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ABSTRACT 

There are different ways to construct adaptive Kalman 
filtering (AKF) algorithms. This paper proposes an 
innovative way to simultaneously estimate the variance 
matrix R  of the measurement vector and the variance 
matrix Q  of the process noise vector based on the 
variance-covariance component estimation by taking the 
advantages of the measurement residuals and the process 
noise residuals (Wang, 1997, 2009; Wang et al, 2009) 
and the measurement redundancy contribution (Ou, 
1989). The core of the novel AKF algorithm lies in the 
projection of the system innovation vector into the three 
groups of residuals: the residuals of the measurement 
vector, the residuals of the process noise vector and the 
residuals of the predicted state vector exclusive of the 
effect of the process noise. The simulated and real GPS 
data in kinematic relative positioning mode were used to 
demonstrate the performance of the proposed adaptive 
Kalman filter. The results from the simulated datasets 
confirm to the simulated variance-covariance 
components well. The results from real kinematic GPS 
datasets are also provided and discussed.  

Key words: Adaptive Kalman Filter, measurement 
residuals, process noise residuals, variance-covariance 
components, kinematic GPS, relative positioning, 
redundancy contribution. 

1. INTRODUCTION 

Kalman filter (KF) has become one of the most widely 
used recursive methods that estimate the states of a 
process. If the system and measurement model, the 
variance-covariance (VC) matrix Q  of the process noise 
vector and the VC matrix R  of the measurement vector 
are known, the KF produces an optimal solution. In 
practice, one cannot guarantee to have them all satisfied. 
In particular, the a-priori Q  and R  are unknown or 
approximated by applying the best available knowledge. 
This may produce unreliable results or cause the KF to 
diverge. The classical method that chooses the values for 
these two matrices is through empirical analysis on the 
system and measurement errors or manually in an ad hoc 
fashion. This requires an experienced developer. 

However, the results from empirical analysis may not 
quantitatively represent the real Q  and R . By 
performing the adaptive Kalman Filter (AKF), one can 
make the filter adaptively apply the realistic noise 
statistics Q  and R  that are based on the being processed 
samples.  

There are different ways to construct AKF algorithms. 
The very pioneer work from Mehra (1970) used the 
autocorrelation functions of the innovation sequence to 
estimate both Q  and R  for the time invariant system. 
Another popular alternate method was to introduce the 
adaptive algorithms based on the system innovation 
sequence either to derive R  and a scale factor for Q  
(Ding et al, 2007), or to indirectly estimate Q  and R  
(Mohamed and Schwarz, 1999). Hu et al (2003) assumed 
R  completely known in order to estimate Q .  Yang and 
Gao (2006) derived two optimal adaptive factors, based 
on either the estimated innovation VC matrix or the 
estimated VC of the predicted state vector, to balance the 
contribution of the dynamic system and the measurement 
model information.  

In  this work, the authors propose an alternate way to 
simultaneously estimate R  and Q  by performing the 
variance-covariance component estimation using the 
measurement residual vector and the process noise 
residual vector that were derived in (Wang, 2009) and the 
measurement redundancy index formulated by (Ou, 
1989). After the overview of the Kalman filtering and 
adaptive Kalman filtering in Section 2, the proposed 
AKF algorithm is presented in Section 3. To illustrate the 
proposed adaptive Kalman filter, the kinematic relative 
GPS positioning is taken as an example (Section 3.4). 
Both of the simulated and real GPS data were processed. 
Our numerical analysis of the proposed algorithm limits 
Q  to be diagonal and R  to be correlated. Section 4 
provides the corresponding results along with specific 
analysis. Remarks and conclusions are provided in 
Section 5. 

