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ABSTRACT 

This paper focuses on realization of the variance and 

covariance component estimation in static relative GPS 

positioning for the double-differenced measurements in 

sequential least squares. The algorithm presented is based 

on the algorithm from [Ou, 1989] through the 

incorporation into the sequential least-squares (Wang et 

al, 2009; etc.). It is practical and easy to implement, and 

computationally efficient. Numerical results from 

simulated and real static GPS data in relative positioning 

mode are presented and discussed. 

Key words: variance-covariance component estimation, 

sequential least squares, static GPS, relative positioning, 

redundancy contribution. 

1. INTRODUCTION 

The least-squares (LS) method requires an accurate 

stochastic model of the measurements in order to produce 

realistic estimates of the unknowns. In general, the a 

priori measurement variance-covariance (VC) matrix can 

only be determined based on the limited available 

knowledge. Sometimes, it can be partially or completely 

unknown. The classical method for determining the VC 

matrix is through empirical analysis on measurement 

errors or manually in an ad hoc fashion. The results from 

empirical analysis may not quantitatively represent the 

real stochastic model. As a common practice, one usually 

seeks to estimate the VC components on the basis of the 

collected measurements.  

The algorithm development and application for the VC 

component estimation attracted considerable research 

attentions from time to time. Examples of early studies, 

since Helmert [1907], include the work in [Förstner, 

1979; Grafarend, et al, 1980; Li, 1983; Koch, 1986; Ou, 

1989; Yu, 1996; Xu, et al, 2006, 2007; Teunissen and 

Amiri-Simkooei, 2008; and Amiri-Simkooei, 2007; etc.]. 

Recently, more and more application-based studies have 

been introduced [Sieg and Hirsch, 2000; Wang & Rizos, 

2002; Tiberius, 2003; Rietdorf, 2004; Tesmer, 2004; 

Zhou, et al, 2006; Amiri-Simkooei, 2007; Bähr, et al, 

2007; Böckmann, 2008; Milbert, 2008; Wang et al, 2009 

etc.].  

Various VC estimation algorithms have been developed 

based on different estimation principles and distribution 

assumptions. The estimator after Helmert is probably the 

most popular VC estimation algorithm [Förstner, 1979; 

Koch, 1986; Cui et al, 2001; Bähr, et al, 2007; etc.], 

which is rigorous and requires considerable amount of 

computation time as well. Different simplifications and 

approximations were made for specific practical reasons. 

A good summary about them can be found in [Hermann et 

al, 2007; Cui, et al, 2001]. For further information, refer 

to [Welsch, 1978; Kubik, 1967; Förstner, 1979; Persson, 

1980; etc.].   

Förstner [1979] estimated the variance components using 

the measurement redundant contribution together with the 

measurement residuals.  One major drawback of this 

method is it assumes that the variance matrix is diagonal 

and therefore cannot be used for correlated measurements. 

Ou [1989] made an extension to Förstner’s method to 

estimate the variance and covariance factors 

simultaneously. 

This paper focuses on realization of the variance and 

covariance component estimation for the double-

differenced measurements in static relative GPS 

positioning in the fashion of sequential least squares. The 

approach is based on the algorithm from [Ou, 1989] 

through the incorporation into the sequential least-squares 

(Wang et al, 2009; etc.). The algorithm presented is 

practical and easy to implement, and computationally 

efficient. Section 2 first summarizes the algorithm of 

variance and covariance component estimation and then 

extends it to the sequential least squares. The last 

subsection in section 2 describes the real situation for the 

double differenced measurements in relative point 

positioning. To illustrate the proposed method, simulated 

and real static GPS data were processed. The 

corresponding numerical results and analysis are 

presented in section 3. In our numerical example the VC 

matrix of the correlated double-differenced code and 

carrier phase measurements is estimated. Conclusions and 

remarks are given in section 4. 
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2. VARIANCE-COVARIANCE COMPONENTS 

ESTIMATION  

2.1 VC Estimation using Redundancy Index 

Let the linearized system of observation equations be 

given by: 

)(ˆ )0(xFxBvL +=+ δδδδ                     (1) 

wherein L  is the 1×n  observation vector, v  is the 1×n  

residual vector of L , x  is the 1×t  parameter vector with 

its approximate vector as )0(x  and its correction vector 

x̂δδδδ , )(xF  is the 1×n  vector of non-linear function of 

x , B  is the tn×  design matrix containing the partial 

derivatives of )(xF  with respect to x  at )0(x . The 

observation vector L  is normally distributed with its 

expectation vector L
~

 and its variance-covariance (VC) 

matrix LLD . In practice, the measurement variance-

covariance (VC) matrix LLD  may be given in different 

forms as follows: 
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where jiij qq =  for ji ≠ , 2
0σσσσ is the variance of unit 

weight and P  and Q  are the weight and cofactor matrix 

of L , respectively.  

