
Exploring the Dimensions of Variability: a Requirements Engineering
Perspective

Sotirios Liaskos1 Lei Jiang1 Alexei Lapouchnian1 Yiqiao Wang1

Yijun Yu2 Julio Cesar Sampaio do Prado Leite3 John Mylopoulos1

1Dept. of Computer Science, University of Toronto, Canada,
{liaskos,leijiang,alexei,yw,jm}@cs.utoronto.ca

2Dept. of Computing, Open University, United Kingdom, y.yu@open.ac.uk
3Dept. of Computer Science, PUC-Rio, Brazil, julio@inf.puc-rio.br

Abstract

Goal models have been found to be effective for repre-
senting and analyzing variability at the early requirements
level, by comprehensibly representing all alternative ways
by which stakeholders may wish to achieve their goals. Our
study of goal models as instruments for acquiring and an-
alyzing variability has showed that, focusing on one par-
ticular variability dimension, which in our case was the in-
tentional one, allows better understanding of the identified
variability and offers more opportunities for analysis and
evaluation of alternatives. In this paper we explore other
dimensions of variability that have emerged in our study
of several areas, including autonomic computing, business
process design and database design, and discuss how vari-
ability can be modeled and analyzed in each of these di-
mensions. Then we show how we can manage the variabil-
ity space that emerges by putting together such dimensions
and discuss the role of fitness criteria for identifying alter-
natives of interest.

1. Introduction

Software variability is an increasingly important re-
search topic in Software Engineering, and a key concept
for the study of software product lines and software adapt-
ability. Modeling of variability is known to be essential
for analyzing reuse strategies, understanding customiza-
tion options and communicating these options to stakehold-
ers. Furthermore, variability modeling has recently been
found to be a useful instrument for both variability acqui-
sition, that is discovery of variation points in a problem,
and variability analysis, that is evaluation of the applica-
bility of each identified variant in a given context and situa-

tion. These functions of variability modeling require knowl-
edge of the origin and the meaning of variability, in a way
that also allows understanding of the implication of elemen-
tary choices to overall properties of the system and, conse-
quently, enables the specification of fitness criteria for se-
lecting desired alternatives.

The need to explore and analyze variability at a higher
level of abstraction is driven by the great amount of fea-
tures that are observed in modern software systems, and the
difficulty in understanding how the technical details of in-
dividual choices affect stakeholder intentions about the sys-
tem. Direct manipulation of variability under such circum-
stances may prove difficult, unless the modeling process is
focused on the particular dimensions that define the space
of possible designs for a software system. Each variability
dimension comes with a set of concerns to be addressed, a
set of relevant concepts, its own modeling practices as well
as its own definition of variation types and their semantics.
Thus, modeling variability in its particular dimension leads
to richer representations that are amenable to reasoning and
allow high-level leveraging of variation using dimension-
specific terms.

In this paper, we summarize the work we have done so
far on variability acquisition, representation and analysis at
the level of stakeholder goals, and use it as an example of
how focusing on a particular variability dimension supports
both the purpose of systematic variability identification and
the goal of selecting alternatives that best solve particular
problems. Then, focusing on our current work, we discuss
other dimensions of variability and for each of them we de-
scribe what particular concerns they pose, what modeling
challenges they introduce and how the fitness criteria for
selecting alternatives can be derived.

We organize our presentation as follows. Section 2 ex-
plores how the current research tackles the problem of vari-



ability modeling along some of the dimensions in which it
occurs. We also discuss efforts that attempt a categorization
of variability. In Section 3, we reflect on our earlier study of
intentional variability and make some observations that may
apply for the study of other variability dimensions. In Sec-
tion 4, we explore such dimensions and focus on concerns
that are particular to them. In Section 5 we discuss how the
dimensions form a variability space, how we can potentially
represent constraints that span across dimensions, and how
we can use fitness criteria to isolate points of interest. We
conclude in Section 6.

