each other in
another view (e.g., POand PQ in plots B and D).

3.4. Population Coding and Coordinate Systems

Having established that the network’s hidden layer
could be legitimately divided into four parallel groups,

we then asked how these populations coded for sac-

cade direction. To do this, we overlapped the sen-
sitivity vectors for each network separately for each
type of group. Figure 7B shows these groupings for
networks N1 to N7. Other networks (not shown) dis-
played very similar patterns of sensitivity groupings.

see how these balanced to give Listing’s law. In general,
the torsional tuning of motor error in these units (not
shown) was somewhat variable, even for the vector-
propagation group. Overall, however, torsion varied
only slightly from Listing’s plane: meas —.229 de-
grees SD= .003 degrees. However, the fact that the
torsional motor-error component of these networks was
negligible in the actual behavior shows that the positive
and negative tilts were perfectly balanced in the overall
activation pattern of the units.

These analyses allowed us to characterize individual
units as belonging to distinct groups, but they provided
only a rough approximation as to tfienctionof each
group. It was now clear that the network’s solution to

The top row depicts the semiorthogonal group, the sec- the reference frame transformation was not completely
ond and third rows show the position-oppositand distributed. Instead, the network developed particular
position-opposite groups, and the last row displays groups of units that processed a particular aspect of
the vector-propagation group. Otherwise, conventions the solution. Again, we hypothesized that the vector-
are the same as in Fig. 7A. propagation group provided the main response to get
One reason to plot the sensitivity vectors in this way saccades on target, whereas the main position depen-
was to see if these different unit populations coded dent deviation (that is, convergence toward center) was
sensory and motor directions using a distributed vector provided by the position-opposite groups. The role of
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the semiorthogonal group was less clear, but it seemed A. Control B. All VP units lesion

to be the only group that could provide fine tuning such 50% Up
as greater position dependent tilts for greater magni- N
tudes of retinal error.

3.5. Lesion Studies

To test our hypotheses and characterize group function
more completely, we conductddsion studiesThat

is, we removed one or more groups of units from the
network’s hidden layer and noted the results. First, we
conducted control tests in which we randomly lesioned
either 25%, 50%, or 75% of units within the networks
(not shown). As expected, the results showed a reduc-
tion in the magnitude of response with varying degrees
of disruption of the position-dependent pattern. These
results varied over networks and trials. Thatis, the mag-
nitude of response was consistently reduced while the
amount of disruption to the position-dependent pat-
tern depended on initial position. Thus, no clear pattern
emerged from these random lesion controls.

Next we lesioned the vector-propagation group. Re- Figure 10 Vector-propagation cell lesions for selected position
call that we hypothesized that these units represent thenetwork 1 (N1). Initial position (25 15°). Thick dark lines: Ac-
main drive to get saccades on target. If this hypothe- tual network motor error output. Thick light lines: Ideal motor error
sis was correct, we should see massive degradation ofoutput. Thin dark lines: Supplied retinal error (platonly). The
network output in both direction and magnitude of re- p95|t|9n has assomate_d Wlth it six retinal errors along each of eight

. . directions where possible without exceeding 50 degree OMR from
sponse as a result of such a lesion. Furthermore, if Ourorigin (primary position). Supplied retinal errors are in the same
characterization of the vector-propagation coordinate girections as those indicated in Fig. 8. Control condition: no le-
system is correct, it should be possible to affect one sion. Note that inset axis (all plots) indicates quadrant where vector-

direction selectively without affecting the orthogonal propagation units are lefittact B: All vector-propagation units le-
direction sioned. Note complete obliteration of any pattern in respo@se.

