Experimental Designs

Non factorial designs (one independent variable: one way):

- · Between subject design
- · Within subject design

Factorial design:

- · Between subjects
- · Within subjects
- Mixed

One way between subject design

Independent Groups

1 independent variable at x levels

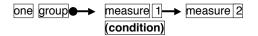
Between subject design (variable)

Advantage

- No contamination

Disadvantages

- Matching
- Randomization (enough n)


Between subject "variable"

Threats of internal validity:

- · Research expectation
- Subject expectation
- · Subject selection
- · Lost of subject

One-way within subject design

1 independent variable at x levels

Within subject Design (variable)

Advantages

- Same subjects used
- Own control
- Longitudinal relation

Disadvantages

- Carry over effects
- Regression towards the mean

Within subject "variable"

Threats to internal validity:

- · Researcher expectancy
- Subject expectancy
- · Maturation and historical factors
- · Habituation and fatigue
- Statistical regression

Controls:

Constancy

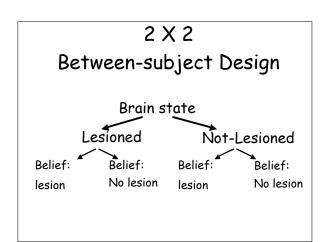
- Systematic variation
 —Counterbalancing:
 Latin Square
- · Random variation

Latin Square

Order of administration

	îl .	2	8
sequence il	A	В	C
sequence 2	B	C	A
sequence S		A	В

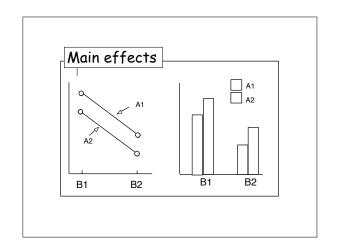
Factorial design:

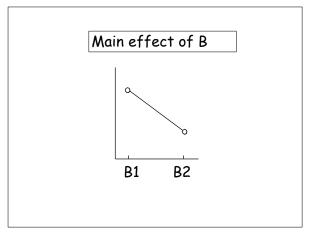

- · Between-subject
- · Within-subject
- Mixed

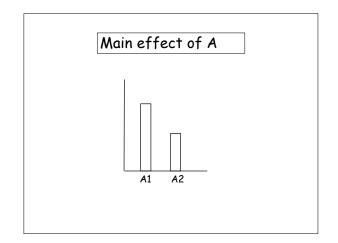
What is the research design?

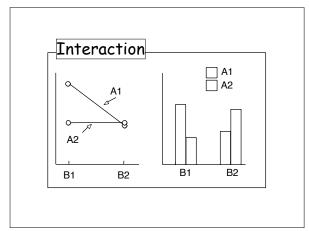
- 1. Find the independent variables
- 2. For each I. V.:
- · Within-subject or between subject?
- · levels (names & numbers)
- 2 X 2 mixed design with the independent variables x (within) & y (between)

BURNHAM Expectancy Control Design (1966)Expectancy Brain state Lesioned Unlesioned Totals Lesioned 46.5 49.0 95.5 Unlesioned 106.5 48.2 58.3 107.3 Totals 94.7


I. V.? Brain state Within- or Between-Subject? Levels? 2 Lesioned vs. Not lesioned Researcher Expectancy Within- or Between-Subject? Levels? 2 Lesioned vs. Not lesioned




Factorial designs


Hypotheses:

- Main effects (= number of I. V.)
- Interaction

Solomon design

1.	pre-test -	treatment –	post test
2.		treatment -	post test
3.	pre-test -	-	post test
4.		-	post test

Solomon Design

1.	pre-test - tre	atment –	post test
2.	tre	atment -	post test
3.	pre-test -	_	post test
4.		_	post test

	Pre-test		
_	yes	no	
ti yes	1	2	
Treatment no sex	3	4	

Null hypotheses

Main effects (as many as # of IV):

- 1. There is no difference in the DV between the levels of the IV: \boldsymbol{A}
- 2. There is no difference in the DV between the levels of the IV: $\ensuremath{\mathsf{B}}$

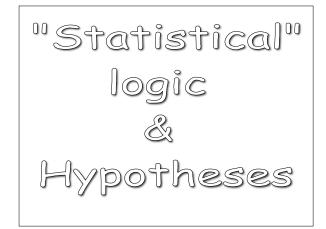
Null hypothesis

Interaction: There is no interaction

For IV A, level 1,

IV B: level 1 vs. level 2

♦ Similar tendency: no difference


For IV A, level 2,

IV B: level 1 vs. level 2

Sterie, U. R. & Ambedy, N. (2003). "Meth is had?" The effect of gender priming on women's stiffedes. *Vounel of* [Exgerimental Scotal Experielogy, 72, 223-486.

Women's mean attitudes (and standard deviation) towards a math by priming condition in Study 1a

	Personal attitudes	
	Arts	Math
Female prime	6.50 (1.38)	4.43 (1.76)
Male prime	5.35 (1.00)	5.26 (2.26)

Hypotheses

H₀→ Null hypothesis
"No difference"

H₁ → Alternate hypothesis
Difference due to treatment

Hypotheses

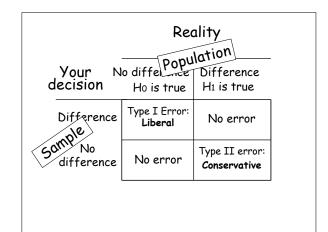
Evaluated by statistical tests

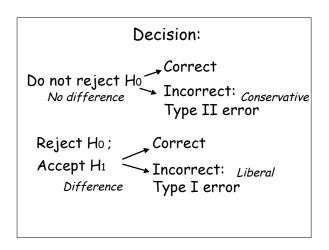
 $H_0 \Leftrightarrow Null Hypothesis$

No "difference" between $\operatorname{\mathsf{Gr}}$. A and B

H₁ => Alternate Hypothesis

Difference between groups


• In one specific direction:


Gr. A > Gr. B or Gr. A < Gr. B

In any direction → Two-tailed test

t values & their associated one-tailed and two-tailed p values			
	p = 0.10	0.05	two-tail
	p = 0.05	0.025	one-tail
df = 16	1.746	2.120	
df = 100	1.660	1.984	

Statistical analysis		
- Null and alternate hypotheses		
Possible errors: type I or type II		
- Sample> Population		
Chance: Sampling errors Measurement errors		

	Reality		
Decision	Ho is true	Ho is false H1 is true	
Reject of Ho	Type I error	No error	
Non Reject of Ho	No error	Type II error	

Type I error: significance value (p < 0.05)

alpha

Type II error: beta

Probability? / chance?

Between subject design

Participants selection
Subject and researcher expectations

Within subject design

Repeated measures:

Statistic regression Maturation

Historical factors ...

Null hypotheses

Main effects (as many as # of IV):

- 1. There is no difference in the DV between the levels of the IV: \boldsymbol{A}
- 2. There is no difference in the DV between the levels of the IV: ${\sf B}$

Null hypothesis

Interaction: There is no interaction

For IV A, level 1,

IV B: level 1 vs. level 2

♦ Similar tendency: no difference

For IV A, level 2,

IV B: level 1 vs. level 2