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Abstract

The project sought to investigate the effects of drug abuse on the progression of HIV infection. We
capture, in the model, the dynamics of drug users and non-drug users and investigate their impacts in
HIV transmission. Mathematical analysis showed that the model has six equilibrium points where one
of the equilibrium points is a disease-free equilibrium point and the rest are endemic equilibrium points
which represented various hypothetical scenarios that influence the progression of HIV infection.
Results of the Numerical simulations showed that the situation where both non-drug users and drug
users are contributing to HIV infection worsens the progression of HIV infection.
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1. Introduction

The Human Immunodeficiency Virus (HIV) is a retrovirus that attacks the human immune system
making it unable to fight against HIV infection and other infections. The continuous deterioration of
the strength of the immune system leads to the development of Acquired Immunodeficiency Syndrome
(AIDS) which ultimately leads to the death of individuals (Ngwenya, 2009; US13). HIV is transmitted
through unprotected sexual intercourse, mother-to-child transmission (breast feeding), blood
transfusion, unsterilised body piercing or tattooing and through sharing of needles and syringes
(KGcount).

HIV infection is one of the sexually transmitted infections which is a world pandemic (Hethcote,
2000). An HIV infected individual can stay with the infection for some years without getting ill or
showing any symptoms of it (US13). There are four stages of progression from initial HIV infection to
the AIDS stage. These stages are the primary, chronic, pre-AIDS and AIDS stages (WHO05). The
primary HIV infection lasts for a few weeks and after which is often accompanied by short flu-like
illness. During this stage, there is a large amount of HIV in the peripheral blood and the immune
system begins to respond to the virus by producing HIV antibodies and cytotoxic lymphocytes. This
process of developing detectable antibodies due to HIV infection is called seroconversion. If an HIV
antibody test is done before the completion of seroconversion, then the test may not be positive. The
chronic stage lasts for an average of ten years. At this stage the level of HIV in the peripheral blood
drops to very low levels but people remain infectious and HIV antibodies are detectable in the blood.
In this case, HIV antibody tests will show a positive result. The pre-AIDS stage is characterised by the
immune system getting severely damaged by HIV due to the failure by the body to repair the lymph
nodes and tissues, and, HIV mutating and becoming stronger. This stage is mainly associated with the
emergence of opportunistic infections such as tuberculosis, cancer, malaria etc. The AIDS stage is
characterized by extensive damage to the immune system and development of increasingly severe
opportunistic infections and cancers (WHO05).

A drug is a chemical that can alter a person’s perceptions, feelings, behaviours or thoughts. Drug
abuse can be defined as a disorder characterised by a descriptive pattern of using a substance that
leads to significant problems or distress involving one to tolerate or withdraw from the substance.Drug
abuse can also be called substance abuse or chemical abuse. All substances whose ingestion can lead
to a high feeling can be abused (Web13). Examples of illegal drugs abused are marijuana, cocaine,
amphetamines, anabolic steroid and nicotine among others (Web13). The effects of drug abuse ranges
from development of seizures and death, paranoia to infertility and organ failure. Patterns of drug
abuse vary from several times a day to infrequently, sometimes with excessive amounts. Individuals
intoxicated with drugs have higher chances of engaging in unsafe sexually practices (UNHCR and
WHO, 2008). Regular use of drug results in individuals craving to have more quantities to achieve the
same effect and thus depend on the drug. Drug abuse and addiction have been closely linked with
HIV/AIDS since the beginning of the epidemic (UNHCR and WHO, 2008).

Drug abuse and addiction can also worsen the progression of HIV and its consequences, especially in
the brain (US13). Animal studies found that some drugs like Methamphetamine increased HIV viral
replication. HIV infection among drug users is increased through injection drug use and poor
judgement and risk behaviours. Injection drug use contributed 20% of new HIV diagnosis among
women (Marcondes, 2010). Poor judgement and risky behaviour can lead to unsafe sex which puts
people at risk of getting HIV or transmitting it to other people (Marcondes, 2010). Globally 5 to 10%
of HIV infections result from injection drug users (WHO et al., 2004). Figure 1.1 shows the various
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pathways people may go through under the influence of drug abuse on HIV.

A diagnosis of HIV or AIDS on a drug user can precipitate an increase in or relapse into substance
abuse, but it can also lead to positive behavioural change. Some people start to use drugs to relieve
themselves of difficulties, painful feelings and stressful situations and when they find out that they are
HIV positive, they may feel compelled to turn to drugs once again to help themselves cope with this
diagnosis and its implications. Other people may change positively when they are HIV positive.
Treatment has been used as one of the successful intervention strategies for HIV and drug abuse.
Drug abusers on treatment may reduce their drug intake and related risk behaviours like drug injection
and unsafe sex. HIV treatment with antiretroviral drugs reduces the level of infectiousness of
individuals as well as the rate of transmission of HIV. Other intervention strategies include counselling,
education, nutrition and abstinence among others (WebTD).

The interactions between HIV and drug abuse are complex and in this project we want to investigate
the effects of drug abuse on HIV infection progression using mathematical models. The first chapter
so far has given the basic background information on HIV and drug abuse. In chapter 2, we will review
some studies done on HIV and drug abuse and use these as a basis of our model formulation. In
chapter 3, we will present a model for HIV and drug abuse and analyse it. Numerical simulations will
be done and results discussed in chapter 4.

Figure 1.1: The diagram of the influence of drug abuse on HIV (Bloom)



2. Literature Review

In this chapter we review 3 selected studies done either on drug abuse, HIV infection or HIV and drug
abuse and use these studies as building blocks to our study on drug abuse and HIV infection.

Rossi (Rossi, 2002) studied the role of dynamic modelling in drug abuse epidemiology. The study was
motivated by the need on policy makers for information to describe and understand drug use and
design appropriate intervention. Under-reporting of drug abuse data motivated the use of
mathematical models where the extent of the phenomenon was estimated and dynamics observed from
existing statistical and documentary information on drug abuse. In the study, dynamical models were
used to generate estimates or to verify hypothesis or predict drug abuse trends. The study used models
of epidemics effectively in the drug field to provide evidence for public health-oriented interventions and
policies. The model provided a framework in which numbers of people in different compartments and
the relationships between such compartments were described in mathematical terms. Qualitative and
quantitative analyses were presented to demonstrate the potential usefulness of the model for decision
makers on the data for Italy on the heroin epidemic. Results of the model suggested that the spread of
the infectious disease epidemic among injecting drug users correlated to the hidden part of the drug
user’s career and that interventions must be aimed on reducing latency period. The study only
focussed on fitting the model to data but did not provide a full mathematical analysis of the model.

Baryarama et al. (2005) formulated an HIV/AIDS model which incorporated complacency for the adult
population. The study investigated the effects of adult individuals returning to high risk sexual
behaviours. A 3-state compartmental model was formulated which captured the dynamics of the
susceptible individuals, HIV infected individuals and AIDS individuals. Detailed mathematical analysis
was carried out together with the numerical simulations and showed that complacency, which resulted
from dependence of HIV transmission on the number of AIDS cases in a community, led to damped
periodic oscillations in the number of infective individuals with oscillations more marked at lower rates
of progression to AIDS. The implications of these results on public health with respect to monitoring
the HIV/AIDS epidemic and widespread use of antiretroviral (ARV) drugs was discussed. The results
showed a tendency for the epidemic to stabilize at higher numbers of infective and AIDS cases than
the minimum numbers attained during the first decline of the epidemic. The study showed that
prolonging survival of AIDS cases may lower the endemic equilibrium level of HIV infection.