The least-squares solution delivers  

PlBNx T1ˆ −=δδδδ      (3) 

with its variance-covariance matrix  

12
0ˆˆ ˆ −= ND xx σσσσ       (4) 

wherein are 

PBBN T=      (5) 
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)( )(oxFLl −=      (7)   

The model given above usually assumes to have the fixed 

relative accuracy relationship between observations 

because P  (or Q) is specified as known. Only the a-priori 

variance of unit weight 2
0σσσσ  is estimated using the 

measurement residuals. 

In practice, P  is determined using the best available 

stochastic information about the measurements. However, 

the choice of P  may not be obvious and needs to be 

improved. To this end, the measurement residuals may be 

the best available sources to be used.    

Consider the variance and covariance component 

estimation for the individual measurements or practically 

for independent measurement groups. The VC matrix can 

be written as 
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wherein jijiijij qq )0()0( σσσσσσσσ = (for ji ≠ ). The variance 

components ,2

11σσσσ ,12σσσσ ,L ,1nσσσσ ,2
22σσσσ ,L ,2nσσσσ  ,2

33σσσσ  ,L  

2

nnσσσσ  or ,, )()( 120

2

110 σσσσσσσσ ,L ,1)0( nσσσσ ,
2

22)0(σσσσ ,L  ,2)0( nσσσσ  

2
)0(

2
33)0( ,, nnσσσσσσσσ L  are estimated. 

In general, the expectation of weighted sum of the 

residuals squared is statistically satisfied with 

))(()( ll
T

vv
T PPQtrPvvE ΣΣΣΣ=    (9) 

where v  is the residual vector of l, respectively, and vvQ  

is the cofactor matrix of v . On the ground of (9), one can 

appropriately construct suitable algorithms for variance 

and covariance estimation through the incorporation with 

the objective situations. The rigorous VC estimation 

algorithm after Helmert can be found in [Förstner, 1979; 

Kock, 1986; Cui et al, 2001; etc.]. The widely used 

simplification for the variance component estimation is 

given by [Förstner, 1979; etc.] 
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for the independent measurement groups 

( mii ,,,,1 LL= ), where in , iv , iiP  and iB  are the 

number, the residual vector, the weight matrix and the 

design matrix of the measurements in ith group, 

respectively. In (10), the numerator is decomposed into 

the m  sets of measurements whilst the denominator 

represents the redundancy index of the group of the 

measurements: 
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for posteriori estimation of the variance factors of the 

individual independent measurements. The covariance 

factors may be estimated together with the variances 

[Förstner, 1979; Koch, 1986; Ou, 1989; etc.]. An 

approximate iterated method was given by [Ou, 1989] 
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for the covariance factors, where vvQ is the cofactor 

matrix of L  and 
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The solution in (13) and (14) is based on the fact that the 

non-diagonal elements of the derived equation system 

from (9) are much small than its diagonal ones [Förstner, 

1979; Ou, 1989; Wang et al, 2010]. The quantity 

)( PQtr vv  is identical with the total redundancy number 

r  of the system (1). At most 2)1( /+rr independent 

variance and covariance components can be uniquely 

determined [Xu et al, 2007]. 

In practice, (12) ~ (15) may further be reformulated to fit 

to the specific applications. For example, the further 

combination of specific multiple variance or covariance 

factors under the reasonable assumption that they are 

identical based on the nature of the observation reality 

will definitely simplify these equations and improve their 

convergence by reducing the number of the estimated 

variance and covariance factors. 

2.2. VC ESTIMATION IN SEQUENTIAL LEAST 

SQUARES 

This subsection extends the VC component estimation to 

the sequential least squares. Assume to have a 

measurement sequence kLL ,...,1  from epoch 1 to epoch 

k.  The observation equation system at k is given by:  
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where ),ˆ(~ˆ
11

ˆˆ11 −−−−=
kkk xxkkx DxNxL  is the current 

available estimated parameter vector x  as the  pseudo-

observation with its accuracy 
11

ˆˆ −− kk xxD  from epoch 1−k  

and ),
~

(~
kk LLkk DLNL  is the available observation at 

the current epoch with its expectation kL
~

and the variance 

matrix 
kk LLD . For simplicity, one can chose 

1
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 in (17). Accordingly, one obtains the 

residual equation system for (17) 
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wherein kB   consists of the partial derivatives with 

respect to x . The least squares solution for (18) states  
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In order to estimate the variance and covariance factors in 

kk LLD , they are first grouped sequentially as required by 

the application. And then, one can extend (13) and (14) to 

fit to multiple epochs in sequential least squares. Without 

giving the detailed derivation, the accumulated variance 

factors at epoch k is computed by 
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where )(miv is the measurement residual vector of the ith 

measurement group at epoch m . 