2. Understanding Variability

Variability identification and representation has exten-
sively been investigated in the context of domain analysis
([44, 41]). In that context, commonality and variability
analysis is aimed at identifying common and varying char-
acteristics among systems that belong to the domain under
investigation. The result of this process is commonly for-
mulated as a feature model ([28, 13]). Features are user-
visible characteristics of software products, while feature
models represent admissible combinations of features. Fea-
ture models are generally understood as tools for modeling
the configurability aspect of high-variability systems ([13]).
This approach assumes that the feature model plays the ex-
clusive role of gathering and representing all variability as-
pects of a system (or a family thereof) in one central vari-
ability view ([6]). This, however, implies that, since they
must potentially accommodate a wide diversity of feature
types (such as behavioral, structural or data), feature mod-
els necessarily have little to say about the meaning of the
variability they represent.

Thus, researchers have been examining ways by which
variability pertaining to a specific view of a problem can
be implicitly accommodated or explicitly represented in the
models corresponding to that view. To model structural
variability of a problem, Gomaa [21] or America et al. [2],
for example, suggest the use of existing modeling constructs
to represent variability in class diagrams, by possibly allow-
ing special use of existing constructs, such as stereotypes.
In [23], on the other hand, explicit use of variation points
within use-case diagrams is suggested, while [27], [26] or
[53] propose parameterization of use cases or requirements
documents; these can be seen as methods for representing
functional variability ([23]).

Several options have also been introduced for modeling
variability in behaviors. Conditions on statechart transi-
tions, which are true or false depending on the variant that
has been chosen have been proposed in [28] and [39]. In a
similar spirit, a method for generating SCR representations
in which rows in the transition tables can be optional is pro-
posed in [17]. In [50], message sequence charts with vari-

able parts are proposed, while [7] and [1] suggest the use of
generic storyboards and generic activity diagrams, respec-
tively. Further, in [18] the notion of modal transition sys-
tems is discussed, where transitions can be either required
or optional (“maybe”) depending on the requirements for
the particular product instance.

Methods for capturing intentional variability have re-
cently been proposed. Constructing AND/OR hierarchies
of goals has been shown to be an effective way to model
intentional variability. Each solution of the AND/OR goal-
tree provides an alternative way by which stakeholders can
achieve their goals, while soft-goals are used to model qual-
itative characteristics of alternatives. We elaborate on inten-
tional variability in the next section.

The above proposals are mostly suitable for describing
the variability of the problem. Similar work has been done
for accommodating and representing variability in mod-
els that describe aspects of the solution. At an architec-
tural and design level, in the context of modeling object-
oriented designs, inheritance, aggregation and parameteri-
zation have been found to be useful constructs for accom-
modating variability (e.g. [2, 21] discussed above). In mod-
eling component-connector views of architectures, notable
is the Koala extension to Darwin architecture description
language ([55]), which introduces the notion of the switch,
whereby alternative bindings of interfaces can be repre-
sented. An additional technique for representing variability
in module views of architectures is presented in [5]. Further,
at an even lower level lies the problem of variability im-
plementation. Numerous techniques have been proposed;
[19] and [22] constitute comprehensive surveys on the mat-
ter. Perry also provides a set of options for implementing
architectural variability ([42]). Observe that, at this level,
the presence of alternative variability implementation and
architecting techniques constitutes variability on its own.

Furthermore, variability is relevant to human computer
interaction (HCI) design in the context of adaptable and
adaptive interfaces. In [38], for example, the alternative
configuration of function availability in the main screen
(through visual elements such as menus and buttons) of a
popular text editor versus the complexity of the resulting
interface are studied, while in [37] the problem of customiz-
ing such applications is investigated. Explicit modeling of
variability in user interfaces is usually not in the scope of
these efforts. Nevertheless, in the adaptiveness literature,
variability is implicitly modeled by modeling the decision
making mechanism, e.g. Markovian processes in [25].