Kalula and Nyabadza (Kalula and Nyabadza, 2012) studied a theoretical model for substance abuse in
the presence of treatment in the South African context. Their study used a six-state mathematical
model to investigate qualitatively the dynamics of drug abuse and predict the drug abuse trends. The
mathematical analysis of the model on substance abuse epidemic revealed an important threshold
parameter called the basic reproduction number which was used as a measure of secondary cases that
an infected individual produced in a completely susceptible population. The model was fitted to data
using the least squares curve fitting method on methamphetamine users in Western Cape who entered
rehabilitation . Results of the mathematical analysis showed that the proposed model had a backward
bifurcation which indicated the existence of complex dynamics in drug abuse. The backward
bifurcation resulted from introduction of treatment of drug abuse in the model. This meant that it is
not sufficient to reduce the basic reproduction number below unit to control the substance abuse
epidemic when treatment was used as intervention. The results also suggested that the substance
abuse epidemic can be reduced by intervention programmes targeted at light drug users and by
increasing the uptake rate into treatment for those addicted. Their results also showed that the spread
of substance abuse could be controlled through a reduction in the relapse rate, increasing interventions
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at light drug users phase and increasing the uptake rates into treatment.

We use ideas from these studies to formulate a mathematical model to investigate implications of drug
abuse and HIV infection on the progression of HIV infection.



3. Mathematical Analysis of the model

3.1 Model Formulation

In this chapter, we formulate the model incorporating HIV infection and drug abuse. The variables and
parameters used in our model are defined in table 3.1. We assume that individuals are recruited into
the population through birth and immigration at a constant rate π, and can only participate in the
HIV and drug abuse dynamics when they are sexually active. A proportion ν of these recruited
individuals will not use drugs and 1− ν (0 ≤ ν ≤ 1) will become addicted to the drugs. Individuals
not using drugs (non-drug users) in compartment S will die naturally at a constant rate µ. They get
infected with HIV at a rate λNS where λN is a force of infection defined by λN = β(I + η2A) where
β and η2 are defined in table 3.1. A force of infection is the probability that a susceptible will get HIV
per unit time. Drug users in compartment U die naturally at a constant rate µ or die due to the
effects of drug abuse at a constant rate δ1. Drug users get infected with HIV at a rate λDU , where
λD is the force of infection defined by λD = β(η1Iu + η3Au) where η1 and η3 are defined in table 3.1.
Susceptible individuals infected with HIV move to the HIV infected non-drug users compartment I.
The infected non-drug users leave the compartment through natural death at constant rate µ or
through progression to the non-drug users AIDS compartment A at a constant rate ρ1. Drug users
who get infected with HIV move to the compartment of HIV infected drug users, Iu. The HIV infected
drug users leave the compartment either through natural death, death due to drug abuse (at a
constant rate δ1) or through progression to the drug-users AIDS compartment Au. Individuals in both
AIDS compartments are removed through natural death or death due to AIDS. We assume that AIDS
drug users are most likely to die due to AIDS other than drug abuse effects since they are mostly
inactive and have little or no chance of engaging in activities that endanger their lives and due to the
effects of drug abuse, η2 < η3 and ρ1 < ρ2. The schematic diagram for the model is given in figure
3.1. The model representing the dynamics of HIV and drug abuse is a system of non-linear ordinary
differential equation given by equations (3.1) to (3.6).

dS

dt
= πν − λNS − µS, (3.1)

dU

dt
= π(1− ν)− λDU − (µ+ δ1)U, (3.2)

dI

dt
= λNS − (µ+ ρ1)I, (3.3)

dIu
dt

= λDU − (µ+ ρ2 + δ1)Iu, (3.4)

dA

dt
= ρ1I − (µ+ δ2)A, (3.5)

dAu

dt
= ρ2Iu − (µ+ δ2)Au, (3.6)

λN (t) = β(I + η2A) (3.7)

λD(t) = β(η1Iu + η3Au). (3.8)
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Table 3.1: Model variables, parameters and their descriptions

Variable Description

S(t) Population of susceptible non-drug users.
U(t) Population of susceptible drug users.
I(t) Population of infected non-drug users.
Iu(t) Population of infected drug users.
A(t) Population of AIDS non-drug users.
Au(t) Population of AIDS drug users.

Parameter Description

π Recruitment rate of susceptible individuals.
ν Proportion of recruited non-drug users susceptible individuals
µ Natural death rate.
ρ1 Rate of progression to AIDS for infected non-drug users.
ρ2 Rate of progression to AIDS for infected drug users.
δ1 Death rate due to drug use.
δ2 Death rate due to AIDS.
β Effective contact rate.
η1 > 1 Rate for level of risk of disease transmission by infected drug users.
η2 < 1 Rate for level of risk of disease transmission by AIDS non-drug users.
η3 < 1 Rate for level of risk of disease transmission by AIDS drug users.

Birth

S U

µS (µ+ δ1)U

I Iu

µI (µ+ δ1)Iu

A Au

(µ+ δ2)A (µ+ δ2)Au

πν

λNS

ρ1I

π(1− ν)

λDU

ρ2Iu

Figure 3.1: Model diagram
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3.2 Model analysis

3.2.1 Disease free equilibrium point. The disease free-equilibrium is the point where there are no
HIV infected and AIDS individuals.

At the disease free equilibrium, we have

I∗ = I∗u = A∗ = A∗
u = 0. (3.9)

Setting the right hand side of equation (3.1) to (3.6) and applying (3.9), we have

πν − µS∗ = 0, (3.10)

π(1− ν)− (µ+ δ1)U
∗ = 0, (3.11)

which gives S∗ =
πν

µ
and U∗ =

π(1− ν)
µ+ δ1

.

The disease free equilibrium is given by

E0 =

(
πν

µ
,
π(1− ν)
µ+ δ1

, 0, 0, 0, 0

)
.

We note that when ν = 1, we have an HIV-free and drug-free equilibrium point. When ν = 0, we have
an HIV-free but not drug-free equilibrium point.

3.2.2 Reproduction Number R0. The basic reproduction number R0 is the number of secondary
infections caused by an individual introduced into a totally susceptible population. We can distinguish
new infections from all other changes in population in order to find R0 by letting Fi be the rate of
appearance of new infections in compartment i, V+i (x) be the rate of transfer of individuals into
compartment i by all other means, V−i (x) be the rate of transfer of individuals out of compartment i
and R0 = ρ(FV −1) (van den Driessche and Watmough, 2002).

Since we have four infectious classes I, Iu, A,Au, the matrix showing the rate of appearance of new
infections in compartment i is given by

F =


λNS
λDU
0
0

 =


F1

F2

F3

F4

 .

