
Towards Augmenting Requirements Models with Preferences

Sotirios Liaskos
School of IT

York University
Toronto, ON, Canada

liaskos@yorku.ca

Sheila A. McIlraith
Dept. of Computer Science

University of Toronto
Toronto, ON, Canada
sheila@cs.utoronto.ca

John Mylopoulos
Dept. of Computer Science

University of Toronto
Toronto, ON, Canada

jm@cs.utoronto.ca

Abstract—The analysis of stakeholder requirements is a
critical aspect of software engineering. A common way of
specifying stakeholder requirements is in terms of a hierarchy
of goals whose AND/OR decomposition captures a family of
software solutions that comply with the goals. In this paper,
we extend this goal modeling framework to include the spec-
ification of optional user requirements and user preferences,
aggregated together into weighted formulae to be optimized.
We team this with an automated reasoning tool, adapted from
state of the art research in artificial intelligence planning
with preferences, in order to synthesize solutions that both
comply with the goals and optimize stakeholder preferences
and optional requirements.

Keywords-requirements engineering, preferences, variability

I. INTRODUCTION

Goal-oriented requirements engineering techniques spec-
ify requirements as stakeholder goals to be refined in terms
of AND/OR decompositions in order to derive alternative
sets of actions/tasks ([1]). The resulting requirements models
demand that these tasks must necessarily be performed if the
goals are to be attained.

However, in software engineering practice requirements
need not always take the form of goals that must be strictly
enforced. Rather, requirements can also include optional
properties that are “nice to have” but are not mandatory.
Such properties can range from low-level behavioral details
of the system under design to high-level quality require-
ments. Further, they are used to distinguish alternative
designs. Given two designs that satisfy the mandatory re-
quirements, one design will be preferred to another if it
better satisfies the optional requirements. However, optional
requirements can often be conflicting and, as such, they need
to be further refined through expressing preferences over
their satisfaction. Moreover, even when such preferences are
clearly expressed, the process of transforming them into the
appropriate configurations of design decisions can be too
complex to be performed without tool support.

In this paper, we explore how preferences can be rep-
resented and used to automatically identify designs that
best satisfy them. Representation of the domain of pos-
sible designs is done through the development of goal

decomposition models. Preferences are specified as rankings
over desired design properties written in Linear Temporal
Logic (LTL). To synthesize designs that adhere to goal
requirements while optimizing preferences over optional
requirements, a heuristic search preference-based planner is
adapted ([2]). By using this tool, analysts can explore the
design space and identify combinations of design decisions
that best match high-level stakeholder priorities.

The paper is organized as follows. In Section II we present
our running example and survey the related literature. In
Sections III and IV we present our goal modeling and
preference specification languages, respectively. We describe
the reasoning tool in Section V and conclude in Section VI.

II. MOTIVATION AND BACKGROUND

To see how requirements variability and preferences
emerge during requirements analysis we will consider an
example from a health care domain, namely a geriatric
assessment unit. In that unit, elderly patients with a variety
of health issues are hospitalized for a period of time. We
are interested in understanding alternative ways by which
nurses can be notified about and respond to different requests
that come from the patient’s room, either by the patients
themselves or by a variety of sensors that have been installed
around their bed. The first concern is how the nurse will
be notified: this can happen either through a broadcasted
notification using the speakers of the unit, or, alternatively,
through earphones that the nurse wears while on duty. The
broadcasted notification may be disturbing for the workers
and the patients, while, on the other hand, the nurses
may not feel comfortable wearing a mobile device. Thus,
there is a question of preference between disturbance and
nurse comfort, which is interpreted into different design
decisions. Furthermore, once the notification is sent, the
nurse’s reaction needs to be determined. Normally, he has
to visit the patient’s room, but if the patient only wants
to ask a question or request permission for something, the
visit may be replaced by establishing a voice link between
patient and nurse. Again there are several possibilities for
enabling this. For example, the nurse may again be carrying
a mobile set with microphone and earphones, or there may

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.91

553

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.91

567

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.91

567

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.91

565

be a communication device at the nursing station, which
is conveniently located in the unit. The nurses think that
this would increase unnecessary disturbance from some
patients, but they acknowledge it would also increase their
productivity and save them from extra walking effort. Again,
knowing how much the nurses value productivity versus
not being distracted – both of which are high-level quality
requirements – can help us select the best solution for them.