C. Q2 & Q4 lesion D. Q1 & Q3 lesion

. . . .. Vector-propagation units in Q1 and Q3 lesioned. Note response in
Figure 10 shows the results of various hidden unit the lesioned quadrants are most compromised while those in the other

two quadrants are spardd. Vector-propagation units in Q2 and Q4
lesioned.

lesions within the vector-propagation group for a par-
ticular initial position that was never used during train-

ing (25 degrees right and 15 degrees up) and the set of
retinal errors that was used with that position. The ac-
tual output of the network is shown with thick dark
lines, while ideal motor error output is shown with
thick light lines. The supplied retinal error is shown
in thin dark lines (Fig. 10A only) to highlight the re-  of vector-propagation units was léfitact. (Recall that
quired deviation from a direct retinal-error to motor- the vector-propagation units use a coordinate system
error mapping if saccades are to be accurate from all aligned with 45 degree oblique directions).

initial positions. Note that after lesioning the networka  Figure 10A shows the control condition in which
specific correspondence between network output (dark the response of all units within the vector-propagation
thick lines) and ideal output (light thick lines) may be group (and all other groups) are left intact. Note that,
difficult since the close correspondence between the in this plot, the actual output of the network (thick dark
ideal pattern and the actual pattern has been disruptedlines) closely follows the ideal output (thick light lines)
However, whatisimportantin these lesion studiesis not in both direction and magnitude such that a correspon-
the specific correspondence of each trace in the graphdence between the dark lines and the light lines is appa-
but rather how closely the general pattern of the net- rent. Figure 10B shows the effect of lesioning (setting

work response follows that of the ideal response. Also
shown in each graph is an inset with directional arrows
indicating in which quadrant of the graph the response



output to 0) the entire population of vector-propagation
units. The result of this lesion was a complete oblit-
eration of the normal pattern, even though0% of
hidden-unit output (from semiorthogonal and position-
opposite groups) was unaffected. The only remaining
effect of these intact groups were weak movements to-
ward center.

Next, we lesioned vector-propagation units whose
response lies in the up-left and down-right quadrants.
The result is shown in Fig. 10C. Note that both the di-
rection and magnitude components of responses within
the quadrant containing the lesion are severely dis-
rupted, whereas output from the network in the up-
right/down-left quadrants is less affected, particularly
along the intact diagonal coordinate. Similarly, when
the opposite coordinates were selectively lesioned (Fig.
10D), saccades in the opposite two quadrants were af-
fected. This confirmed our hypothesis that these units
were the main drive to get saccades moving with the
right magnitude with approximately the correct di-
rection, as specified componentwise in their intrinsic
coordinate system.

To further test this and the role of the remaining
groups, we performed the opposite lesion—leaving the
vector-propagation group intact while removing other
groups. Figure 11 shows the results of these lesions
using a different initial position (never used for train-
ing: 30 degrees down and 30 degrees right) than that
used in our vector-propagation lesions. This position
was selected to further highlight the position depen-
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A. Control B. PO & SO groups
lesioned

(VP group remaining)

50° 1 Up

50°
Left

e

C. PO groups lesioned D. SO group lesioned

Figure 11 Group lesions. Conventions same as in Fig ALQCon-

trol: no lesionsB: POy position-oppositg PO, position-oppositg

and SO semiorthogonal lesions (VP vector-propagation group,
intact).C: PO, and PQ lesions.D: SO lesions.

dent divergence between retinal error and motor er- very low number of units in the second class and their
ror discussed above. Conventions for actual network concomitantly small effect on behavior). Surprisingly,
output, ideal output, and retinal error are the same as although~80% of the units were still functional, we

Fig. 10. Figure 11A again shows the control where the
output from all groups is intact. Figure 11B shows the
network output with only the vector-propagation units
intact—that is, position-oppositeposition-oppositg
and semiorthogonal groups did not contribute to
the network’s performance. Note that direction and
magnitude are reasonably intact but there is almost no
position-dependent modification of motor output. This
again confirmed that the vector-propagation units were
the major drive for the correct direction and magnitude
of motor error but did not contribute to the required
position-dependent modification of motor error.

Figure 11C shows the result of our lesioning the
position-opposite and position-oppositeunits, leav-
ing both the vector-propagation and semiorthogonal
groups intact (we did not attempt to distinguish be-

saw a severe compromise of direction and no capacity
of the network to perform the position-dependent mod-
ification of motor error. Saccade direction diverged
wildly from center as if a constant convergence bias
had been lost and centrifugal saccade magnitude was
greatly enhanced. Note also that this divergence was
much stronger foshortersaccades such that the pat-
tern was more spread out.