2.3. Static Relative GPS Positioning  

The objective of static relative position is to determine the 

coordinates of an unknown point A with respect to a 

known point B, or the baseline between them, both of 

which are stationary. This type of positioning requires 

simultaneous observations at two points and can be 

performed with code ranges or/and carrier phases 

(Hofmann-Wellenhof et al., 2008). Double-differenced 

measurements are usually used and the measurement 

equation for a single frequency receiver is given by: 

jk
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where jk

ABP∇∆  is the double differenced L1 code range 

measurement vector between satellite j and satellite k and 

between receiver A and receiver B in meters, jk

ABφ∇∆  is 

the corresponding L1 double differenced carrier phase 

measurement vector in cycles, jk

ABρ∇∆  is the geometric 

range, 1λ  is the wave length of L1 carrier phase, 1N∆∇ is 

the double differenced ambiguity unknown vector of L1 

carrier phases, jk

AB,Pε∇∆ is the code measurement noise 

vector and jk

AB,L1ε∇∆  is the phase measurement noise 

vector, respectively.  For short baselines, the residual 

tropospheric and ionospheric effects in double differenced 

measurements are assumed to be negligibly small and are 

ignored. The variance-covariance matrix for the double 

differenced measurements in (29) and (30) is given as 

follows: 











++

++++

++++

=∇∆

2222

2

2

2

2

2222

222

1

2

1

22

jBjAjBjA

BAjBjAjBjA

jBjABAjBjA

D

,,,,

,,,,,,

,,,,,,

σσσσσσσσσσσσσσσσ

σσσσσσσσσσσσσσσσσσσσσσσσ

σσσσσσσσσσσσσσσσσσσσσσσσ

MM

     

                  











+++

+

+

2222

22

22

nBnAjBjA

jBjA

jBjA

,,,,

,,

,,

σσσσσσσσσσσσσσσσ

σσσσσσσσ

σσσσσσσσ

L

MM

L

L

              (31) 

where 2

jA,σσσσ and 2

jB ,σσσσ  are the variances for the 

measurements to the reference satellite j while 2

kA,σσσσ and 

2

kB ,σσσσ for n,...,k 1=  are the variances for the 

measurements to the remaining satellites. The algorithm 

can only estimate the variance and covariance factors for 

each entry in the matrix. Therefore, the individual 

variances cannot be separated. Thus, (31) can be written 

as      
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For each epoch there are a maximum of 1+n variances 

factors that can be estimated because all of the non-

diagonal factors stand for the identical variance factors 
22

jBjA ,, σσσσσσσσ + .  

Furthermore, the elevation angle of a satellite with respect 

to the user location influences the signal path length and 

the strength of the received signal (Hofmann-Wellenhof 

et al., 2008). As the elevation of the satellites decreases, 

the signal-to-noise ratio increases. In the VC estimation 

algorithm the measurements can accordingly be grouped 

based on the elevation angles.  

3. NUMERICAL EXAMPLES  

The algorithm described in section 2 was implemented for 

GPS relative positioning in static mode. With both of the 
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simulated and real data, double differenced L1 C/A and 

carrier phase measurements were processed. The integer 

ambiguities were resolved using the LAMBDA method 

(Teunissen et al, 1997). The initial variances assigned to 

code and phase measurements were arbitrary and 

independent of satellite elevation angles. The variance-

covariance components were grouped against satellite 

elevations. It assumes that the variance does not 

experience significant change with limited changes of the 

satellite elevation angle. The ranges of the satellite 

elevation angles for each group reasonably vary so that 

each group can have almost the same number of 

measurements. This ensures that there are enough 

residuals to estimate all of the variance components 

reliably. As a result there will be uneven intervals and 

also be different for each dataset.  

3.1. Simulated Data 

The undifferenced code and phase static measurements 

were simulated at 1.0 Hz for 3900 seconds with an 

elevation mask of 10 degrees. The measurement noise 

variance applied to the measurements varies with the 

satellite elevation angle based on 

[ ])/.exp(.. EE 51750502

90

2 += σσσσσσσσ                                          (33) 

where 2

90σσσσ is the variance at the zenith and E is the 

satellite elevation angle in degrees. The zenith variances 

used for code and phase measurements are 2)3000( m.  

and 2)0030( m. respectively. The initial variances for 

double differenced code and phase measurements used in 

this test were 2)8000( m. and 2)0160( m. , respectively.  

Fig. 1 shows the covariance estimation as a function of 

time together with its true value.  The results show that 

the covariance component for the code and phase 

measurement can be estimated with at least 120 and 240 

epochs respectively.  