2. ADAPTIVE KALMAN FILTERING 

2.1. OVERVIEW OF KALMAN FILTER 

With provision for algorithm formulation, a concise 
summary of Kalman filter is given in this section. A linear 
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or linearized multivariable discrete system is considered 
over a discrete time series },,,...,,{ 10 Nk tttt K , often 
simplified to } ,..., ,,1 ,0{ NkK . Without loss of generality, 
the deterministic system input is intentionally omitted 
here. Straightforward, the system can be described at 
instant k as follows: 

)()()()()( 1111 −−+−−= kwkBkxkAkx   (1) 

)()()()( kkxkCkz ∆+=                      (2) 

wherein )(kx  is the 1×n  state-vector; )(kz  is the 1×p  
observation vector, )( 1−kw  is the 1×m  process noise 
vector, )(k∆  is the 1×p  measurement noise vector; 

)( 1−kA  is the nn×  transition matrix; )( 1−kB  is the 
mn ×  coefficient matrix of )1( −kw ; )(kC  is the np×  

output matrix. The random vectors )( 1−kw  and )(k∆  are 
generally assumed to be: ))(,(~)( 11 −− kQoNkw  and 

~)(k∆ ))(,( kRoN  with zero-means o  and the variance 
matrices as )( 1−kQ  and )(kR  positive definite, 
respectively. Further assumptions about )(⋅w  and )(⋅∆  are 
considered: OjwiwCov =))(),(( , OjiCov =))(),(( ∆∆  
and OjiwCov =))(),(( ∆  for ji ≠ . Commonly, one also 
assumes to have the initial state vector )0(x  and its 
variance-covariance matrix )0(xxD  available and 
independent of arbitrary )(⋅w  and )(⋅∆ .  Under the given 
assumptions, the unbiased optimal estimation of )(kx  can 
be derived in the sense of minimum variance an in table 1.           

               Table 1: Solution of Kalman filter 
The predicted state vector and its variance matrix 
  )(ˆ)()/(ˆ 111 −−=− kxkAkkx  

  
)()()(

)()()()/(

111

1111

−−−+

−−−=−

kBkQkB

kAkDkAkkD
T

T
xxxx  

The optimal estimated state vector and its variance matrix 
  )()()/(ˆ)(ˆ kdkGkkxkx +−= 1  

  
)]()()[/()]()([

)()()()(
kCkGEkkDkCkGE

kGkRkGkD

xx

T
xx

−−−+
=

1
 

The optimal estimated state vector and its variance matrix 
   )/(ˆ)()()( 1−−= kkxkCkzkd  

   )()()/()()( kRkCkkDkCkD T
xxdd +−= 1  

The gain matrix 
   )()()/()( kDkCkkDkK dd

T
xx

11 −−=  
 

2.2. ADAPTIVE KALMAN FILTERING 

As a fact, the effect of the initial state vector along with 
its variance will be forgotten with the time being in 
Kalman filtering. However, a major obstacle in applying 
Kalman filter is specifying the variance matrices )(⋅Q  
and )(⋅R  (Louv, 1984 etc.). Their true values are not 
known. Users make their good effort to approximate 

)(⋅Q  and )(⋅R  using the best available information about 
their applications. In general, the specified values for the 
variance matrices )(⋅Q  and )(⋅R  are experimental. 

Primarily, two different strategies for running adaptive 
Kalman filtering have been developed. The majority of 
the adaptive algorithms focused on how to sequentially 
improve )(⋅Q  or )(⋅R , or both of )(⋅Q  and )(⋅R  
(Jazwinski, 1969; Mehra, 1970; Louv, 1984; Mohamed 
and Schwarz, 1999; Hu and Liu, 2002; etc.). Another 
strategy aims to find a balance between the time update 
and the measurement update (Wang, 1997; Yang and 
Gao, 2006; ), i.e. 

min)}()1/()({)()()( 1 =−+ − kxkkDkxkvkRkv T
kl

T
l zz

δδα
      (3) 
with )1/()()( −−= kkxkxkxδ . 

Further derivative algorithms similar to (3) were also 
constructed (Ding, et al, 2007; Yang, et al, 2001; 
Oussalah and Schutter, 2000 etc.). This is not more 
adaptive than robust because the formulation is modified 
in addition to providing the adaptive )(⋅Q  or )(⋅R .   