The matrix showing the rate of transfer of individuals in and out of compartments i is

V = V− − V+ =


(µ+ ρ1)I

(µ+ ρ2 + δ1)Iu
(µ+ δ2)A− ρ1I
(µ+ δ2)Au − ρ2Iu

 =


V1
V2
V3
V4



where V+ =


0
0
ρ1I
ρ2Iu

 and V− =


(µ+ ρ1)I

(µ+ ρ2 + δ1)Iu
(µ+ δ2)A
(µ+ δ2)Au

 .
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The jacobian matrix of F evaluated at the disease free equilibrium point is given by

F =
∂F(E0)

∂xj
=


βS0 0 βη2S0 0
0 βη1U0 0 βη3U0

0 0 0 0
0 0 0 0

 where xj = I, Iu, A,Au for j = 1 . . . 4,

S0 and U0 are respectively
πν

µ
and

π(1− ν)
µ+ δ1

.

The jacobian matrix of V evaluated at the disease free equilibrium point E0 is

V =
∂V(E0)

∂xj
=


(µ+ ρ1) 0 0 0

0 (µ+ ρ2 + δ1) 0 0
−ρ1 0 (µ+ δ2) 0
0 −ρ2 0 (µ+ δ2)

 .

The inverse of V is

V −1 =



1

(µ+ ρ1)
0 0 0

0
1

(µ+ ρ2 + δ1)
0 0

ρ1
(µ+ ρ1)(µ+ δ2)

0
1

(µ+ δ2)
0

0
ρ2

(µ+ δ2)(µ+ ρ2 + δ1)
0

1

(µ+ δ2)


.

The next generation matrix FV −1 is given by


βS0 0 βη2S0 0
0 βη1U0 0 βη3U0

0 0 0 0
0 0 0 0





1

(µ+ ρ1)
0 0 0

0
1

(µ+ ρ2 + δ1)
0 0

ρ1
(µ+ ρ1)(µ+ δ2)

0
1

(µ+ δ2)
0

0
ρ2

(µ+ δ2)(µ+ ρ2 + δ1)
0

1

(µ+ δ2)


,

=


A 0 B 0
0 C 0 D
0 0 0 0
0 0 0 0

,
where

A =
βρ1η2S0

(µ+ δ2)(µ+ ρ1)
+

βS0
(µ+ ρ1)

=
βS0

(µ+ ρ1)

(ρ1η2 + µ+ δ2
(µ+ δ2)

)
,

B =
βη2S0
(µ+ δ2)

,

C =
βρ2η3U0

(µ+ δ2)(µ+ ρ2 + δ1)
+

βη1U0

(µ+ ρ2 + δ1)
=

βU0

(µ+ ρ2 + δ1)

(ρ2η3 + η1(µ+ δ2)

(µ+ δ2)

)
,

D =
βη3U0

(µ+ δ2)
.
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The eigenvalues of FV −1 are obtained by calculating the roots of the characteristics equation of
FV −1 as follows:

|FV −1 − λI| =

∣∣∣∣∣∣∣∣
A− λ 0 B 0

0 C − λ 0 D
0 0 −λ 0
0 0 0 −λ

∣∣∣∣∣∣∣∣ = 0,

(A− λ)(C − λ)λ2 = 0,

λ = 0, λ = A, λ = C.

Let A = Rh and C = Rd.

The basic reproduction number of the system of equations (3.1) to (3.6) is the spectral radius of the
matrix FV −1 denoted by ρ(FV −1). Thus

R0 = ρ(FV −1) = max{Rh,Rd}.

Rh is the reproduction number due to non-drug users HIV infected individuals and Rd is the
reproduction number due to drug users HIV infected individuals.

3.2.3 Stability analysis of disease-free equilibrium point. The jacobian matrix of the system of
equations (3.1) to (3.6) evaluated at E0 is given by

J(E0) =



−µ 0 −βS0 0 −βη2S0 0

0 −(µ+ δ1) 0 −βη1U0 0 −βη3U0

0 0 βS0 − (µ+ ρ1) 0 βη2S0 0

0 0 0 βη1U0 − (µ+ ρ2 + δ1) 0 βη3U0

0 0 ρ1 0 −(µ+ δ2) 0

0 0 0 ρ2 0 −(µ+ δ2)



.

To determine the stability of disease-free equilibrium point, we use |J(E0)− λI| = 0 to obtain
eigenvalues of J(E0).∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−µ− λ 0 −βS0 0 −βη2S0 0

0 −(µ+ δ1)− λ 0 −βη1U0 0 −βη3U0

0 0 βS0 − (µ+ ρ1)− λ 0 βη2S0 0

0 0 0 βη1U0 − (µ+ ρ2 + δ1)− λ 0 βη3U0

0 0 ρ1 0 −(µ+ δ2)− λ 0

0 0 0 ρ2 0 −(µ+ δ2)− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

λ1 = −µ < 0 and λ2 = −(µ+ δ1) < 0,
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and ∣∣∣∣∣∣∣∣∣∣∣∣∣∣

βS0 − (µ+ ρ1)− λ 0 βη2S0 0

0 βη1U0 − (µ+ ρ2 + δ1)− λ 0 βη3U0

ρ1 0 −(µ+ δ2)− λ 0

0 ρ2 0 −(µ+ δ2)− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

which gives

(
βS0 − (µ+ ρ1)− λ

)
∣∣∣∣∣∣∣∣∣∣
βη1U0 − (µ+ ρ2 + δ1)− λ 0 βη3U0

0 −(µ+ δ2)− λ 0

ρ2 0 −(µ+ δ2)− λ

∣∣∣∣∣∣∣∣∣∣

+βη2S0

∣∣∣∣∣∣∣∣∣∣
0 βη1U0 − (µ+ ρ2 + δ1)− λ βη3U0

ρ1 0 0

0 ρ2 −(µ+ δ2)− λ

∣∣∣∣∣∣∣∣∣∣
= 0,

so that either (
βS0 − (µ+ ρ1)− λ

)(
−(µ+ δ2)− λ

)
− βη2ρ1S0 = 0, (3.12)

or (
βη1U0 − (µ+ ρ2 + δ1)− λ

)(
−(µ+ δ2)− λ

)
− βη3ρ2U0 = 0. (3.13)

Equation (3.12) reduces to

λ2 +
(
(1−Rh)(µ+ ρ1) + ψ1

)
λ+

(
(1−Rh)(µ+ ρ1)(µ+ δ2)

)
= 0. (3.14)

where ψ1 =
βη2ρ1S0
(µ+ δ2)

+ (µ+ δ2).

The eigenvalues of (3.14) are given by

λ3,4 = −
[
(1−Rh)(µ+ ρ1) + ψ1

2

]
±

√(
(1−Rh)(µ+ ρ1) + ψ1

2

)2

− (1−Rh)(µ+ ρ1)(µ+ δ2)

λ3,4 are negative or have negative real parts when 1−Rh > 0 i.e. when Rh < 1.