When we lesioned only the semiorthogonal group
(leaving ~70% of hidden units intact: Fig. 11D), we
saw an equally devastating effect on direction, but this
time there was too much convergence. But note that
the level of convergence was the same for all sac-
cade magnitudes. Thus surprisingly, a lesion to one
of the population groups (semiorthogonal or position-
opposite) produced a greater effect than lesioning them

tween the two position-opposite classes because of theboth. This led us to conclude that position modulation
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was actually being carried out bykmlancebetween The actual output of the networlks) @lso hovers within
the contribution of the semiorthogonal and position- +3 degrees of this response. Looking at Fig. 12C
opposite groups. Furthermore, whereas the position- (20°, 20°) we note that errors in the vector displace-
opposite group added a constant convergence factorment model {---¢----) follow the same pattern as in
when left intact without the SO group (Fig. 11D), Fig. 5. However, unlike the intact network illustrated
the semiorthogonal group produced less divergence inin Fig. 5, the actual response of the lesioned networks
longer saccades, leading to the phenomenon that longe—¢—) now more or less followed the incorrect pat-
saccades normally converge more when the two groupstern of the vector-displacement model. Thus, in the
work in concert, as required for the ideal geometry absence of the semiorthogonal and position-opposite
(Fig. 11A). groups, there was no longer any position-dependent
We quantified these observations across networks by modification of response taking place within any of the
testing the networks with the same input set as above, networks.
but within each network the PO and SO groups were
lesioned (as in Fig. 11B). That is, only the vector-
propagation group remained intact. Figure 12 shows 4. Discussion
the results of this test employing the same conventions
used in Fig. 5, except that tlyeaxis has a larger range.  This investigation addressed two main questions. First,
(©) shows predictions of a vector-displacement model can neural networks perform an eye-to-head reference-
with no position compensation. Figure 12B is the con- frame transformation without ever developing head-
trol condition (primary position) where the vector dis- centric representations of target direction? Second,
placement modely) shows no errors, since no po- if so, what type of algorithm is used—a completely
sition modification is required at that special position. distributed transformation or one with recognizable

modules?
Agou Actual B (0°0) 4.1. The Oculomotor Reference-Frame
Transformation

Ideal 122

Position 2
not compensated 42 i i
Most theoretical studies of oculomotor reference frame

transformations have focused on the problem of re-
membering target locations across saccades. Tradition-
ally, these have assumed that the system develops a
head-centric map of visual space to remember targets
independently of subsequent saccades (Soechting and
Flanders, 1992; Zee et al., 1976; Howard, 1982). Even
the originalimplicit gain-field model of Zipser and
Andersen (1988) employed such a map in the model’s
output layer (although the authors suggested that this
might be avoided in the real system). Unfortunately,
this is at odds with the known physiology of the sac-
cade generator, which seems to rely largely on dis-
placement signals (Moschovakis and Highstein, 1994;
Colby and Goldberg, 1999). Moreover, recent studies
have shown that target directions can be remembered
across saccades without a headcentric map by “remap-
ping” their representations retinotopically (Bozis and
Figure 12 Angular difference measures with vector-propagation Moschovakis, 1998; Duhamel et al., 1992; Go!dberg
lesion across networks. Conventions and initial positions the same as and Bruce, 1990;.Krommenhoek etal, ;1'993; Waitzman
Fig. 5. Note the larger range of tiyeaxis. Graph shows thatnoeye- ~ €tal., 1991; Henriques et al., 1998; Batista etal., 1999).
position compensation takes place without the vector-propagation Be this as it may, the eye-to-head reference-frame
group (see text for an explanation). transformation problem does not go away so easily.

0

9
(Up)

