

Colour

Colour: a private experience...

Definition:

- Additive mixture: light
- Subtractive mixture: ink or paint

Photoreceptors:

Rods: monochromatic

Cones: trichromatic

trichromatic theory:Young and Helmholtz

VS

—principle of univariance

Physiology

Ganglion cells and LGN

Concentric single opponent cells Concentric non-opponent cells

Striate cortex (Hering)

Purely opponent cells Double opponent cells

Psychophysical evidences for physiology Negative afterimages

Colour constancy

Additive colour mixing

Subtractive colour mixing

paint

filters

Paint reflects colours (wavelength)

Photoreceptors absorb "colours" Light of different wavelengths

Photoreceptors absorb "colours" Light of different wavelengths

Colour deficiencies

Monochromatism

One receptors wavelength selectivity

Dichromatism

Two receptors wavelength selectivity

Tritanope

Protanope

Deuteranope

Ishihara Test

The world.

How the world looks to a person with a red/green color deficit (deuteranopia). How the world looks to a person with a blue/yellow color deficit (tritanopia).

http://www.vischeck.com/showme.shtml

Cones sensitivity

Principle of univariance

wavelength (nm)	Cone 1	Cone 2	
500	100%	45%	
600	35%	100%	

Trichromatic Theory: Young & Helmholtz

Opponent Theory: Hering

Opponent and non-opponent receptive fields of cells in the retina and LGN

Red/Green Opponent cells

Opponent and non-opponent receptive fields of cells in the retina and LGN

Figure # 5.20 / book pages 147 Trichromatic vs. opponent-process responses M and L receptors Receptor responses M L M L M L Response Response (a) Differences between L and M response 2 1 Differences between L and M curves Opponent responses R+ G- cell (b) 2

Colour cells

Opponent receptive fields in striate cortex

Purely opponent cells

Double opponent cells