Equation (3.13) reduces to

λ2 +
(
(1−Rd)(µ+ ρ2 + δ1) + ψ2

)
λ+

(
(1−Rd)(µ+ ρ2 + δ1)(µ+ δ2)

)
= 0 (3.15)

where ψ2 =
βη3ρ2U0

(µ+ δ2)
+ (µ+ δ2).
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The eigenvalues of (3.15) are given by

λ5,6 = −
[
(1−Rd)(µ+ ρ2 + δ1) + ψ2

2

]
±

√(
(1−Rd)(µ+ ρ2 + δ1) + ψ2

2

)2

− (1−Rd)(µ+ ρ2 + δ1)(µ+ δ2)

λ5,6 are negative or have negative real parts when 1−Rd > 0 i.e. when Rd < 1.

Since λ1, λ2, λ3, λ4, λ5, λ6 are all negative or have negative real parts when Rh < 1 or Rd < 1,
taking R0 = max{Rh,Rd}, the disease free equilibrium point is locally asymptotically stable when
R0 < 1.

We summarize the stability results for the disease free equilibrium point in the following theorem:

3.2.4 Theorem. The disease free equilibrium point is locally asymptotically stable when R0 < 1 and
unstable when R0 > 1.

3.2.5 Endemic equilibrium points. Equating the right-hand side of equations (3.1) to (3.6) to zero,
we have

πν − λ∗NS∗ − µS∗ = 0, (3.16)

π(1− ν)− λ∗DU∗ − (µ+ δ1)U
∗ = 0, (3.17)

λ∗NS
∗ − (µ+ ρ1)I

∗ = 0, (3.18)

λ∗DU
∗ − (µ+ ρ2 + δ1)I

∗
u = 0, (3.19)

ρ1I
∗ − (µ+ δ2)A

∗ = 0, (3.20)

ρ2I
∗
u − (µ+ δ2)A

∗
u = 0. (3.21)

From equation (3.16) to (3.21), we have

S∗ =
πν

λ∗N + µ
, (3.22)

U∗ =
π(1− ν)

λ∗D + µ+ δ1
, (3.23)

I∗ =
λ∗Nπν

(µ+ ρ1)(λ∗N + µ)
, (3.24)

I∗u =
λ∗Dπ(1− ν)

(µ+ ρ2 + δ1)(λ∗D + µ+ δ1)
, (3.25)

A∗ =
ρ1λ

∗
Nπν

(µ+ δ2)(µ+ ρ1)(λ∗N + µ)
, (3.26)

A∗
u =

ρ2λ
∗
Dπ(1− ν)

(µ+ δ2)(µ+ ρ2 + δ1)(λ∗D + µ+ δ1)
. (3.27)

Therefore, the endemic equilibria are given by

E∗ = (S∗, U∗, I∗, I∗u, A
∗, A∗

u) ,

where λ∗N = β(I∗ + η2A
∗) = βπνλ∗N

( µ+ δ2 + η2ρ1
(µ+ δ2)(µ+ ρ1)(λ∗N + µ)

)
,

that is

λ∗N

(
1− βπν(µ+ δ2 + η2ρ1)

(µ+ δ2)(µ+ ρ1)(λ∗N + µ)

)
= 0. (3.28)
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From equation (3.28) we have that either λ∗N = 0 or(
1− βπν(µ+ δ2 + η2ρ1)

(µ+ δ2)(µ+ ρ1)(λ∗N + µ)

)
= 0, which reduces to λ∗N = µ(Rh − 1).

This means λ∗N = 0 or λ∗N = µ(Rh − 1) where λ∗N > 0 when Rh > 1.

Similarly, we have

λ∗D = β(η1I
∗
u + η3A

∗
u) = βπ(1− ν)λ∗D

( η1(µ+ δ2) + η3ρ2
(µ+ δ2)(µ+ ρ2 + δ1)(λ∗D + µ+ δ1)

)
λ∗D

(
1− βπ(1− ν)(η1(µ+ δ2) + η3ρ2)

(µ+ δ2)(µ+ ρ2 + δ1)(λ∗D + µ+ δ1)

)
= 0,

so that either λ∗D = 0 or

1− βπ(1− ν)(η1(µ+ δ2) + η3ρ2)

(µ+ δ2)(µ+ ρ2 + δ1)(λ∗D + µ+ δ1)
= 0 which reduces to λ∗D = (µ+ δ1)(Rd − 1)

This means either λ∗D = 0 or λ∗D = (µ+ δ1)(Rd − 1) where λ∗D > 0 when Rd > 1.

The case λ∗N = λ∗D = 0 corresponds to the disease-free equilibrium point.

From the existence of endemic equilibrium points we have the following cases:

Case 1: λ∗N = 0, λ∗D = (µ+ δ1)(Rd − 1) and ν 6= 0 (0 < ν < 1) we have

ED =

(
πν

µ
,
π(1− ν)

(µ+ δ1)Rd
, 0,

(Rd − 1)π(1− ν)
(µ+ ρ2 + δ1)Rd

, 0,
ρ2(Rd − 1)π(1− ν)

(µ+ δ2)(µ+ ρ2 + δ1)Rd

)
.

ED is an equilibrium point where non-drug users do not contribute to HIV infection but drug users do.

Case 2: λ∗N = 0, λ∗D = (µ+ δ1)(Rd − 1) and ν = 0, we have

EDall =

(
0,

π

(µ+ δ1)Rd
, 0,

(Rd − 1)π

(µ+ ρ2 + δ1)Rd
, 0,

ρ2(Rd − 1)π

(µ+ δ2)(µ+ ρ2 + δ1)Rd

)
,

an equilibrium point where every individual is on drug and contributing to HIV infection.

Case 3: λ∗N = µ(Rh − 1), λ∗D = 0 and ν 6= 1 (0 < ν < 1), we have

EN =

(
πν

µRh
,
π(1− ν)
µ+ δ1

,
(Rh − 1)πν

(µ+ ρ1)Rh
, 0,

ρ1(Rh − 1)πν

(µ+ δ2)(µ+ ρ1)Rh
, 0

)
.

EN is an equilibrium point where non-drug users contribute to HIV infection but drug users do not.

Case 4: λ∗N = µ(Rh − 1), λ∗D = 0 and ν = 1, we have

ENall =

(
π

µRh
, 0,

(Rh − 1)π

(µ+ ρ1)Rh
, 0,

ρ1(Rh − 1)π

(µ+ δ2)(µ+ ρ1)Rh
, 0

)
,

an equilibrium point where everyone is not on drug but contributing to HIV infection.

Case 5: λ∗N = µ(Rh − 1), λ∗D = (µ+ δ1)(Rd − 1) and (0 < ν < 1).

END =

(
πν

µRh
,
π(1− ν)

(µ+ δ1)Rd
,
(Rh − 1)πν

(µ+ ρ1)Rh
,
(Rd − 1)π(1− ν)
(µ+ ρ2 + δ1)Rd

,
ρ1(Rh − 1)πν

(µ+ δ2)(µ+ ρ1)Rh
,

ρ2(Rd − 1)π(1− ν)
(µ+ δ2)(µ+ ρ2 + δ1)Rd

)
,

an equilibrium point where both drug users and non-drug users contribute to HIV infection.