In the literature, the need for a view of requirements that
explicitly takes such stakeholder attitudes, preferences as
well as optionality into account has recently been illustrated
by Jureta et al. in [3]. The traditional notion of requirements
prioritization originates exactly from the observation that not
all requirements have the same importance for all stake-
holders. An elementary requirements prioritization approach,
for example, is to divide requirements into “must-have” and
“nice-to-have”, whereby the former are understood as more
important, urgent or otherwise of higher priority. In addi-
tion to this common qualitative approach, more elaborate
quantitative prioritization techniques, such as the Analytic
Hierarchy Process ([4]) or multi-criteria analysis methods
([5]) have also been proposed and successfully used in
practice.

The modeling and reasoning side of prioritization, how-
ever, has not received as much attention in software en-
gineering. The limited number of efforts that attempt to
reason about the prioritization of potentially inconsistent
requirements focus, for the most part, on identifying combi-
nations of coarse-grained features of the system under design
rather than high-level quality goals or behavioral designs that
result from such goals (e.g. [6], [7]). In the requirements
engineering literature, a constraint language for selecting
scenario instances from generic use-cases has been proposed
in [8], while in [9], requirements alternatives are computed
through reasoning about partial satisfaction of quality goals.
However, neither of these approaches combine preference
(versus constraint) specification with reasoning about both
partial satisfaction of goals and temporal characteristics of
solutions. Our goal-based approach, which we describe in
the next sections, suggests that this combination is possible.

III. GOAL MODELS

Goal models ([1], [10], [11]) have been found to be
effective in concisely capturing large numbers of alternative
sets of low-level tasks, operations, and configurations that
can fulfill stakeholder goals. The goal modeling language
we use adopts the basics of existing goal modeling notations
(particularly i* - [10]) and is extended in order to accommo-
date quantitative analysis of goal satisfaction (adopting [9]),
while allowing temporal constraints as well as variables for
describing the environment.

In Figure 1 a goal model representing possible alterna-
tives for the nursing example of Section II is shown. The
model consists of hard goals, soft goals and tasks, as well

as condition elements and effect elements which comprise
satisfaction predicates and domain predicates. Hard goals
(represented using oval-shaped elements) are states of affairs
or conditions that one or more actors of interest would like
to achieve ([10]). Hard goals are goals for which there is
a well-defined criterion for determining goal satisfaction.
In contrast, soft goals, depicted as cloud-shaped elements
in Figure 1, do not have a clearly-defined criterion for
determining goal satisfaction. A soft goal is determined to
be satisifed to a certain degree by subjective judgement
and the existence of relevant evidence. Soft goals are used
to represent high-level quality goals to be fulfilled with
the support of the system under design. Thus, Have Nurse
Notified is an example of a hard goal, while Happy Patient is
a typical soft goal. Tasks, on the other hand, the hexagonal
shapes in Figure 1, describe particular activities that the
actors perform in order to fulfill their goals, e.g. Send Audio
Notification. For ease of future reference, we have annotated
each task in Figure 1 with a literal 𝑡𝑖.