The study of variability in its particular context, such
as function, behavior, stakeholder intention, architectural
view or user interface offers the opportunity of identify-
ing the particular considerations that apply to each such
dimension which in turn may again help the construction
of systematic frameworks for variability identification and



management. The literature is already rich of proposals on
what important dimensions of variability should be. Thus,
in [23], essential variability, that is variability from a user
point of view, is distinguished from technical variability,
which concerns implementation issues. Essential variabil-
ity can pertain to functionality (including behavior), system
environment, quality, data and others. FORM ([29]) pro-
poses a more coarse grained categorization into four layers,
namely capability (e.g. available services to the users), op-
erating environment (i.e the underlying infrastructure), do-
main technology and implementation technique. In [52],
variability in behavior and hardware configuration are given
as examples of two distinct variability dimensions. In [1]
the accommodation of variability in customer, application,
functional, conceptual and realization views is discussed,
while in [33] the identification of variability dimensions in
requirements is seen as an issue of separation of concerns
specific to the particular problem that is being studied.

The definition of variability dimensions facilitates the
discovery of variation points and allows understanding of
its meaning, origin and rationale. This, in turn, facilitates
the process of selecting the appropriate variant. For this
to be possible, apart from the identification of the dimen-
sions per se, a modeling framework for both accommodat-
ing variability and allowing the selection of variants needs
to be introduced for each dimension. This constitutes a sig-
nificant finding of our earlier work on intentional variability
identification and analysis through goal models, which we
summarize in the next section.

3. Reflections on the Study of Intentional Vari-
ability

Goal modeling has been found to be an effective way for
identifying requirements of software systems by focusing
on understanding the intentions of the involved stakehold-
ers ([14, 3, 57]). Central to goal modeling is the idea of
constructing hierarchies of AND- and OR-decompositions
of high-level stakeholder goals into subgoals and then, re-
cursively, into low-level subgoals and tasks that lead to re-
quirements of the system-to-be. When a goal is AND-
decomposed into subgoals, all of them must be satisfied
for the parent goal to be satisfied. When a goal is OR-
decomposed, the satisfaction of one of the OR-subgoals suf-
fices for the satisfaction of the parent goal.

Thanks to the existence of OR-decompositions, the re-
sulting hierarchy already constitutes a representation of
variability in stakeholder goals. In Figure 1, oval shaped
elements are goals forming such a hierarchy. The model
shows how the goal Schedule a Meeting is analyzed
into subgoals. Normally the decomposition continues until
tasks that can fulfill the goals in a known way can be de-
fined; for the interest of space we focus on the higher levels

of the tree. For the meeting to be scheduled the individ-
ual constraints must be collected and some time slot must
be selected. Thus, we AND-decompose the root goal ac-
cordingly. Constraints can then be collected by a person
(e.g. a secretary) or the system to be; we express this option
through an OR-decomposition. The system has several op-
tions to collect the constraints. It can unobtrusively check
the invitees’ on-line calendars or it can send them a request.
The invitees, on the other hand, can be given several choices
as to whether or not they want to broadcast their constraints.
And then, different rules can apply for the selection of the
right time slot. In all, it can be observed that the root goal
can be achieved in 10 different ways, as many as the solu-
tions of the AND/OR tree. We call these alternatives for
fulfilling the root goal.

Schedule
Meeting

Collect
Constraints

Secretary to
Collect Constraints

System to Collect
Constraints

Solicit Response

AND

Choose
Meeting Time

AND

OR
OR

Collect From Invitees
Software Calendars

OR OR

System Send
Request

AND AND

Invitees Respond

To System

To Secretary

OR

ORTo Other
Invitees

OR

By avoiding Conflicts among
Significant Participants

OR
By avoiding any

Conflict

OR

Agentive

Manner

Means

Dative

Minimize
Human Effort

+
-

Invitee’s
Privacy

Enhance
Participatory Spirit

+

-

Avoid
Obtrusiveness

Accuracy of
Constraints

-+

+

Figure 1. A goal model

Thus, expression of variability in goal models is possible
by using OR-decompositions. But what is the meaning of
OR-decomposition of goals? In i* ([56]), a notation widely
used for constructing goal models, OR-decompositions are
simply understood as alternative means (subgoals) by which
certain ends (parent goal) can be achieved. Neverthe-
less, in [48] and [47], Rolland et al. propose the use of
a set of drivers that can guide the OR-decomposition of
goals, and, thus, implicitly associate the meaning of OR-
decompositions with the meaning of these drivers. The
drivers are a universal set of parameters that are understood
as potential parts of the definition of any goal. The accep-
tance of different values for different parameters introduces