180°  270°
(Left) (Down)
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The oculomotor system would still require an eye- transformation problem was not completely distributed
to-head reference-frame transformation—downstream throughout the network, but neither was it solved us-
from the remapping mechanisms—to deal with the ing a unitary multiplication algorithm as proposed by
3-D geometry of saccade execution. For saccades toCrawford et al. (2000) for similar transformations in
be accurate and obey Listing’s law, 2-D oculocen- the cortex. Rather, it was solved by parallel groups,
tric retinal saccade signals must be correctly trans- or modules, where each of these parallel modules per
formed into 3-D head-centric motor-errorcommandsin formed a specific subtask.
Listing’s plane (Crawford and Guitton, 1997; Klier and Our analysis suggested that the dominant mod-
Crawford, 1998). Crawford and Guitton (1997) model- ule (vector-propagation) simply performed the first-
ed this with the use of explicit representations of gaze order linear mapping between retinal and motor error,
direction and 3-D eye position in head coordinates to whereas higher order nonlinearities were handled by
perform this transformation. But this still conflicts with  the other modules. The second-order convergence ef-
the known physiology. Therefore, we asked if a neural fect (Figs. 3, 4, and 6) was handled by the actions of the
network model trained to perform the same task could position-opposite groups, which mainly directed mo-
provide an alternative solution. tor error in the direction opposite to initial position.
The neural network in the current study clearly However, this was insufficient because the amount of
learned the correct position dependent modification of convergence also depended on retinal error magnitude
retinal error to provide the reference-frame transfor- and direction (e.g., Fig. 4). Thus, a third major group
mation for accurate motor-error commands, but it did (semiorthogonal) was required to modulate the effects
so without an explicit representation of desired 3-D of the position-opposite groups through a system of
eye orientation or target direction in head coordinates. balance. Clearly, more than one unit was required to
That s, no one unit coded for a specific spatial location implement each of these groups, which accounted for
or direction of retinal error. This may not answer the the disproportionately low number of functional groups
question of whether the brain actually uses head-centric compared with the number of hidden units.
representations of target direction or desired eye orien- Among these groups, only the vector-propagation
tation, but it does answer the question of whether it group consistently formed the same orthogonal coor-
must do so to perform an eye-to-head reference-frame dinate system in each network, despite random initial
transformation. The answer to that question is a definite settings. Moreover, this coordinate system aligned with
no. This is not to say that other nonsaccadic systems doListing’s plane, as observed in the coordinates of the
not use head-centric maps (Duhamel et al., 1997), but real saccade generator (Crawford, 1994; Crawford and
it goes a long way to explaining why they are not ne- Vilis, 1992). Although the mathematical reason for the
cessary in the saccade generator (Colby and Goldberg,development of this coordinate system is unclear at this

1999). time, this resultis difficult to trivialize because this dia-
gonal coordinate system differed from the Cartesian co-
ordinates used to input data and was not observed in

4.2. Modularity and Coordinate Systems the other unittypes. Moreover, since coordinates are not

required to specify direction (Soechting and Flanders,
There has been a general consensus, at least in thel992; Sparks, 1989; Georgopulos et al., 1982), they
visuomotor field, that artificial neural networks do musthave conferred some specific advantage—such as

not employ recognizable algorithms or representa-
tions (Robinson, 1992; Stein et al., 1992) but rather
produce highly distributed solutions. However, this
may have been a product of the network analysis
used.

In our network, a physiological type of approach
proved to be more fruitful than a statistical analysis
of relationships between input, output, and program
weights. Remarkably, this showed that individual hid-
den units within the network did have understand-
able functions. The solution to the reference-frame

economy of directional representation among a small
number of units.

In any case, although the overall reference frame
transformation was implicit across these parallel mod-
ules, the network did employ an identifiable algorithm
and explicit coordinate system to do so, contrary to
general expectation (Robinson, 1992). Clearly, devel-
opmental rules also contribute to the organization of
the saccade generator, but this study shows that error-
driven training alone is sufficient to give rise to a con-
siderable amount of functional modularity.
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4.3. Implications for Oculomotor Physiology

Where then might a neurophysiologist look for the
functional modules observed in our network’s hidden-
unit layer? To begin with, we need to consider how the
input and output layers of our network might corres-
pond to functional neuroanatomy. First the outputs. If

Van Opstal et al. did not distinguish between the kind
of retinal-error and motor-error signals that were used
in our model, so this question remains open. More-
over, in another study (Van Opstal et al., 1995), they
showed that the superior colliculus possesses eye-
position-dependent “gain fields” that in theory could
be used to construct many different types of spatial

oculomotor short-lead burst neurons encode the deriva-codes. However, the head-free colliculus stimulation
tive of eye orientation rather than angular velocity— data of Freedman et al. (1996) shows a pattern of con-
as suggested in several recent studies (Crawford andvergence that could be consistent with a retinal code.
Guitton 1997; Quaia and Optican, 1998; Hepp et al., Furthermore, preliminary results of a very recent study
1999)—then the motor-error output of our network designed to test this specificially by computing the 3-

would be the appropriate signal to drive these neurons
Thus, we would interpret the output layer of our net-
work as representing the total ensemble of inputs to
short-lead burst neurons, which would include inputs
from the superior colliculus and other sources (e.g.,
Quaia et al., 1999; Helmchen et al., 1996).