0.2S-

Nurse
Notified

System
Notifies
through

Earphones

System
Notifies
through

Speakers

OR

OR

Nurse to Attend to
Patient

AND

Nurse
Responded Call

AND

Patient
Visited

Nurse Walks
 to Patients Room

OR

AND

OR

Nurse Walks
to the Nursing

Station

Talked from
Nursing Station

OR OR

Nurse Talks
through Mobile

Device

Nurse talks to
the Patient at the
Nursing Station

AND
AND

~patientsCondition(severe)
~isperformed(‘Nurse doesn’t talk with Patient’)

pre

Happy
Patient

Happy
Nurse

Avoid Nurse
Disturbance Increase

Nurse
Productivity

0.4D+

0.6S-

0.4S+

0.4S+

0.5S-

pre pre

CE

0.3S+

Nurse
Skips
Visit

isperformed('System Notifies
through Speakers')

isTime(night)

Avoid Patient’s
Disturbance

0.5
S-

CE

Nurse
Comfort

0.4S-

t1

t2

0.3+

0.5+

Patient Feels
Cared For

Communication
Handled

Nurse doesn’t
talk with Patient

OR

AND

AND

isAt(nurse, nursingStation)

eff

EE

eff

isAt(nurse, patientsRoom),
~isAt(nurse, nursingStation)

EE

Turn
Request Off

t3

t4

t5

t6

t7

t8

t9

Talked With
Patient

OR

pre

pre

0.8+

Figure 1. A goal model

Hard goals and tasks are related to each other through
AND or OR-decomposition links. When a hard goal is AND-
decomposed into other hard goals or tasks, we say that
it is satisfied if each one of its children is also satisfied
(performed in the case of tasks). When a hard goal is OR-
decomposed, then it is satisfied if there exists a sub-goal
(resp. sub-task) that is satisfied (resp. performed). Soft goals,
on the other hand, are connected to each other and to hard
goals and tasks through directed weighted contribution links.
Such links show how the level of satisfaction and denial of
a source can influence our knowledge of the satisfaction
or denial of its destination. To model satisfaction levels,
each soft goal 𝑙 is associated with two variables 𝑣𝑎𝑙𝑆(𝑙)

554568568566

and 𝑣𝑎𝑙𝐷(𝑙), each representing the degree to which we
believe the goal to be satisfied or denied. The existence
and weight of the contribution links dictate how the degree
of satisfaction and denial of one soft goal is propagated
to other soft goals, through previously defined propagation
rules detailed in [9].

Furthermore, we use the satisfaction predicates isSat(𝑔)

and isPerformed(𝑡) to denote that a hard goal 𝑔 or a task
𝑡 has been satisfied or performed, respectively. Domain
predicates, such as isAt(nurse, nursingStation) express ways
by which domain concepts relate to each other at a particular
time instance and while tasks are being performed. The truth
status of domain predicates may change due to performance
of tasks. Using satisfaction and domain predicates we can
construct Condition Formulae (CF), which are first-order
formulae describing what is true in the domain at a par-
ticular point in time. For example, isSat(nurseNotified) ∧
isAt(nurse, nursingStation) is true at a given point in time
if the goal nurseNotified has been satisfied and the nurse is
at the nursing station at that point. An effect, on the other
hand, is a formula consisting of a single domain predicate,
potentially negated. Both CFs and lists of effects are placed
in rectangle-shaped elements in Figure 1 – the Condition
Elements (CE) and the Effect Elements (EE), respectively
– and are connected to tasks using precedence and effect
links, respectively. The former imply that the CF needs to
be true before the task can be performed, while the latter
shows which domain predicates instantaneously become true
or false due to the performance of tasks. Precedence links
can be drawn between hard-goals and tasks too, meaning
that none of the tasks in the subtree of the target can be
performed unless the source is satisfied/performed. Also,
CEs may connect to soft goals with contribution links,
meaning that if and for as long as the contained CF is true,
the satisfaction of the soft goal is affected according to the
type and weight of the link.