Fig. 2 and 3 show the estimated standard deviations as a 

function of time together with its true value. The results 

from three measurement groups are presented: the top, 

middle and bottom contain the highest, average and 

lowest elevation angles respectively.       

The estimation of the second group (Elevation 33 to 35) 

starts at 1510 seconds, which is the time when one or 

more satellites enter this elevation range. Similarly the 

third group starts at 150 seconds. The results show that 

the proposed algorithm takes at least 85 epochs and 135 to 

estimate the code and phase standard deviations.  Fig. 4 

shows the estimated standard deviation for all the groups 

as a function of satellite elevation angles together with it 

corresponding initial and true value plots.  All the 

estimated components fit closely to the true curve.  
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Fig. 2 Selected code standard deviation vs. time 
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Fig. 3 Selected phase standard deviation vs. time 



CPGPS 2010 Technical Forum                                                                  Shanghai, August 17 – 20, 2010 

 

(Peer reviewed, will be published in the CPGPS 2010 Index to Scientific & Technical Proceedings) 

 

 

6 

10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

Code Standard Deviation

elevation/(deg)

σ
i /

m

 

 

init. est. true

10 20 30 40 50 60 70
0

0.002

0.004

0.006

0.008

0.01

0.012
Phase Standard Deviation

elevation/(deg)

σ
i /

m

 
Fig. 4 Code and phase standard deviation 

                      vs. satellite elevation 

Fig. 5 and 6 show the position errors together with the 

corresponding standard deviation for both without and 

with VC estimation. 
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Fig. 5 Position error without VC estimation 
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Fig. 6 Position error with VC estimation 

Fig. 7 and 8 show the probability density functions 

(PDFs) of standardized position error without and with 

VC estimation together with a standardized normal 

distribution curve. The PDFs with the VC estimation 

algorithm fits the standardized normal distribution curve 

which suggests that the estimated variances for the 

unknowns are realistic. 
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   Fig. 7 PDFs of standardized position error using 

    initial variances (without VC estimation) 
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      Fig. 8 PDFs of standardized position error 

                with VC estimation 

3.2. Real Data 

This section presents the processing results using the VC 

estimation algorithm on real GPS data. The static data 

was collected on 24 April 2010 using two Leica 1200 

receivers for the duration of 65 minutes. The receivers 

were set at sampling rate of 1.0 Hz and an elevation mask 

of 10 degrees. The base station was located at 

N43
o
46’26.34512”, W79

o
30’43.23784”, 158.697 m in 
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York University, Toronto, Ontario, Canada. The baseline 

length is 63.395m. The mean of the estimated position 

was used as the ‘true’ rover position.  

The double differenced code and phase variances used in 

this test are 2)8000( m. and 2)0160( m. . Fig. 9 shows the 

covariance estimation as a function of time.  

Fig. 10 and 11 shows the standard deviation estimation as 

a function of time together. The results from three 

measurement groups are presented: the top, middle and 

bottom contain the highest, average and lowest elevation 

angles respectively. 

With the real data it takes at least 170 epochs and 200 to 

estimate the code and phase standard deviation.  In fig 8   

first plot, the constant line between 50 and 2750 seconds 

indicates there are no measurements between elevations 

55 and 56. Similar features can be found in other plots. 

Fig. 12 shows the estimated standard deviation for all the 

groups as a function of satellite elevation angles together 

with the initial value plot.  
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Fig. 9 Code and phase covariance vs. time 
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Fig. 10 Selected code standard deviation vs. time 
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Fig. 11 Selected phase standard deviation vs. time 
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Fig. 12 Code and phase variances vs. satellite elevation 

As expected the estimated variances generally decreases 

as satellite elevation increases.  Fig. 13 and 14 show the 

position errors without and with VC estimation.  
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Fig. 13 Position Error without VC estimation 
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Fig. 14 Position Error with VC estimation 

Fig. 15 and 16 show the PDFs of standardized position 

error without and with VC estimation together with a 

standardized normal distribution curve. The PDFs with 

the VC estimation algorithm show that the there is a bias 

in the position solution with unity variance.  
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Fig. 15 PDFs of standardized position error 

                        using initial variances 
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Fig. 16 PDFs of standardized position error 

                        after VC estimation 

 

4. REMARKS AND CONCLUSIONS 

The paper presents a VC estimation algorithm for the 

sequential least squares methods with correlated 

measurements. The results show that the posteriori 

accuracy of the unknowns is more realistic with the VC 

estimation. Furthermore the estimated variance and 

covariance have good convergence. The results from the 

simulated data show that both variance and covariance 

elements are estimated accurately. The results from 

simulated and real datasets show the feasibility, efficiency 

and practicality of the algorithm. 
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