In this manuscript, the proposed adaptive algorithm only 
deals with improving of )(⋅Q  and )(⋅R  in Kalman 
filtering.     

3.    VARIANCE-COVARIANCE ESTIMATION- 
BASED ADAPTIVE KALMAN FILTERING 

This section furnishes the novel adaptive algorithm in 
Kalman filtering in details. First, the residual vectors for 
the measurement vector and the process noise vector are 
derived. Then, the redundancy contribution in Kalman 
filtering is discussed. At the end of this section, the 
posteriori estimation of the varance and covariance 
factors is formulated on the ground of the measurement 
or pseudo-measurement residuals, not the system 
innovation residuals instead as usual. 

3.1. MEASUREMENT AND PROCESS NOISE 
RESIDUALS 



CPGPS 2010 Technical Forum                                                                                  Shanghai, August 17-20, 2010 
 

 3

In order to derive the residuals of measurement vector 
and process noise vector, an alternate prospect was given 
about Kalman filter in (Wang, 1997, 2009; Caspary and 
Wang, 1998; Wang et al, 2009). 

There exist three groups of stochastic information that is 
associated with the estimation of the state vector )(kx  at 
the instant k: 

(1). the observation noise vector )(k∆ , 

(2). the system process noise vector )1( −kw  and 

(3). the noise on the predicted state vector )1/(ˆ −kkx  
brought by )1(ˆ −kx  through the propagation of 

)}1(,),1({ −∆∆ kK  and )}2(,),0({ −kww K . 

Customarily, “(2)” and “(3)” are considered together in the 
one step predicted state vector )/(ˆ 1−kkx  from time 

1−k  to k . As a matter of fact, these three groups of 
stochastic information should be studied separately. By 
defining the independent (pseudo-)observation groups 

)1(ˆ)1()( −−= kxkAkl x                (4) 

)1()( 0 −= kwklw                           (5) 

)()( kzklz =                               (6) 

with their variance-covariance matrices 

)1()1()1()( −−−= kAkDkAkD T
xxll xx

              (7) 

)1()( −= kQkD
wwll                                                     (8) 

)()( kRkD
zzll =                                                   (9) 

The system model with (1) and (2) can be reformulated 
through the residual vectors of these three groups of the 
error sources[Wang, 1997; Caspary & Wang, 1998; Wang, 
2008]: 

=)(kv
xl          −)(ˆ kx )1(ˆ)1( −− kwkB )(kl x−        (10)  

=)(kv
wl                      )1(ˆ −kw )(klw−       (11)  

=)(kv
zl )(kC )(ˆ kx                               )(kl z−        (12)  

Here, )(klx , )(klw  and )(klz  are the n-, m- and p-
dimentional measurement or pseudo-measurement vectors, 
respectively. Usually, one has okw =)(0 . 

By applying the principle of least squares to )(klx , )(klw  
and )(klz , the identical solution can be obtained as in 
table 1 [Wang, 1997, 2009]. Moreover, this alternate 
prospect directly makes the measurement residual vectors 

available at each epoch for further error analysis in 
Kalman filter: 

)()()/()()( kdkKkkDkDkv xxllll xxxx
11 −= −             (13) 

)()()/()()()( kdkKkkDkBkQkv xx
T

ll ww
111 1 −−−= −  (14) 

)(})()({)( kdEkKkCkv
zz ll −=              (15) 

with their variance matrices 

→−−−= )()()()()( kCkAkDkAkD TT
xxv xlxl

111     

                  )()()()()( 111 −−− kAkDkAkCkD T
xxdd    (16) 

→−−= − )()()()()( kDkCkBkQkD dd
TT

v wlwl

111  

                                   )()()( 11 −− kQkBkC             (17) 

)()}()({)( kRkKkCEkD
zlzlv −=                 (18) 

Obviously, all of the three residual vectors are the 
functions of the system innovation vector )(kd . The 
measurement residuals are characterized as an 
uncorrelated series epochwise  

OjvivCov =)}(),({ ( ji ≠ )           (19) 

as how the system innovation series are characterized. 