variability in goal specification. This idea, originally pro-
posed in the context of scenario identification, was later
brought in a variability acquisition and modeling context
([36]). In that work, we introduced a method for identi-
fying such decomposition drivers, which we called vari-
ability concerns, given textual information specific to the
domain and the goal. Thus, each goal can be associated
with a set of variability concerns, each of which must be ad-
dressed through an OR-decomposition in the AND/OR tree
that emerges from the analysis of the goal. Returning to our
example of Figure 1, each OR-decomposition is annotated
with the variability concern that it addresses. For instance,
alternative agents that can collect the constraints address the
agentive variability concern, while different algorithms for
picking a suitable slot address the concern manner.

By referring to the variability concerns that are relevant
to the goal at the time we decompose it, we allow the dis-
covery of variability that might otherwise remain hidden.
Thus, the dative concern, which refers to the agent that is
affected by the achievement of a goal, is used to suggest
that different response styles to an invitation (to everybody
or only to the solicitor) may need to be accounted.

Therefore, by exclusively focusing on acquiring and
modeling variability on one dimension, the intentional one,
we were forced to construct a specific semantic framework
in which the particular dimension of variability can be ex-
pressed. This way, apart from facilitating the discovery and
understanding of variability, we also allow the definition of
fitness criteria to be used for evaluating alternatives implied
by goal models. Our investigation of the intentional dimen-
sion of variability has already led us to the consideration
of three categories of criteria that can be used for selecting
alternatives in goal models: user skills and stakeholder pref-
erences ([24]) as well as contextual characteristics ([36]).

User skills are associated with leaf level goals in goal
models, which, as mentioned above, describe tasks to be
performed by humans alone or through interaction with the
system. Thus, for each such task we construct a list of skills
that a user who needs to perform the task must have. Con-
versely, if we are given the skills of a particular individual
we are able to filter out courses of tasks that she cannot per-
form. In our scheduling example, assume that tasks at the
leaf level mention that an invitee responds to the constraint
collection by filling up a web form. This requires some sen-
sory (e.g. vision) and motor or speech skills to perform
the input, some basic cognitive skills as well as language
and computer skills. Individuals that lack any of the re-
quired skills (e.g. elderly, people with cognitive or other
impairments, illiterate) must be provided a different alter-
native whose tasks they can actually perform. This may
even imply that a completely different strategy for collect-
ing constraints must be selected at the higher level.

A similar approach is followed for contextual character-

istics: tasks can only be performed under specific circum-
stances. In our example of Figure 1, constraints can be se-
lected from individual calendars only if the invitee has made
them public and there is a means to access them through a
network. From a modeling point of view, contextual charac-
teristics are a generalization of skills, as they are also used
as conditions for the performance of leaf level tasks.

User preferences on the other hand are specifications of
priorities over soft-goals that alternatives must satisfy. As
opposed to hard-goals we discussed so far, soft-goals are
goals for which there is no clear criterion that can be used
for deciding whether they are satisfied or not. Thus, soft-
goals are satisficed (versus satisfied) to a degree and based
on relevant evidence. In Figure 1, soft-goals are repre-
sented as cloud-shaped elements. Contribution links, an-
notated with “+” and “-” symbols in the figure, allow us
to represent the fact that satisfaction of hard-goals affects
positively or negatively the satisfacing of soft-goals. Thus,
in Figure 1, the choice to broadcast one’s constraints may
hurt one’s privacy, but it helps building a participatory spirit.
Conversely, if we state that building a participatory spirit is
more important than privacy of individual invitees, we im-
plicitly suggest that the particular response style should be
used. Thus, by specifying the relative importance of soft-
goals we implicitly bind low level options. Note that, in
practice, goal models can be more complicated networks of
soft-goals, requiring advanced reasoning techniques for un-
derstanding how satisfaction and denial is propagated from
goal to goal. Such reasoning techniques are discussed in
[20] and [49].