We summarize the existence of the endemic equilibrium points in the following theorem:



Section 3.2. Model analysis Page 13

3.2.6 Theorem. The system of equations (3.1) to (3.6) has the following endemic equilibrium points:

1. ED and EDall which exist when Rd > 1.

2. EN and ENall which exist when Rh > 1.

3. END which exists when Rd > 1 and Rh > 1, i.e. R0 > 1.

3.2.7 Stability analysis of endemic equilibrium points. The jacobian matrix of the system of
equations (3.1) to (3.6) at an endemic equilibria E∗ is

J(E∗) =



−(λ∗N + µ) 0 −βS∗ 0 −βS∗η2 0

0 −(λ∗D + µ+ δ1) 0 −βU∗η1 0 −βU∗η3

λ∗N 0 βS∗ − (µ+ ρ1) 0 βS∗η2 0

0 λ∗D 0 βU∗η1 − (µ+ ρ2 + δ1) 0 βU∗η3

0 0 ρ1 0 −(µ+ δ2) 0

0 0 0 ρ2 0 −(µ+ δ2)



.

3.2.8 Stability of E∗ = ED. We observe that I∗ = A∗ = 0, so the equations for İ and Ȧ do not
contribute anything to the jacobian matrix of ED.

The system of equations (3.1) to (3.6) reduces to

dS

dt
= πν − µS,

dU

dt
= π(1− ν)− λDU − (µ+ δ1)U,

dIu
dt

= λDU − (µ+ ρ2 + δ1)Iu,

dAu

dt
= ρ2Iu − (µ+ δ2)Au,

where λ∗N = 0 and λ∗D = (µ+ δ1)(Rd − 1). The reduced system represents a society where some
individuals are not drug users but abstain from spreading HIV infection while some individuals are both
drug addicts and spreading HIV infection at the same time.

The jacobian matrix of the system of equations at ED is

J(ED) =



−µ 0 0 0

0 −(λ∗D + µ+ δ1) −βU∗η1 −βU∗η3

0 λ∗D −ψ βU∗η3

0 0 ρ2 −(µ+ δ2)


,
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where

− ψ = βη1
π(1− ν)

(µ+ δ1)Rd
− (µ+ ρ2 + δ1),

=
βη1(µ+ δ2)(µ+ ρ2 + δ1)

β
(
ρ2η3 + η1(µ+ δ2)

) − (µ+ ρ2 + δ1),

= −ρ2η3(µ+ ρ2 + δ1)

ρ2η3 + η1(µ+ δ2)
.

We use |J(ED)− λI| = 0 to obtain eigenvalues of J(ED).

|J(ED)− λI| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−µ− λ 0 0 0

0 −(λ∗D + µ+ δ1)− λ −βU∗η1 −βU∗η3

0 λ∗D −ψ − λ βU∗η3

0 0 ρ2 −(µ+ δ2)− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

λ1 = −µ < 0,

and we have ∣∣∣∣∣∣∣∣∣∣
−(λ∗D + µ+ δ1)− λ −βU∗η1 −βU∗η3

λ∗D −ψ − λ βU∗η3

0 ρ2 −(µ+ δ2)− λ

∣∣∣∣∣∣∣∣∣∣
= 0,

whose characteristic equation is given by

λ3 + a2λ
2 + a1λ+ a0 = 0, where

a2 = (µ+ δ2) + λ∗D + (µ+ δ1) + ψ,

a1 = (µ+ δ2)λ
∗
D + ψ(µ+ δ1) + (µ+ δ1)(µ+ δ2) + (µ+ ρ2 + δ1)λ

∗
D,

a0 = (µ+ δ2)(µ+ ρ2 + δ1)λ
∗
D.

We use the Routh-Hurwitz stability criterion for a third order polynomial to ascertain that all the
eigenvalues of J(ED) are either negative or have negative real parts. The following conditions should
hold:

a2 > 0, a0 > 0 and a2a1 − a0 > 0.

Clearly, a2 > 0 when Rd > 1 and a0 > 0 when Rd > 1.

Now

a2a1 − a0 =
(
(µ+ δ2) + λ∗D + (µ+ δ1) + ψ

)(
(µ+ δ2)λ

∗
D + ψ(µ+ δ1) + (µ+ δ1)(µ+ δ2) + (µ+ ρ2 +

δ1)λ
∗
D

)
− (µ+ δ2)(µ+ ρ2 + δ1)λ

∗
D,

= (µ+ δ2)
2λ∗D + ψ(µ+ δ1)(µ+ δ2) + (µ+ δ1)(µ+ δ2)

2 + (µ+ δ2)(µ+ ρ2 + δ1)λ
∗
D + (µ+ δ2)λ

∗
D
2



Section 3.2. Model analysis Page 15

+ψλ∗D(µ+ δ1) + λ∗D(µ+ δ1)(µ+ δ2) + (µ+ ρ2 + δ1)λ
∗
D
2 + (µ+ δ1)(µ+ δ2)λ

∗
D + ψ(µ+ δ1)

2

+(µ+ δ1)
2(µ+ δ2) + (µ+ δ1)(µ+ ρ2 + δ1)λ

∗
D + (µ+ δ2)ψλ

∗
D + ψ2(µ+ δ1) + ψ(µ+ δ1)(µ+ δ2)

+(µ+ ρ2 + δ1)ψλ
∗
D − (µ+ δ2)(µ+ ρ2 + δ1)λ

∗
D > 0, when λ∗D > 0 i.e. when Rd > 1.

All the Routh-Hurwitz criterion conditions are satisfied when Rd > 1. ED is asymptotically stable
when Rd > 1.

3.2.9 Stability of E∗ = EDall. We observe that S∗ = I∗ = A∗ = 0, so the equations for Ṡ, İ and Ȧ
do not contribute to the jacobian of EDall when ν = 0.

The system of equations (3.1) to (3.6) reduces to

dU

dt
= π − λDU − (µ+ δ1)U, (3.29)

dIu
dt

= λDU − (µ+ ρ2 + δ1)Iu, (3.30)

dAu

dt
= ρ2Iu − (µ+ δ2)Au, (3.31)

where λ∗N = 0 and λ∗D = (µ+ δ1)(Rd − 1). The system represents a society where every individual is
a drug addict and spreading HIV infection.

The jacobian matrix of the system of equations (3.29) to (3.31) at EDall is

J(EDall) =


−(λ∗D + µ+ δ1) −βU∗η1 −βU∗η3

λ∗D −ψ βU∗η3

0 ρ2 −(µ+ δ2)

 .

We will use |J(EDall)− λI| = 0 to obtain eigenvalues of J(EDall).

|J(EDall)− λI| =

∣∣∣∣∣∣∣∣∣∣
−(λ∗D + µ+ δ1)− λ −βU∗η1 −βU∗η3

λ∗D −ψ − λ βU∗η3

0 ρ2 −(µ+ δ2)− λ

∣∣∣∣∣∣∣∣∣∣
= 0

has a characteristic equation given by

λ3 + b2λ2 + b1λb0 = 0, where

b2 = (µ+ δ2) + λ∗D + (µ+ δ1) + ψ,

b1 = (µ+ δ2)λ
∗
D + ψ(µ+ δ1) + (µ+ δ1)(µ+ δ2) + (µ+ ρ2 + δ1)λ

∗
D,

b0 = (µ+ δ2)(µ+ ρ2 + δ1)λ
∗
D.