3.2. THE REDUNDANCY CONTRIBUTION IN 
KALMAN FILTERING 

According to the reliability theory in least squares 
method, one can judge of the redundancy contribution of 
the individual measurements through the matrix 

)()( kPkDvv  or )()( 1 kDkDvv
− , wherein )(kP  is the 

corresponding weight matrix of the measurement vector. 
In case that the measurements are not correlated to each 
other, the detailed analysis can be found in (Wang, 1997, 
2009). 

For three independent measurement groups as from (3) to 
(5), the individual group redundant indices are generally 
equal to 

)]()()()1()()1([)(r 1 kCkDkCkAkDkAtrk dd
TT

xxx
−−−=  

(20) 

)]1()()()()()([)(r 1 −= − kBkCkDkCkBkQtrk dd
TT

w  (21) 

)]()([)(r kKkCItrkz −=               (22) 

wherein “tr” stands for trace. The number of the total 
redundancy at k is given by 

 )()()()()( kkkkk zwx prrrr =++=            (23) 
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which is exactly equal to the number of the measurements 
in )(kz  

3.3. VARIANCE-COVARIANCE ESTIMATION  

The most widely known method for the varaince and 
covariance component estimation (VCCE) is the Helmert’s 
method. More on development to simplify, unify or extend 
the various VCCE algorithms can be found in (Förstner, 
1979; Koch, 1986; Ou, 1989; Yu, 1996). The research in 
this paper adapts the derivation of VCCE algorithm from 
(Qu, 1989).  

Let l be a n-dimensional observation vector as the function 
of the u-dimensional parameter vector y  

ε+= Fyl              (24) 

wherein ε  is the observation error vector assumed to be 
Gaissian white noise with the observation variance matrix 
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wherein 2
0σ ii)( , jk)(0σ , iiq and jkq  stand for the 

corresponding variance or covariance of unit weight and 
the cofactors, respectively. In general, it maintains 

kjkjjkjk qσqσ 00 )()( = . In practice, one seeks to estimate 

either 2σ ii  and jkσ  or 2
0σ ii)(  and jk)(0σ  by taking the 

advantages of the available measurement residuals. 

The least sqaures solution delivers the residual vector v of 
l with its variance matrix vvD . Statistically, the following 
equation exists for the expectation of weighted sum of the 
residuals squared 

))(()( ll
T

vv
T PPQtrPvvE Σ=    (26) 

whereas v  and P  are the residual vector and weight 
matrix of l, respectively, and vvQ  is the cofactor matrix of 

v . Through appropriate partition, the following normal 
equation for the individual variance-covariance factors is 
given by (Ou, 1989; etc.): 

θMw =              (27) 
with 

( nn 2)0(
2

22)0(1)0(12)0(
2

11)0( σσσσσ LL=θ  
                 

)Tnnnnnn
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010
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110 σσσ ,)())(())()(( −−−L          
 (28) 
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2vp      (29) 

))(( kj
T

vvjk TPPQtrM =                   (30) 

wherein ijp  is the elements intersected between the ith 

row and the jth column in 1−Σ= llP , and 
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If multiple variance or covariance factors are assumed to 
be equal, jP  and kT  will be changed accordingly so that 
it may have more non-zero elements in them, and the 
dimension of θ  may be reduced as well. 

Furthermore, the matrix PQvv  has the total redundancy 
number lr  that l possesses. At most 2)1( /+ll rr  
independent variance and covariance components can be 
uniquely determined [Xu et al, 2007]. 