A plan is a sequence of leaf level tasks that collectively
satisfy the root goal of the AND/OR tree, while the sequence
per se satisfies the precedence and effect links of the goal
graph. In our example of Figure 1, given initial conditions in
which patientsCondition(severe), isTime(afternoon) holds,
the sequence [𝑡1, 𝑡3, 𝑡7, 𝑡9] is a plan for the root goal, while
the sequences [𝑡1, 𝑡3, 𝑡9] and [𝑡3, 𝑡1, 𝑡7, 𝑡9] are not. Each plan
also determines the degree of satisfaction or denial of soft
goals, following satisfaction propagation and aggregation
rules - cf. [9].

IV. THE PREFERENCE LANGUAGE

Goal models represent a great number of alternative
designs (plans) for fulfilling stakeholder goals. However
the perceived quality of these alternative designs varies
based on criteria imposed by individual stakeholders and the
context of a particular instance. In our health care example,
different geriatric assessment units, different stakeholders in

the same unit or even the same stakeholders in different
times and situations, may have different priorities over high-
level characteristics of the desired solution, such as for
example its implications with respect to nurse productivity
or comfort that we saw in Section II. Therefore, a different
solution is appropriate in each case. Our preference speci-
fication language allows expression of and reasoning about
such priorities via the construction of priority rankings over
or linear combinations of desired properties of preferred
plans. Such desired properties are formulated as Optional
Condition Formulae (OCFs).

OCFs describe properties of plans implied by the goal
tree. OCFs are not mandatory, in the sense that they are
not used to constrain the family of plans implied by the
goal model. Instead, OCFs are the building blocks of
preference formulae, which in turn are used as criteria
for evaluating the desirability of plans. To form OCFs
we use satisfaction predicates such as isSat(nurseNotified)

and isPerformed(turnRequestOff), domain predicates such
as isTime(night), as well as subformulae that either
compare pairs of soft-goal satisfaction values, such as
𝑣𝑎𝑙𝑆(happyPatient) ≥ 𝑣𝑎𝑙𝑆(happyNurse) or compare soft-
goal satisfaction values with an absolute value, such as
𝑣𝑎𝑙𝐷(nurseComfort) ≤ 0.3. Thus, the last formula means
that the denial value of the soft goal nurseComfort should
(possibly) be less than 0.3. Furthermore, the symbols □,◇, ∘
and U are used to represent the temporal operators always,
eventually, next and until, respectively. In addition to these
standard LTL operators, final(⋅) holds if the operand holds
after the performance of the last task.

Returning to our example, assume that the managers of
the geriatric assessment unit state that “we should definitely
avoid anything that would make the patient unhappy”. In
our goal language this means that at all times (i.e. always,
□), the denial value of the soft goal happyPatient , (i.e.
𝑣𝑎𝑙𝐷(happyPatient)) must remain below a small value (say
0.1). Thus, we would write the OCF as follows:

□(𝑣𝑎𝑙𝐷(happyPatient) ≤ 0.1) (1)

OCFs are also used to impose optional temporal constraints
– the counterparts of the mandatory constraints realized in
the goal graph through precedence links. For example “the
nurse should turn the request off only after she has re-
sponded to the patient’s call” can be formulated as follows:

¬isPerformed(turnRequestOff)

U isSat(nurseRespondedCall) (2)

Given an OCF and a plan for the root goal, the plan will
either satisfy or not satisfy the OCF. For example, OCF
2 above is satisfied by plan [𝑡1, 𝑡3, 𝑡7, 𝑡9] but not by plan
[𝑡1, 𝑡3, 𝑡9, 𝑡7].

OCFs can be combined into preference formulae, which
are in turn used as evaluation criteria for plans. In this work,
we propose two types preference formulae: (plain) Pref-
erence Formulae (PF) and Weighted Preference Formulae
(WPF).