We also use the Routh-Hurwitz stability criterion for a third order polynomial to ascertain that all the
eigenvalues of J(EDall) are either negative or have negative real parts by showing that the following
conditions hold:

b2 > 0, b0 > 0, and b2b1 − b0 > 0.
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Clearly b2 > 0 when Rd > 1 and b0 > 0 when Rd > 1.

b2b1 − b0 =
(
(µ+ δ2) + λ∗D + (µ+ δ1) + ψ

)(
(µ+ δ2)λ

∗
D + ψ(µ+ δ1) + (µ+ δ1)(µ+ δ2) + (µ+ ρ2 +

δ1)λ
∗
D

)
− (µ+ δ2)(µ+ ρ2 + δ1)λ

∗
D,

= (µ+ δ2)
2λ∗D + ψ(µ+ δ1)(µ+ δ2) + (µ+ δ1)(µ+ δ2)

2 + (µ+ δ2)(µ+ ρ2 + δ1)λ
∗
D + (µ+ δ2)λ

∗
D
2

+ψλ∗D(µ+ δ1) + λ∗D(µ+ δ1)(µ+ δ2) + (µ+ ρ2 + δ1)λ
∗
D
2 + (µ+ δ1)(µ+ δ2)λ

∗
D + ψ(µ+ δ1)

2

+(µ+ δ1)
2(µ+ δ2) + (µ+ δ1)(µ+ ρ2 + δ1)λ

∗
D + (µ+ δ2)ψλ

∗
D + ψ2(µ+ δ1) + ψ(µ+ δ1)(µ+ δ2)

+(µ+ ρ2 + δ1)ψλ
∗
D − (µ+ δ2)(µ+ ρ2 + δ1)λ

∗
D > 0 when λ∗D > 0 i.e. Rd > 1.

The Routh-Hurwitz criterion conditions are satisfied when Rd > 1, so EDall is asymptotically stable
when Rd > 1.

3.2.10 Stability of E∗ = EN . I∗u = A∗
u = 0 and so the equations for İu and Ȧu do not contribute to

the jacobian matrix of EN .

The system of equations (3.1) to (3.6) reduces to

dS

dt
= πν − λNS − µS, (3.32)

dU

dt
= π(1− ν)− (µ+ δ1)U, (3.33)

dI

dt
= λNS − (µ+ ρ1)I, (3.34)

dA

dt
= ρ1I − (µ+ δ2)A, (3.35)

where λ∗N = µ(Rh − 1) and λ∗D = 0. The system represents a society with the drug users not
spreading the HIV infection and non-drug users spreading the infection.

The jacobian matrix of the system of equations (3.32) to (3.35) at EN is

J(EN ) =



−(λ∗N + µ) 0 −βS∗ −βη2S∗

0 −(µ+ δ1) 0 0

λ∗N 0 −ϕ βη2S
∗

0 0 ρ1 −(µ+ δ2)


, (3.36)

where

ϕ = β
πν

µRh
− (µ+ ρ1), (3.37)

=
(µ+ δ2)(µ+ ρ1)

ρ1η2 + µ+ δ2
− (µ+ ρ1), (3.38)

= − ρ1η2(µ+ ρ1)

ρ1η2 + µ+ δ2
. (3.39)
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We use |J(EN )− λI| = 0 to obtain eigenvalues of J(EN ).

|J(EN )− λI| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−(λ∗N + µ)− λ 0 −βS∗ −βη2S∗

0 −(µ+ δ1)− λ 0 0

λ∗N 0 −ϕ− λ βη2S
∗

0 0 ρ1 −(µ+ δ2)− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

λ1 = −(µ+ δ1) < 0,

and the rest of the eigenvalues are roots of the cubic equation

λ3 + c2λ
2 + c1λ+ c0 = 0, where

c2 = (µ+ δ2) + λ∗N + µ+ ϕ,

c1 = (µ+ δ2)λ
∗
N + ϕµ+ µ(µ+ δ2) + (µ+ ρ1)λ

∗
N ,

c0 = (µ+ ρ1)(µ+ δ2)λ
∗
N .

c2 > 0 and c0 > 0 when Rh > 1.

c2c1−c0 =
(
(µ+δ2)+λ

∗
N +µ+ϕ

)(
(µ+δ2)λ

∗
N +ϕµ+µ(µ+δ2)+(µ+ρ1)λ

∗
N

)
− (µ+ρ1)(µ+δ2)λ

∗
N

= (µ+ δ2)
2λ∗N + ϕµ(µ+ δ2) + µ(µ+ δ2)

2 + (µ+ ρ1)(µ+ δ2)λ
∗
N + (µ+ δ2)λ

∗
N

2 + ϕµλ∗N

+µλ∗N (µ+ δ2) + (µ+ ρ1)λ
∗
N

2 + (µ+ δ2)µλ
∗
N + ϕµ2 + µ2(µ+ δ2) + (µ+ ρ1)µλ

∗
N + (µ+ δ2)ϕλ

∗
N

+ϕ2µ+ µϕ(µ+ δ2) + (µ+ ρ1)ϕλ
∗
N − (µ+ ρ1)(µ+ δ2)λ

∗
N > 0 when λ∗N > 0 i.e when Rh > 1

The eigenvalues for the jacobian matrix 3.36 are negative or have negative real parts when Rh > 1.
EN is asymptotically stable when Rh > 1.

3.2.11 Stability of E∗ = ENall. In this case U∗ = I∗u = A∗
u = 0, and when ν = 1 the system of

equations (3.1) to (3.6) reduces to

dS

dt
= π − λNS − µS, (3.40)

dI

dt
= λNS − (µ+ ρ1)I, (3.41)

dA

dt
= ρ1I − (µ+ δ2)A, (3.42)

where λ∗N = µ(Rh − 1) and λ∗D = 0. The system represents a society with non-drug users only and
spreading HIV infection.

The jacobian matrix of the system of equations (3.40) to (3.42) at ENall is

J(ENall) =


−(λ∗N + µ) −βS∗ −βη2S∗

λ∗N −ϕ βη2S
∗

0 ρ1 −(µ+ δ2)

 . (3.43)
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To obtain the eigenvalues of J(ENall), we use |J(ENall)− λI| = 0.

|J(ENall)− λI| =

∣∣∣∣∣∣∣∣∣∣
−(λ∗N + µ)− λ −βS∗ −βη2S∗

λ∗N −ϕ− λ βη2S
∗

0 ρ1 −(µ+ δ2)− λ

∣∣∣∣∣∣∣∣∣∣
= 0,

has a characteristic equation given by

λ3 + d2λ
2 + d1λ+ d0 = 0, where

d2 = (µ+ δ2) + λ∗N + µ+ ϕ > 0 when Rh > 1,

d1 = (µ+ δ2)λ
∗
N + ϕµ+ µ(µ+ δ2) + (µ+ ρ1)λ

∗
N ,

d0 = (µ+ ρ1)(µ+ δ2)λ
∗
N > 0 when Rh > 1.

The results for d2d1 − d0 > 0 are similar to the analysis for EN and so the Routh-Hurwitz conditions
are satisfied when Rh > 1. ENall is asymptotically stable when Rh > 1.