Notice that these types of fitness criteria are semantically
correlated with concepts of the goal models, and this is why
they naturally emerged throughout our investigation. Tasks,
for example, that lay at the leaf level of goal models, rep-
resent courses of actions that are performed by actors in
a particular time and place and have an estimated impact
on high-level objectives of stakeholders. Thus, by referring
to the meaning of tasks, we already refer to a set of con-
cerns (actor characteristics, times, locations, and actor pref-
erences respectively) that may influence variability identi-
fication and analysis. If the building blocks of our models
were more abstract concepts, such as features, we perhaps
wouldn’t have been able to detect these additional concerns,
cleanly express their relationship with our main concepts,
and use them as fitness conditions.

Interestingly, fitness criteria themselves can vary and,
thus, they are also subjects for variability analysis. For
example, evaluating each of the supported means of trans-
portation a stakeholder can use to Travel from Home
to Work may depend on the weather conditions. But
weather conditions themselves can vary preventing the se-
lection of certain alternatives for fulfilling our goal, in dif-
ferent ways. For example, rain or cold may trivially pre-



vent the use of a bicycle, but, more rare phenomena, such
as sleet, may even prevent the use of any street vehicle. In
other words, by systematically analyzing all potential states
the weather can take, forces us to consider more alternatives
for fulfilling the goal Travel from Home to Work.

In order to systematize this, in the goal oriented context
we found it helpful to separate core variability from back-
ground variability. While the former is the variability we
are trying to model, the latter refers to variability of factors
that influence the fitness evaluation of core alternatives and,
in many cases, necessitate the introduction of more alter-
natives. We expect that a similar distinction can be made
in other variability dimensions as well. For example in the
behavioral dimension, alternative behaviors constitute core
variability, while alternative conditions on admissibility of
states, transitions or courses thereof may constitute back-
ground variability. Similarly, the choice of a particular vari-
ability implementation policy ([22]) among a set of options
(core) may depend on factors pertaining, for instance, to
the device where the software is to be deployed, the exper-
tise of the developers or characteristics of the project (back-
ground). The variability analyst develops the core variabil-
ity model having in mind those background circumstances
and how their change may indicate a change to a different
variability implementation strategy.

4. Dimensions of Variability

In this Section, we present some observations from our
investigation of analysis and design methods in four differ-
ent areas of software development: business process design,
autonomic computing, database design as well as architec-
tural design for pervasive systems. Based on our early ev-
idence, for each of these areas, we explore potential vari-
ability dimensions and discuss criteria that can be used for
evaluating alternatives.

4.1. Business Processes Design

The design of business processes (BPs) and the support-
ing IT infrastructure is an important software development
area. BPs are characterized by the high level of human in-
volvement in their execution and thus, in addition to the
variability normally present in the usual software develop-
ment process, there are some new variability dimensions to
be considered during business process design. Also, promi-
nent among the fitness criteria for selecting appropriate al-
ternatives in these variability dimensions (besides the usual
ones such as cost and resource utilization) are social aspects
such as rewarding and challenging work environment.

There are many definitions of what a business process
is, but in general a BP is seen as a sequence of activities
that achieves some business purpose. Since the notion of

purpose is present in BPs, they can be modeled using goal-
oriented notations (e.g., [30]). Thus, a lot of the discus-
sion on intentional variability included in this paper can be
applied to these processes. However, in practice BPs are
usually modeled as workflows, which represent activities
arranged in sequence or in parallel, each taking some input
and producing some output. Common notations for work-
flow specification are BPMN ([10]) and Petri Nets ([54]).
When designing BPs, analysts need to determine which
parts of the BP can be represented as well-defined work-
flows and which – usually highly unstructured creative sub-
processes – need to be left underspecified (perhaps, aside
from the definition of inputs and outputs). While modeling
BPs through workflows, we are presented with several types
of variability that need to be represented and analyzed. For
the unspecified parts, the variability will be dealt with at
runtime by participating employees.