555569569567

A PF is of the form 𝜙0[𝑣0] ર 𝜙1[𝑣1] ર, . . . ,ર 𝜙𝑛[𝑣𝑛],
where ર is a binary preference relation, 𝑛 ≥ 0, each 𝜙𝑖 is
an OCF, and 𝑣𝑖 is a value between 0 and 1 characterizing
the strength of preference. 0 is most preferred, 1 is least pre-
ferred, and for every 𝑖 < 𝑗, 𝑣𝑖 < 𝑣𝑗 . When n=0, preference
formulae correspond to single OCFs. Using PFs, analysts
can define priorities over the satisfaction of properties in the
resultant system. In our example, the nurse’s statement that
they “don’t like the idea of talking to the patient remotely,
but if they had to, they would at least choose to do so from
the nursing station” can be formulated with PF:

□(¬isSat(talkedWithPatient))[0.0]

ર ◇isSat(talkedFromNursingStn)[0.5]

This states that the first component OCF,
□(¬isSat(talkedWithPatient)), is preferred to the second,
◇isSat(talkedFromNursingStn). Given a plan, a PF evaluates
to a number between 0 and 1 based on which constituent
OCFs are satisfied by the plan. In the above example,
if the first OCF is satisfied, then the PF evaluates to
0.0. Otherwise, if the second OCF is satisfied, then
the PF evaluates to 0.5. If neither OCF is satisfied, the
PF evaluates to 1.0 – the worst possible score. Plans
[𝑡1, 𝑡6, 𝑡7, 𝑡9], [𝑡1, 𝑡4, 𝑡5, 𝑡7, 𝑡9] and [𝑡1, 𝑡3, 𝑡7, 𝑡9] evaluate the
above PF to 0.0, 0.5 and 1.0 respectively.

A PF captures the notion that we are indifferent to the
satisfaction of a given 𝜙𝑗 , given the satisfaction of 𝜙𝑖, 𝑖 < 𝑗,
which is the case in the example. We may use weighted
preference formulae (WPFs), to aggregate preferences over
sets of properties. A WPF is a weighted linear combination
of OCFs of the form Σ𝑖(𝑤𝑖 × 𝜓𝑖), where 0 ≤ 𝑤𝑖 ≤ 1,
Σ𝑖(𝑤𝑖) = 1, and 𝜓𝑖 is a PF. Recall that PFs may consist of
a single OCF. Returning to our nursing example, assume
that the management provides a combination of desires:
“we should definitely avoid anything that would make the
patient unhappy, but it would also be nice to increase
nurses’ productivity somehow.” The statement prioritizes the
patient’s happiness over the productivity of the nurses, but
indicates that both are desirable. This could be represented
by the following WPF:

{□(𝑣𝑎𝑙𝐷(happyPatient) ≤ 0.1)[0.0]} × 0.8

+ {𝑓𝑖𝑛𝑎𝑙(𝑣𝑎𝑙𝑆(incrNurseProd)) ≥ 0.1)[0.0]} × 0.2

This WPF evaluates to 0.0 if both of its constituent single-
OCF PFs are satisfied, to 0.2 if only the OCF of the first
PF is satisfied, to 0.8 if only the OCF of the second PF is
satisfied, and to 1.0 if the OCF of neither PF is satisfied.

{□(𝑣𝑎𝑙𝐷(happyPatient) ≤ 0.1)[0.0]} × 0.72
+ {final(𝑣𝑎𝑙𝑆(incrNurseProd)) ≥ 0.1)[0.0]} × 0.18
+ {□(¬isSat(talkedWithPatient))[0.0] ર

◇isSat(talkedFromNursingStn)[0.5]} ×0.1

Figure 2. Weighted Preference Formula

WPFs are particularly useful in combining PFs and WPFs
of different stakeholders, where the weight associated with
each PF can be used to reflect the analyst’s sense of the

relative importance of individual stakeholders’ desires. Fig-
ure 2 displays the WPF resulting from giving management
a weight of 0.9 (0.72 + 0.18) and nurses a weight of 0.1.