The visual signal starts out coded in oculocen-

. D geometry of such movements support this conclu-
sion (Klier et al., 2000). Therefore, our current think-
ing is that the input layer of our neural network could
correspond to the output code of the superior
colliculus—broken down into its horizontal and ver-
tical components—with our hidden layer intervening
(synaptically) between this and the short-lead burst

tric coordinates—as in our input layer, albeit repre- neurons.
sented in a more distributed topographic form. But  Before testing this specific scheme, it is important
how far downstream does such a code persist? Oneto note that we simplified our feed-forward model con-
clue is that the pattern of converging saccades that wesiderably to facilitate analysis and that the inputs to
simulated for stimulation of sites coding a fixed the model were simplified vector components of reti-
oculocentric retinal error (Fig. 6) resembles the pat- nal error and eye position. The real brainstem sac-
tern of saccades evoked by stimulation of various cor- cade generator, besides having many more neurons,
tical and subcortical sites (Schlag and Schlag-Rey, also faces other problems related to the spatiotempo-
1987; Bon and Luchetti, 1992; Schall, 1991; Freedman ral mapping from the retinotopic map of the colliculus
etal., 1996; Russoand Bruce, 1993). In particular, inthe to reticular formation burst neurons (Van Opstal and
study by Russo and Bruce (1993), itwas shown that sac- Van Gisbergen, 1981; Tweed and Vilis, 1990b; Quaia
cades induced by electrical stimulation of frontal eye and Optican, 1997). Among these are temporal dynam-
fields and supplementary eye fields in macague mon-ics (Van Gisbergen et al., 1981; Munoz and Wurtz,
keys showed an orbital perturbation index (defined in 1995), dealing with deviations of torsion from Listing’s
the Results section) ranging betweed.0 to—0.5 with plane (Crawford and Vilis, 1991; Tweed et al., 1998;
amean K of —0.13 (SD= 0.11) for SEF site stimula-  Crawford et al., 1999), and using additional lateral
tions and-0.16 (SD= 0.11) for FEF site stimulations.  connections and feedback control (Quaia et al., 1998).
These values are comparable to those that were ob-However, our network shares one important character-
served with our model, and close inspection of their istic withthe real brain (thatis, the connections between
data also reveals that the convergence index increasedhe superior colliculus and burst neurons) in that it had
with saccade size—as in our model. When observed to solve the reference frame problem within approxi-
experimentally, such convergence patterns have gener-mately two synapses, perhaps aided by certain parallel
ally been interpreted to signify some artifact (that is, streams.
error) in the downstream structures that account foreye  For this reason, the networks’ method of dividing
position (e.g., Russo and Bruce, 1993). However, the the job into parallel task modules may reflect a real-
current analysis suggests that orbital convergence like istic physiological strategy. It therefore seems reason-
that reported by Russo and Bruce could mean that theseable that the brainstem would employ a main channel
sites are simply coding true retinal error, with - resembling the vector-propagation units in our network
rectgeometric transformations occurring downstream. (units with similar sensory and motor on-directions
If so, could this retinal code persist as far as the su- that develop a coordinate system—Iike the progres-
perior colliculus? In their 1991 study of the colliculus, sion seen from colliculur burst neurons to short lead
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burst neurons) to do the “main job” of getting the sac- models (Parodi et al., 1998; Draye et al., 1997; Xing
cade going in the general direction of retinal error. et al., 1996). Closer results to the functional organi-
Likewise, the position-dependent modulations that we zation of hidden units found in this investigation may
observed in our position-opposite and semiorthogonal be models involving the organization of visual cortex
units could likely be implemented in some side-path cells (Ernst et al., 1999; Bell and Sejnowski, 1997).
within the reticular formation or perhaps the cerebel-  Currently, it is unclear whether the apparent lack of
lum (Vilis and Hore, 1981; Russo and Bruce, 1993; reports of such specialization in many previous net-
Quaia et al., 1998). Investigators interested in such a work models is due to a fundamental difference (such
process should look for cells with eye-position sensi- as our simplified vector inputs of retinal error and eye
tivity opposite to its saccade tuning (position-opposite position), or whether this discrepancy is due to differ-
type) and cells with visual, eye position, and saccade ences in the way that the network models were ana-
sensitivity in pseudorandom, nonparallel arrangements lyzed. Thus, our next step is to investigate whether a
(semiorthogonal). Moreover, if the real brain employs similar model will produce such functional specializa-
the same system of balance between such cells, thertion while using more realistic input values. Neverthe-
it may be possible for experimental or clinical lesions less, the current approach provides a more optimistic
to uncouple this balance (Fig. 11), with the potentially view than popular expectation for analysing real neural
devastating effects that were simulated in the results networks and for further theoretical studies of geneti-
section. But now that the current study has established cally programmed anatomy and learning, in determin-
a basic theoretical framework, it will also be important ing function modularity.