In general, the non-diagonal elements of the coefficient 
matrix M  in (24) are much smaller than its diagonal 
ones so that the successive approximation has practically 
been made to ignore the non-diagonal elements of 
M (Förstner, 1979; Ou, 1989). Therefore, the following 
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solution of the variance and covariance factors is given as 
follows 

iiiiiii M/vp 22 =σ      (33) 

jkkj r/vvp2 jkjk =σ     (34) 

with 

)))(())((rjk jk
T

vvkj
T

vv TPPQtrTPPQtr +=   (35) 

The result given above in this subsection is only 
corresponding to the variance and covariance components 
estimation at a single epoch, namely k here. In Kalman 
filtering, the residuals from previous multiple epochs, even 
all of the past epochs can be used to accumulatively 
estimate the variance and covariance components of )(kR  
and )(kQ  so that the estimation quality can be improved. 
Accordingly, (33) and (34) become 
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where 0k  is the number of the used previous epochs. In 
practice, the equations (33), (34) and (36), (37) can further 
be reformulated to fit to other reasonable assumptions, for 
example, the measurement variances should be identical in 
GPS positioning if the satellites have the same elevation 
angles or if their elevation differences are within a given 
range (e.g. 5 degrees).  

By the way, readers are referred to (Wang, 1997; Wang et 
al, 2009) for the case that )(kR  and )(kQ  are diagonal, 
i.e. the measurements and process noise factors are 
uncorrelated. 

3.4 Kinematic Relative GPS Positioning 

The objective of kinematic relative position is to 
determine the coordinates of moving object A with 
respect to a stationary known point B. This type of 
positioning requires simultaneous observations at two 
points and can be performed with code ranges or/and 
carrier phases (Hofmann-Wellenhof et al., 2008).  

The system equation is given as follows 

[ ] 1

1

2
2
1

1
0100

010
01

−

−−
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∆
∆

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∇∆⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ ∆
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∇∆
k

k

k

k

k

k

xt
t

N
x
xt

N
x
x

&&&&               (38) 

where x  is the position vector, x&  is the velocity vector, 
x&&  is the acceleration vector all in ECEF, N∆∇  is the 

double differenced ambiguity vector and 1−−=∆ kkk ttt .  
x&&  is modeled as process noise. 
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Double-differenced measurements are usually used and 
the measurement equation for a single frequency receiver 
is given by: 

jk
ABP

jk
AB

jk
ABP ,ε∇∆+ρ∇∆=∇∆                                        (40) 

jk
ABL

jk
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jk
AB N ,1111 ε∇∆+∇∆λ+ρ∇∆=φ∇∆λ                    (41) 

where jk
ABP∇∆  is the double differenced L1 code range 

measurement between satellite j and satellite k and 
receiver A and receiver B in meters, jk

ABφ∇∆  is the 
corresponding double differenced carrier phase 
measurement in cycles, jk

ABρ∇∆  is the geometric range, 

1λ is the wave length of L1 carrier phase, 1N∆∇ is the 
double differenced ambiguity unknown of L1 carrier 
phase, jk

AB,Pε∇∆ is the code measurement noise and 
jk

AB,L1ε∇∆  is the phase measurement noise, respectively.  
For short baselines, the residual tropospheric and 
ionospheric effects in double differenced measurements 
are assumed to be negligibly small and are ignored. The 
double difference linear combination in (29) and (30) 
introduces measurement correlations and the 
corresponding variance-covariance matrix is as follows: 
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where 2
jA,σ and 2

jB ,σ  are the variances for the 

measurements to the reference satellite j while 2
kA,σ and 

2
kB ,σ  for n,...,k 1=  are the variances for the 

measurements to the remaining satellites. The algorithm 
can only estimate the variance and covariance factors for 
each entry in the matrix. Therefore, the individual 
variances cannot be separated. Thus, (42) is written as 
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For each epoch there are a maximum of 1+n variances 
factors that can be estimated.  

The elevation angle of the satellite influences the signal 
path length and the strength of the received signal 
(Hofmann-Wellenhof et al., 2008). As the elevation of 
the satellites decreases, the signal-to-noise ratio 
increases. In the VC estimation algorithm the 
measurements can accordingly be grouped based on the 
elevation angles.  