V. REASONING ABOUT PREFERENCES

As we saw, each plan implied by the goal decomposition
model satisfies the given user preferences to some degree.
Plans that optimize the preferences, minimizing the value of
the preference formula, are the most desirable. To support
the process of identifying such plans, we extended an
optimal preference-based planner called PPLan ([2]). In our
extension of PPlan, the planner takes as input the initial
conditions, the goal model appropriately translated into a
PPlan-readable form, the preference formulae, and a number
N, reflecting the number of plans to be returned. The planner
returns the 𝑁 plans of the goal model that best satisfy the
given preferences.

In our example of Figure 1, assuming that we are given
initial values for the domain predicates { isTime(afternoon),
patientsCondition(moderate) } and the preference of Figure
2, the resulting ranking is seen in Figure 3.

Rank Plan Score
1. [𝑡1, 𝑡3, 𝑡7, 𝑡9] .1
2. [𝑡2, 𝑡3, 𝑡7, 𝑡9] .1
3.-6. [. . . , 𝑡3, . . . , 𝑡7, . . .] .1
7. [𝑡1, 𝑡4, 𝑡5, 𝑡7, 𝑡9] .23
8.-14.23
15. [𝑡1, 𝑡4, 𝑡5, 𝑡8, 𝑡9] .77
16.-22.77
23.-34.

Figure 3. Preferred Plans

Thus, plans that include the nurse talking through a mobile
device and eventually visiting the patient too end up having
better score (0.1) due to the significant importance of patient
satisfaction in the preference formula. None of the alterna-
tives in the top half of the list seems to completely satisfy
the nurses’ desire not to establish any voice connection with
the patient. However, if the nurses had been given e.g. the
same weight as the management in constructing the WPF,
that is 0.5 each, the top plans would at least involve partial
satisfaction of the preferences of nurses, namely absence
of carrying and talking through a mobile device, which is
something that we know (from Figure 2) that they dislike.

Thanks to the presence of CFs in the goal model, the
resulting ranking is also sensitive to the original values of the
domain predicates, which represent the state of the context.
Consider the WPF:

{□(𝑣𝑎𝑙𝐷(avoidPatientDisturb) ≤ 0.1)[0.0]} × 0.7

+ {□(𝑣𝑎𝑙𝐷(nurseComfort) ≤ 0.1)[0.0]} × 0.3

In initial conditions where isTime(night) does not hold, the
evaluation of the preference is 0.0 for any plan of the form

556570570568

length 6 7 8 9 10 20 30 40
Best ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 5.6 1.5m 16m

Worse 11 24 10m 1.4h * * * *

Table I
WORST AND BEST CASE TIMES

[𝑡2 . . .]. The same plans, however, evaluate the preference to
0.7 if isTime(night) holds initially. In the latter case, plans
of the form [𝑡1 . . .] are more preferred as they satisfy the
WPF with 0.3.

To assess the performance of the reasoning tool, we con-
structed artificial examples of goal models and preference
formulae of arbitrary size and complexity and measured the
time that the reasoning procedure takes to produce the first
plan. All runs were performed on an AMD Phenom CPU
at 2.5GHz with 4MB cache; 1GB of RAM was reserved
for each run. The results were found to be sensitive to
the maximum plan length the goal model could produce,
as well as to whether the preference formula is satisfiable
or not - i.e. whether there is a plan that satisfies it with
optimal score (0.0) or not. Goal models whose maximum
plan length did not exceed 9 tasks would, in the worst case,
provide the first result within minutes of computation (or
seconds for length of 8 or less) independent of preference
satisfiability. From plan lengths of 10 and above, though,
we were able to craft “difficult” unsatisfiable preference
formulae whose evaluation time would often exceed our 8
hour limit. These worst case results are to be expected given
the difficult nature of the problem, and the fact that the
PPlan tool performance has not been optimized. In practice,
however, the performance for unsatisfiable formulae may
vary significantly depending on the amount and structure
in the precedence constraints of the goal model. The best
case results, in contrast, were more surprising; even with
unusually large goal models with plan lengths of 30 tasks,
the search could terminate within minutes. As expected,
satisfiable formulae and simple precedence structures in goal
models that reduce non-determinism, would tend to give
such results. Table I summarizes the best and worse times we
have observed in our experiments with dummy goal models,
with respect to the maximum plan length of the goal model
– times are in seconds unless otherwise noted.

