October 19, 2011.

Name (please print):

Signature:

Student Number (optional): .

#### PHYS 1420 6.0 Test 1A

#### 1. (6 marks)

The position of a particle moving along an x axis is given by  $x = 2.0t^3 - 8.0t$ , where t is in seconds and x is in meters.

a. Determine the instantaneous velocity and the instantaneous acceleration at t = 1.0 s.

$$V = \frac{dx}{dt} = 6.0t^{2} - 8.0$$

$$V(t=1.0s) = (6.0)(1.0)^{2} - 8.0 = -2.0 \text{ m/s}$$

$$Q = \frac{dv}{dt} = 12.0t$$

$$Q(t=1.0s) = (12.0)(1.0) = 12.0 \text{ m/s}^{2}$$

b. At t = 1.0 s, is the particle moving in the positive or negative x-direction? Explain.

c. Determine the average acceleration between t = 1.0 s and t = 2.0 s.

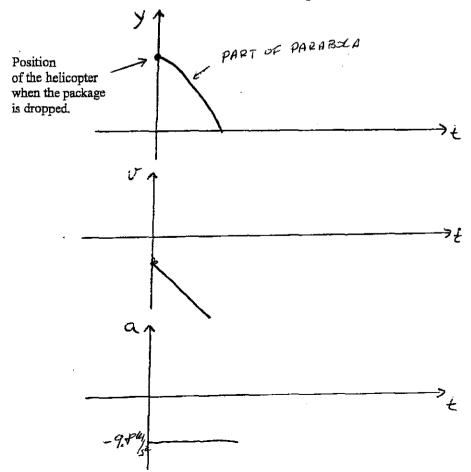
$$\bar{a} = \frac{U_3 - U_1}{t_2 - t_1} = \frac{[(6.0)(2.0)^2 - 43] - [(6.0)(1.0)^2 - P.0]}{2.0 - 20}$$

$$\bar{a} = \frac{18}{42} \frac{M/5^2}{2.0 - 20}$$

## 2. (6 marks).

A package is dropped from a helicopter that is descending at a constant speed  $v_0 = 4.0$  m/s.

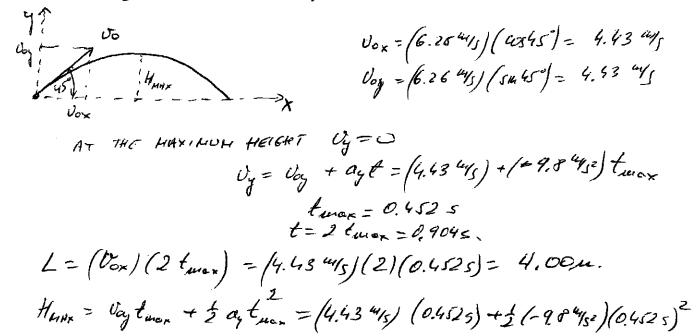
a. After t = 2.0 s have elapsed, what is the speed of the package and its distance from the helicopter?


$$U = U_0 + \alpha t = |(4.0 \text{ m/s}) + (-9.7 \text{ m/s}^2)(2.05)| = 23.6 \text{ m/s}$$

$$DISTANCE = |(4.0 \text{ m/s}) + (-9.7 \text{ m/s}^2)(2.05)| = 1 \pm \alpha t^2 = |\pm (-9.7 \text{ m/s}^2)(2.05)|^2$$

$$DISTANCE = |(4.0 \text{ m/s}) + (-9.7 \text{ m/s}^2)(2.05)|^2$$

$$DISTANCE = |(4.0 \text{ m/s}) + (-9.7 \text{ m/s}^2)(2.05)|^2$$


b. <u>Sketch</u> the time dependence of the package's height above the ground, its velocity and acceleration after it is released from the helicopter.



#### 3. (6 marks).

Chinook salmon is able to move upstream faster by jumping out of water periodically. Suppose a salmon swimming in still water jumps out of water with speed 6.26 m/s at an angle of 45.0°, travels through the air a horizontal distance L before returning to the water.

a. Determine the distance L, the time the salmon is in the air in a single jump and the maximum height above the water reached by the salmon?

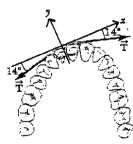


b. At what point during the jump is salmon's speed smallest? Explain.

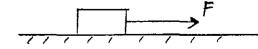
Mmor = 600 m

# 4. (8 marks)

Answer the following four multiple-choice questions.


- a. Which of the following statements regarding the diffusion process is true?
  - 1. All molecules diffuse the same distance called the root-mean-square distance.
  - 2. All molecules diffuse in the same direction.
  - 3. Approximately 2/3 of molecules travel a distance larger than the root-meansquare distance.
  - Some molecules travel a distance 10 times larger than other molecules.