4.  TEST AND RESULTS 

The algorithm described in the previous section was 
implemented in GPS RTK positioning. Simulated and 
real static GPS data were used and the processing results 
are represented and discussed in this section. For 
demonstration purposes only L1 pseudorange and carrier 
phase measurements were used. Furthermore the 3D 
acceleration of the vehicle is modeled as the process 
noise. The integer ambiguities were resolved using the 
LAMBDA method (Teunissen et al, 1997). The initial 
variance assigned to the process noise, code and phase 
measurements were arbitrary and independent of satellite 
elevation angles. The 3D acceleration process noise 
components are estimated. The floated ambiguity process 
noise is assumed to be zero. The variance-covariance 
components were grouped against satellite elevation and 
it is assumed that for short intervals in satellite elevation 
angles the variance does not change much. The ranges of 
the satellite elevation angles for each group reasonably 
vary so that each group can have almost the same number 

of measurements. This ensures that there are enough 
residuals to estimate all of the variance components 
reliably. As a result there will be uneven intervals and 
also be different for each dataset. 

4.1 RESULTS FROM SIMULATED GPS DATA 

The undifferenced code and phase kinematic 
measurements were simulated at 1Hz for 4800 seconds 
with an elevation mask of 10 degrees. The simulation 
algorithm is as follows: 

The ECEF acceleration process noise variance is set at a 
constant value of 
 [ ] [ ] ]/s[m200150100 42222222 TT

ZYX ...=&&&&&& σσσ         (44) 
The measurement noise variance applied to the 
measurements varies with the satellite elevation angle 
based on 

[ ])/5.17exp(5.05.02
90

2 EE += σσ                                  (45) 
where 2

90σ is the variance at the zenith and E  is the 
satellite elevation angle in degrees. The zenith variances 
used for code and phase measurements are 2)3000( m.  and 

2)0030( m. , respectively. In this test the initial Q for the 
process noise vector is diag[0.352 0.352 0.352][ 2m ] . The 
initial double differenced code and phase variances are 

2)200(1 m.  and 2)0120( m. .  

Fig. 1 shows the process noise standard deviation 
estimation as a function of time with its true value. The 
results show that the process noise can be estimated with 
400 epochs or less. 

Fig. 2 shows the covariance estimation as a function of 
time together with its true value.  The results show that 
the covariance component for the code and phase 
measurement can be estimated with at least 250 and 200 
epochs respectively. 

Fig. 3 and 4 show the standard deviation (SD) estimation 
of the code and phase measurements as a function of time 
together with its true value. Three groups are presented, 
one with the highest, average and lowest elevation 
angles. The estimation of the first group (Elevation 65 to 
72) starts at 3806 seconds because it the time when one 
or more satellites enter this elevation range. Similarly the 
third group starts at 583 seconds. The results show that 
the algorithm takes at least 120 epochs and 171 to 
estimate the code and phase standard deviations. 

Fig. 5 shows the estimated standard deviation for all the 
groups as a function of satellite elevation angles together 
with its corresponding initial and true value plots.  The 
estimated components fit closely to the true curve.  
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Fig. 1 Process noise vs. time 
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Fig. 2 Covariance vs. time 
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Fig. 3 Selected code SD vs. time 
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Fig. 4 Selected phase SD vs. time 
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Fig. 5 Code and phase SD vs. Satellite Elevation 

Fig. 6 and 7 show the position error together the 
estimated standard deviation for two cases; first without 
AKF and second with AKF. 