VI. CONCLUSIONS

We introduced a modeling and reasoning toolset for ex-
ploring and evaluating alternative solutions to requirements
problems. A common goal modeling formalism – extended
to allow expression of both temporal constraints and partial
goal satisfaction – is used for representing alternative plans
for fulfilling stakeholder goals. A preference specification
language allows users to specify priorities over optional,
“nice-to-have” properties of potential solutions. Then, a
reasoning tool searches for plans that satisfy the mandatory
goals of the goal model while fulfilling the preferences as

well as possible. This provides analysts with a means of
better understanding the impact of the attitudes of different
stakeholders on the design and realization of a system.

In future work, we intend to explore suitable preference
elicitation processes, potentially adopting existing work from
areas such as AI, Economics and Psychology. We further in-
tend to explore ways to augment our preference specification
language and to coincidentally improve the performance of
our reasoning tool. We are encouraged by recent advances
in preference-based planning that will support this effort.

REFERENCES

[1] A. Dardenne, A. van Lamsweerde, and S. Fickas, “Goal-
directed requirements acquisition,” Science of Computer Pro-
gramming, vol. 20, no. 1-2, pp. 3–50, 1993.

[2] M. Bienvenu, C. Fritz, and S. McIlraith, “Planning with
qualitative temporal preferences,” in Proceedings of the 10th
International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR06), 2006, pp. 134–144.

[3] I. Jureta, J. Mylopoulos, and S. Faulkner, “Revisiting the
core ontology and problem in requirements engineering,” in
Proceedings of the 16th IEEE International Conference on
Requirements Engineering (RE’08), 2008, pp. 71–80.

[4] J. Karlsson and K. Ryan, “A cost-value approach for prioritiz-
ing requirements,” IEEE Software, vol. 14, no. 5, pp. 67–74,
1997.

[5] H. P. In, D. Olson, and T. Rodgers, “Multi-criteria preference
analysis for systematic requirements negotiation,” in Proc.
of the 26th Annual International Computer Software and
Applications Conference (COMPSAC’02), 2002, pp. 887–892.

[6] K. Czarnecki, S. Helsen, and U. Eisenecker, “Staged con-
figuration using feature models,” in Proceedings of the 3rd
Software Product Line Conference (SPLC’04), 2004, pp. 266–
283.

[7] H. Zhang, S. Jarzabek, and B. Yang, “Quality prediction and
assessment for product lines.” in Proceedings of the 15th
International Conference on Advanced Information Systems
Engineering (CAiSE’03), 2003, pp. 681–695.

[8] A. G. Sutcliffe, N. A. M. Maiden, S. Minocha, and D. Manuel,
“Supporting scenario-based requirements engineering,” IEEE
Transactions on Software Engineering, vol. 24, no. 12, pp.
1072–1088, 1998.

[9] R. Sebastiani, P. Giorgini, and J. Mylopoulos, “Simple and
minimum-cost satisfiability for goal models,” in Proceedings
of the 16th Conference On Advanced Information Systems
Engineering (CAiSE’04), 2004, pp. 20–35.

[10] E. S. K. Yu and J. Mylopoulos, “Understanding “why”
in software process modelling, analysis, and design,” in
Proceedings of the Sixteenth International Conference on
Software Engineering (ICSE’94), 1994, pp. 159–168.

[11] B. Hui, S. Liaskos, and J. Mylopoulos, “Requirements anal-
ysis for customizable software: A goals-skills-preferences
framework,” in Proceedings of the 11th IEEE International
Requirements Engineering Conference (RE’03), 2003, pp.
117–126.

557571571569