3.2.12 Stability of E∗ = END. Rearranging the system of equations (3.1) to (3.6) we have:

dS

dt
= πν − λNS − µS, (3.44)

dI

dt
= λNS − (µ+ ρ1)I, (3.45)

dA

dt
= ρ1I − (µ+ δ2)A, (3.46)

dU

dt
= π(1− ν)− λDU − (µ+ δ1)U, (3.47)

dIu
dt

= λDU − (µ+ ρ2 + δ1)Iu, (3.48)

dAu

dt
= ρ2Iu − (µ+ δ2)Au, (3.49)

where λ∗N = µ(Rh − 1) and λ∗D = (µ+ δ1)(Rd − 1).

The jacobian matrix of the system of equations (3.44) to (3.49) at END is

J(END) =



−(λ∗N + µ) −βS∗ −βη2S∗ 0 0 0

λ∗N −ϕ βη2S
∗ 0 0 0

0 ρ1 −(µ+ δ2) 0 0 0

0 0 0 −(λ∗D + µ+ δ1) −βU∗η1 −βU∗η3

0 0 0 λ∗D −ψ βU∗η3

0 0 0 0 ρ2 −(µ+ δ2)



.
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We observe that J(END) can be written as

J(END) =

(
J(ENall) 0

0 J(EDall)

)
.

The eigenvalues of J(END) are eigenvalues of the block matrices J(EDall) and J(ENall).

Since the eigenvalues of J(ENall) are negative or have negative real parts when Rh > 1 and those for
J(EDall) are negative or have negative real parts when Rd > 1, it follows that all the eigenvalues of
J(END) are negative or have negative real parts when Rh > 1 and Rd > 1, that is when R0 > 1.

We summarize the stability of the endemic points in the following theorem:

3.2.13 Theorem. 1. EN and ENall are locally asymptotically stable when Rh > 1.

2. ED and EDall are locally asymptotically stable when Rd > 1.

3. END is locally asymptotically stable when Rh > 1 and Rd > 1.

Remarks:

Our model revealed the following scenarios regarding the effects of drug abuse and HIV infection in an
endemic section:

1. A scenario where everyone is not using drug and spreading HIV infection.

2. A scenario where everyone is a drug user and spreading HIV infection.

3. A scenario where there are drug users and non-drug users and all are spreading HIV infection.

4. A scenario with non-drug users and drug users but non-drug users abstain completely from
spreading HIV infection whilst drug users spread HIV infection.

5. A scenario with non-drug users and drug users but drug users are not spreading HIV infection.

We shall explore the impact of these scenario on HIV infection progression using numerical
simulations.



4. Numerical Simulations

All parameter values used in the simulations are given in table 4.1. Using the parameter values in table
4.1, the initial conditions for the susceptible non-drug users S and drug users U were obtained using

the fact that when there are no HIV infected individuals, S0 =
πν

µ
and U0 =

π(1− ν)
µ+ δ1

. The resultant

expressions for S0 and U0 are given by

S0 = 4× 105ν and U0 = 1.7241× 105(1− ν), 0 ≤ ν ≤ 1.

Table 4.2 shows the initial conditions for different values of ν.

Table 4.1: Parameter values and their sources

Parameter Value Source

π 10000 Hove-Musekwa and Nyabadza (2009)
µ 0.025 Kalula and Nyabadza (2012)
ρ1 0.125 Baryarama et al. (2005)
ρ2 0.143 estimate
δ1 0.033 Kalula and Nyabadza (2012)
δ2 0.5 Baryarama et al. (2005)
β 0.00001 estimate
η1 1.1 estimate
η2 0.02 estimate
η3 0.04 estimate

Table 4.2: Initial conditions for different values of ν.

ν S0 U0 I0 Iu0 A0 Au0

0.0 0 1.7241× 105 0 1 0 0
0.2 80000 1.3793× 105 0 1 0 0
0.5 200000 8.6207× 104 1 1 0 0
0.8 320000 3.4483× 104 1 0 0 0
1.0 400000 0 1 0 0 0

4.1 Numerical simulations for different values of ν and discussion of
results

Figure 4.1 represents a situation where all the susceptible individuals are drug users i.e. ν = 0. This
represents the dynamics of a society with the equilibrium point EDall. Figure 4.1 shows that the
susceptible drug users decreases while the infected drug users and AIDS drug users increases. Infected
drug users settle at higher levels than the AIDS drug users and susceptible drug users. In this case the
population has a problem of only drug users that are infected with HIV and have a higher potential to
spread HIV infection if there is no intervention. This may enhance the faster progression of infected
individuals to AIDS since all infected drug users will ultimately develop AIDS and die.

20
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Figure 4.1: The graph of drug abuse and HIV infection at ν = 0

Figure 4.2: The graph of drug abuse and HIV infection at ν = 0.2

From figure 4.2 we have that at ν = 0.2, infected non-drug users and AIDS non-drug users dynamics
are at zero while a population of susceptible non-drug users is not zero but not participating in the
HIV infection dynamics. This graph represents the equilibrium point ED. At the equilibrium point,
susceptible drug users decrease. Infected drug users and AIDS drug users increase and infected drug
users settle at higher levels than the AIDS drug users and susceptible drug users. The levels of infected
non-drug users and AIDS non-drug users in this case is lower than that of 4.1. This suggests that
when some individuals are abstaining from transmitting HIV, the level of transmission of HIV reduces.
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Figure 4.3: The graph of drug abuse and HIV infection at ν = 0.5

From figure 4.3 we have that at ν = 0.5, all drug users and non-drug users dynamics contribute to
HIV infection but drug users contributed more than than non-drug users. This is a situation for the
equilibrium END. At the equilibrium point, the susceptible drug users and non-drug users decreases
but susceptible drug users decreases faster than non-drug users. The infected drug users and non-drug
users increases but drug users increases faster than non-drug users. AIDS drug users and non-drug
users increases but drug users increases faster than non-drug users. Infected non-drug users settle at
higher levels than the others. The total number of infected individuals and AIDS individuals is more
than those in figures 4.1 and 4.2. Thus if both drug users and non-drug users contribute towards HIV
transmission, the level of transmission gets much higher and worsen the HIV epidermic.

Figure 4.4: The graph of drug abuse and HIV infection at ν = 0.8
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From figure 4.4 we have that at ν = 0.8, infected drug users and AIDS drug users dynamics are at
zero but the population of susceptible drug users is not zero but not participating in the HIV infection
dynamics. This graph represents the equilibrium point EN . At the equilibrium point, the susceptible
drug users are constant while the susceptible non-drug users decrease. Infected non-drug users and
AIDS non-drug users increase and infected non-drug users settle at higher levels than the AIDS
non-drug users and susceptible non-drug users. The levels of Infected non-drug users and AIDS
non-drug users in this case is lower than that of figures 4.3 and 4.5 but higher than that of figure 4.2.
This scenario reduces the level of transmission of HIV but the society will still have a problem of drug
users.

Figure 4.5: The graph of drug abuse and HIV infection at ν = 1

Figure (4.5) shows a situation where everyone is not on drugs but contributing towards HIV
infection.This graph represents the equilibrium point ENall. The results in figure 4.5 show that
susceptible non-drug users decreases while the infected non-drug users and AIDS non-drug users
increase. Infected non-drug users settle at higher levels than the AIDS non-drug users and susceptible
non-drug users. The population has a higher number of infected individuals exposing the population to
a faster progression towards the AIDS class. However, the rate of population progressing to AIDS may
be slower than that of a population with drug users.