to repeat these simulations in a more constrained net-

work designed to more closely emulate the properties

of neurons in the superior colliculus and brainstem.  Appendix

o The following gives a summary of the mathemati-
4.4. General Implications cal formulas used in designing the networks in this

study.
This study has two important general implications. The

firstis that visuomotor transformations can accomplish
the reference-frame transformations required for accu- Transfer Function
rate motor behavior without the need for intermediate
spatial maps. Although we demonstrated this for the Each of the three layers (input, hidden, and output) of
oculomotor system, the same principle applies to, for the network used a sigmoid transfer function given by
example, the arm-control system, where visual signals
must be transformed from a retinal frame in the pari- f(x) =
etal cortex (Batista et al., 1999) and premotor cortex

(Mushiake et al., 1997) to body-centric vector codes wherey is range of the transfer functianis slope pa-

in the motor cortex (Georgopulos et al., 1982). Our 5meter (steepness of the transfer functigriy maxi-
network demonstrates that this can be done simply by ., m value of the transfer function.

modulating vector codes by position inputs. However,  The gerivative of the transfer function was used in
contrary to one suggestion (Crawford et al., 2000), our back-propagating error through the network:
network suggests that some of these modulations may

be performed by parallel modules rather than entirely o

intrinsic network computations. ') = ;[’7 +FOlly =n—f00I. (2)
Second, this study shows that neural networks can

develop task-related modules like those observed in the

real brain, simply through the use of a training algo- EfTor Term

rithm, without the need of additional developmental or

anatomic constraints. It should be noted thatfthec- ~ The error term for each unit in the output layer was

tional modules discovered in our network differ from c@lculated using

the spatial clustering of units with similar temporal

spiking patterns found in some artificial neural network err; = (t — z_outy) f'(z.in;), 3)

4

1+ exp(—oX) 4 @)
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wherei is output unit} is target vectorz_outis output
layer outputz_in is output layer input.

Each unit in the hidden layer calculated the change
term using the error term from the output layer multi-
plied by the current hidden layer weight for that
unit:

m
cinj =Y erman.
=

(4)

wherej is unit j in hidden layerk is unitk in output

layer,c_inis change termerry is error term from output

unitk, wj is weight between hidden unjtand output

unitk.

The error term for the hidden layer is given by

errj = c.inj f'(y-in;), (5)

wherej is unit j in hidden layergc_in is change term,

y_in is input of hidden unit.

Weight Update with Momentum

The weight correction term (output layer shown) was
calculated by
Aw,—k = a8kyj s (6)
whereq is learning rateg is error term,y is output of
hidden unit.
A momentum term (10%) was added to the weight
update procedure:
Awi(t + 1) = aAxyj + ndwi(t), (7)
where the change in weighty at time(t 4 1) is the
sum of the weight correction ter(#5) and the product

of the momentum terngu) with change in weightvjx
at timet.
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