    The diffusion of molecules is faster in liquids of high viscosity.
- b. If Earth's mass and radius both suddenly doubled, what would be the new value of the gravitational acceleration near Earth's surface?
  - 1.  $19.6 \text{ m/s}^2$
  - 2.  $9.80 \text{ m/s}^2$
  - 3. 4.90 m/s<sup>2</sup> 4. 2.45 m/s<sup>2</sup>
    - 5.  $1.23 \text{ m/s}^2$
    - 6.  $1.0 \text{ m/s}^2$

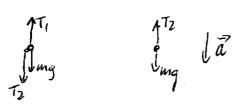

- $g = G \frac{Me}{Re^2}$ ,  $G \frac{(2 Me)}{(2Re)^2} = \frac{1}{2} G \frac{Me}{Re^2} = \frac{1}{2} (9.8 \%)^2$ = 4.90 \(\frac{4}{5}\)?
- c. A certain orthodontist uses a wire brace to align patient's teeth. The tension T = 20.0N. The net force F exerted by the wire on the teeth (written in terms of unit vectors i and j) is
  - 1.  $\mathbf{F} = (19.4 \text{ N})\mathbf{i} + (9.68 \text{ N})\mathbf{j}$
  - 2.  $\mathbf{F} = (38.8 \text{ N})\mathbf{i} (4.84 \text{ N})\mathbf{j}$

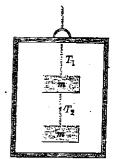
  - 3.  $\mathbf{F} = -(19.4 \text{ N})\mathbf{i}$ 4)  $\mathbf{F} = -(9.68 \text{ N})\mathbf{j}$ 5.  $\mathbf{F} = (9.68 \text{ N})\mathbf{j}$

=-2(T) SIU14" =-2(20N) SIU14" =-9.6PN T



- d. A horizontal force F = 18.0 N is applied to a block of mass m = 10.0 kg, as shown below. Coefficients of friction, static and kinetic, between the floor and the block are 0.15 and 0.12, respectively. The following statement regarding the block is true.
  - 1) The force of friction acting on the block is 11.8 N





- 2. The force of friction acting on the block is 14.7 N
- 3. The force of friction acting o the block is 2.90 N
- 4. The force of friction acting on the block is zero because the block is stationary.
- 5. The block is moving and the force of friction acting on the block is 14.7 N.

### 5. (6 marks)

Two blocks each of mass m=4.0 kg are fastened to the top of an elevator, as shown below. The elevator has a downward acceleration a=2.2 m/s<sup>2</sup>.

a. Draw a free-body force diagram for each mass. Which forces included on your diagrams form an action-reaction pair of forces?





MONE OF THE FORCET ABOUT FURM AN ACTION-REACTION MIR OF FURIES

b. Find the tensions T<sub>1</sub> and T<sub>2</sub> in the upper and lower strings.

TAKING HEE J-AKIS DO-JUCIARD AND USING NEWTON'S FLAC

ADDING BOTH EOURTONS

$$2mg-T_1=2ma$$
 $T_1=2m(g-a)=2(4.0lg)(9.80 4/s^2-2.24/s^2)=6/N$ .
 $T_2=T_1+4na-mg=T_1+4n(a-q)=6/N+fichy(2.24/s^2-9.804/s^2)$ 
 $T_2=3/N$ .

 $\begin{aligned}
\overline{V} &= \stackrel{X}{\Delta t}, \quad \overline{V} &= \stackrel{X}{dt}, \quad \overline{Q} &= \stackrel{AV}{\Delta t}, \quad \overline{Q} &= \stackrel{AV}{dt}, \\
\overline{V} &= V_0 + \alpha t, \quad \Delta x &= V_0 t + \frac{1}{2} \alpha t^2, \quad \overline{V}^2 = V_0^2 + 2\alpha \Delta x
\end{aligned}$   $\begin{aligned}
F &= G \stackrel{MUD}{T^2}, \quad Q &= G \stackrel{M_0}{R_e^2} = q.P \stackrel{MJ}{S^2}, \quad \overline{F}_g &= Mg
\end{aligned}$   $\overline{Z} \overrightarrow{F} &= M \stackrel{Q}{Q}, \quad X_{TMS} &= \overline{V} \overrightarrow{Z} \overrightarrow{D} t, \quad f &= f. N$   $\overline{Q} x^2 + b x + c &= O, \quad X_{I,2} &= -b \pm \overline{V} \underbrace{V}_{6^2 - 4\alpha c} \\
\overline{Q} x &= N x^{N-1}, \quad \underbrace{d(Siux)}_{Qx} &= \omega x, \quad \underbrace{d(\alpha x)}_{Qx} &= -Siux
\end{aligned}$