4.2 Conclusion

We considered a mathematical model of equations on drug abuse and HIV infection. We denoted the
population of susceptible non-drug users by S, the population of susceptible drug users by U , the
population of infected non-drug users by I, the population of infected drug users by Iu, the population
of AIDS non-drug users by A and the population of AIDS drug users by Au.

We calculated the threshold parameter R0 which determined conditions under which the HIV could be
transmitted and remained endemic in both drug users and non-drug users population. Thus we showed
that when R0 < 1, only the disease-free equilibrium point exists and it is locally asymptotically stable.
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We showed that in a population with both drug users and non-drug users, there are more than one
equilibrium points which exist and are locally asymptotically stable when R0 > 1.

We used numerical simulations to compare the hypothetical endemic scenarios revealed by our
analytical results. Our simulations were purely hypothetical since they did not use data for a particular
community but showed the qualitative feature that revealed the impact of each of the scenarios on
HIV transmission. Our results suggested that the scenarios where some of the individuals abstained
from transmitting HIV (figures 4.2 and 4.4) have lower HIV transmission levels and the worst scenario
was where both drug users and non-drug users contributed towards HIV transmission. Thus, a society
with some individuals abusing drugs is at the worst risk of spreading HIV which in turn creates
socio-economic effects if no intervention is implemented in time for both drug use and HIV.

As part of future work to improve the model in this project, the model considered can be restructured
to incorporate infection of drug users by non-drug users and infection of non-drug users by drug users.
The model can also be refined to incorporate intervention strategies and allow non-drug users to get
addicted. In the future work, we wish to find the global stability of the model and equilibrium points.
Despite all its limitations, the model provided useful information and insights into the potential impact
of drug abuse on the progression of HIV infection.



Acknowledgements

First of all, I would like to give my praise to the Almighty God, who has brought me this far. Then I
would like to express my gratitude to my able supervisor Doctor Faraimunashe Chirove who never got
tired of me. I appreciate him for his constructive criticism, invaluable advice and unreserved material
support. My special thanks to AIMS, lecturers at AIMS and tutors for adding values to my life and
giving me a different perspective of science. I will not forget to appreciate my parents, siblings and
friends for their encouragements. My special thanks goes to my mother for being supportive in all I do.
My appreciation will not be complete without giving a special thanks to Jan, the only able Engineer at
AIMS and also to my project tutor, Holifidy you are too much. I dedicate this paper to my mother,
the best mummy in the world. You and God has been the source of my strength. God bless you all.

25



References

Flugentius Baryarama, Livingstone S. Luboobi, and Joseph Y. T. Mugisha. Periodicity of the
HIV/AIDS epidemic in a mathematical model that incorporates complacency. American Journal of
infectious Diseases, 1(1):55–60, 2005.

Bloom. Drug abuse and HIV/AIDS. http://www.drugs.indiana.edu/drug-info/featured-articles/
157-drug-abuse-and-hivaids-the-role-of-alcohol, Accessed April 2013.

F. Chirove and E. M. Lungu. Modeling HIV infection with specific Anti-HIV immune response. A
treatise of Biological models by Ngabadza, E. M. Lungu and Kgosimore (Editors). Nova Science,
2013.

O. Diekmann and J.A.P. Heesterbeek. Mathematical epidemiology of infectious diseases- model
building, analysis and interpretation. Wiley,Chichester, 2000.

H. W. Hethcote. The mathematics of infectious diseases. SIAM, 42:599–653, 2000.

S. D. Hove-Musekwa and F. Nyabadza. The dynamics of an HIV/AIDS model with screened disease
carriers. Computational and Mathematical Methods in Medicine, 10(4):287–305, 2009.

Asha Saidi Kalula and Farai Nyabadza. A theoretical model for substance abuse in the presence of
treatment. S. Afr. J. Sci., 108(3 and 4):1–12, 2012.

KGcount. How HIV is transmitted.
http://www.kingcounty.gov/healthservices/health/communicable/hiv/basic/transmission.aspx,
Accessed April 2013.

Wilson Lamb. Analytical techniques in mathematical biology, 2013. Lecture notes.

M. C. Marcondes. Methamphetamine increases brain viral load and activates natural killer cells in
simian immunodeficiency virus-infected monkeys. Am. J. Pathol., 177(1):355–361, 2010.

O. Ngwenya. The Role of Incidence Functions on the Dynamic of SEIR model. PGD, African Institute
for Mathematical Sciences, 2009.

C. Rossi. The role of dynamic modelling in drug abuse epidemiology. Bulletin on Narcotics, 54(1 and
2):1–12, 2002.

Tammy Saah. The evolutionary origins and significance of drug addiction. Harm Reduction, 2:1–2,
2005.

UNHCR and WHO. Rapid Assessment of Alcohol and other Substance Use in Conflict-affected and
Displaced Populations. UNHCR and World Health Organization, 2008.

US13. What is HIV/AIDS. http://www.aids.gov/hiv-aids-basis/hiv-aids-101/what-is-hiv-aids/,
Accessed April 2013.

P. van den Driessche and J. Watmough. Reproduction numbers and sub-threshold endemic equilibria
for compartmental models of disease transmission. Mathematical Biosciences, 180:29–48, 2002.

Web13. Drug abuse and addiction. http://www.medicinenet.com/drug abuse/article.htm, Accessed
April 2013.

26

http://www.drugs.indiana.edu/drug-info/featured-articles/157-drug-abuse-and-hivaids-the-role-of-alcohol
http://www.drugs.indiana.edu/drug-info/featured-articles/157-drug-abuse-and-hivaids-the-role-of-alcohol
http://www.kingcounty.gov/healthservices/health/communicable/hiv/basic/transmission.aspx
http://www.aids.gov/hiv-aids-basis/hiv-aids-101/what-is-hiv-aids/
http://www.medicinenet.com/drug_abuse/article.htm


REFERENCES Page 27

WebTD. Treatment of drug abuse. http://www.epigee.org/drug-abuse-treatment.html, Accessed April
2013.

WHO, UNODC, and UNAIDS. Rapid Assessment of Alcohol and other Substance Use in
Conflict-affected and Displaced Populations. 2004.

WHO05. Interim who clinical staging of HIV/AIDS and HIV/AIDS case definitions for surveillance.
http://www.avert.org/stages-hiv-aids.htm, Accessed April 2013.

WikHist. History of HIV/AIDS. Wikipedia, the Free Encyclopedia,
http://en.wikipedia.org/wiki/History of HIV/AIDS, Accessed April 2013.

http://www.epigee.org/drug-abuse-treatment.html
http://www.avert.org/stages-hiv-aids.htm
http://en.wikipedia.org/wiki/History_of_HIV/AIDS

	Abstract
	Introduction
	Literature Review
	Mathematical Analysis of the model
	Model Formulation
	Model analysis

	Numerical Simulations
	Numerical simulations for different values of  and discussion of results
	Conclusion

	References