The estimated standard deviation is more realistic with 
AKF. Fig. 8 and 9 show the probability density functions 
(PDFs) of standardized position error without and with 
the application of AKF together with a standardized 
normal distribution curve. The PDFs with the AKF 
algorithm fits the standardized normal distribution curve 
which suggests that the estimated variances for the states 
represent the true distribution of the states. 
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Fig. 6 Position error without AKF 
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Fig. 7  Position error with AKF 
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       Figure 8 PDFs of standardized position error using  
                      initial variances (i.e. without AKF) 
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Fig. 9 PDFs of standardized position error with AKF 

4.2 RESULTS FROM REAL GPS DATA 

This section presents the processing results using the VC 
estimation algorithm on real GPS data. The data was 
collected on 24 April 2010 using two Leica 1200 
receivers for the duration of 80 minutes. The base station 
was located at N43o46’26.34512”, W79o30’43.23784”, 
158.697[m] on the Keele Campus of York University, 
Toronto, Ontario, Canada. The rover trajectory is shown 
in fig. 10 with its velocity profile as in fig. 11. Both 
receivers were set at sampling rate of 1.0 Hz and with an 
elevation mask of 10 degrees.  The maximum baseline 
length and velocity are 3.5 km and 23 m/s respectively. 
POSGNSS (Waypoint® Software) was used to generate a 
reference solution (the ‘true’ rover position). 

In this test the initial Q for the process noise vector is 
diag[0.752 0.752 0.752][m2/s4]. The initial double 
differenced code and phase variances are 2)(0.800m  and 

2)(0.016m . 

 
Fig. 10 Kinematic dataset trajectory 
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Fig. 11 Speed vs. time 

Fig. 12 shows the estimated standard deviations of the 
process noise factors as a function of time. Fig. 13 shows 
the covariance estimation as a function of time. The 
estimated covariance component for code measurement 
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stabilizes after 210 epochs while the one for the phase 
measurement takes significantly longer to be convergent.  
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Fig. 12 Process noise vs. time 

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.2

0.4

0.6

Reference SV, {Elev 60 to 73)

time (seconds)

co
de

 /m

 

 
Est. σj

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.005

0.01

time (seconds)

ph
as

e/
m

 

 
Est. σj

 
Fig. 13 Covariance vs. time 

Fig. 14 and 15 show the estimated standard deviation  of 
the code and phase measurements as a function of time 
together. Three measurement groups are presented, one 
with the highest, average and lowest elevation angles. 

Fig. 16 shows the estimated standard deviation for all the 
groups as a function of satellite elevation angles together 
with its initial standard deviations. Fig. 17 and 18 show 
the position errors together with the corresponding 
standard deviation before and after the application of the 
AKF algorithm. The reference solution contains errors as 
it comes from POSGNSS commercial software. 
Fig. 19 and 20 show the probability density functions 
(PDFs) of standardized position error without and with 
the application of AKF together with a standardized 
normal distribution curve. 
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Fig. 14 Selected code SD vs. time 
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Fig. 15 Selected phase SD vs. time 
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Fig. 16 Code and phase SD vs. Satellite Elevation 
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Fig. 17 Position error with without AKF 
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Fig. 18 Position error with with AKF 

-4 -2 0 2 4
0

0.2

0.4

0.6

0.8

North

pd
f p

(N
or

th
)

-4 -2 0 2 4
0

0.2

0.4

0.6

0.8

East

pd
f p

(E
as

t)

-4 -2 0 2 4
0

0.2

0.4

0.6

0.8

Up

pd
f p

(U
p)

 
Figure 19 PDFs of standardized position error using    

      initial variances (i.e. without AKF) 
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Fig. 20 PDFs of standardized position error with AKF 
 

5.  REMARKS AND CONCLUSIONS 

The paper presents an adaptive Kalman filtering 
algorithm based on variance and covariance component 
estimation. The distinction of the proposed AKF 
comparing with others in the literature lies in its 
capability of the simultaneous estimation of the variance 
and covariance factors for both of the measurement 
vector and the process noise vector. The results from 
simulated and real datasets showed the feasibility, 
efficiency and practicality of the algorithm. Furthermore 
the estimated variance and covariance factors possess 
good convergence. The authors will further apply this 
AKF to the integrated navigation and study how the 
system quality control can benefit from it. 
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