First, we have to deal with the temporal ordering of ac-
tivities in a workflow. Obviously, there are constraints on
that ordering: some activities require inputs that are pro-
duced by other activities and this limits their ordering vari-
ations. However, this still leaves a lot of choices of how
to sequence/parallelize activities. Important criteria to con-
sider here is the performance of the BP (parallelism gen-
erally means increased performance), the availability of re-
sources, as well as whether inputs/outputs of activities can
be duplicated (for parallel execution).

Another important variability consideration in BP design
is the assignment of workflow activities to human/computer
resources. Part of the task is to determine which portions
of a process can be automated and which should be left
for human execution. This can be viewed as defining the
boundary for the IT support system. While some tedious
and mechanical activities can be easily automated, BPs usu-
ally require certain amount of human creativity and prob-
lem solving. The criteria here are the availability of hu-
man/computing resources, performance, scalability, utiliza-
tion as well as the desire to keep employees challenged and
interested in their jobs. The other part of the task is to de-
termine which particular employees, roles or teams as well
as systems, components, or services are going to be respon-
sible for executing workflow activities. Examples of impor-
tant considerations here are resource cost, and capabilities
of the involved employees.

The measurement of BP performance requires the setup
of an efficient, non-disruptive, and cost-effective monitor-
ing framework [46]. Key Performance Indicators (KPIs)
are measures commonly used to track the critical success
factors in BPs from a business perspective. The choices
of the appropriate KPIs for processes and their refinement
into sets of monitorable and measurable parameters repre-
sent another variability dimension in BP design.

There are other BP design activities that give rise to ad-



ditional variability concerns. For example, dealing with
failures in BPs involves the selection of error notification
(whom to notify, through what means), diagnosis (e.g., au-
tomated vs. human intervention) and compensation mech-
anisms (such as wait, re-execute the activity, re-assign it to
another actor, or cancel).

4.2. Autonomic Systems Design

Autonomic Computing (AC) is an example of a software
engineering field where we see a great need to model and
analyze various aspects of variability during the develop-
ment process. AC is a rapidly growing research area that
aims at reducing software maintenance cost and manage-
ment complexity. AC promises to move most of this com-
plexity from humans to the software itself by endowing a
software system with capabilities to self-configure (to adapt
to dynamically changing environment and requirements),
self-optimize (to improve its performance and/or other char-
acteristics), self-heal (to monitor, diagnose, and recover
from its failures), and self-protect (monitor, detect, and pro-
tect itself from attacks and other malicious behaviour) [31].
Collectively, these are referred to self-* capabilities.

There are a number of possibilities for designing AC
software systems. For example, one is to use software
agents capable of planning and social interaction to cre-
ate self-managing systems ([31]). The problems in this
approach are the computational complexity of multi-agent
systems and the inherent difficulty of predicting and ana-
lyzing emergent behavior in them.

Since, in a nutshell, an AC system is a flexible software
system that changes its behavior in a purposeful way while
achieving its goal, in [34] we presented an alternative ap-
proach that aims at producing systems supporting a space
of possible behaviors which are realized through the iso-
morphic space of possible system configurations. While
designing AC systems, a number of variability dimensions
must be represented and analyzed. Obviously, the inten-
tional perspective must be represented. Thus, the approach
in [34] uses high-variability requirements goal models to
capture variability in the problem domain of autonomic sys-
tems. These models represent multiple ways the goals of
AC systems can be attained as well as the characteristics
of these alternatives in terms of the important quality crite-
ria (softgoals). These models are then enriched with con-
trol information capturing temporal ordering constraints on
goals to support variability-preserving mapping into design-
level notations such as statecharts (that represent variability
in the behavior of the system). AC systems are then de-
signed to support all (or some) of the alternatives captured
in their corresponding goal models and are then augmented
with capabilities to switch from one alternative to another
at runtime, thus exhibiting adaptive behavior.

In the AC literature (e.g., [31]), self-managing systems
are viewed as networks of Autonomic Elements (AEs) that
are capable of tuning/modifying their resources or processes
and that are furnished with the feedback loop consisting of
activities that monitor the system and its environment, an-
alyze the monitored data (i.e. diagnose), plan a course of
action if an intervention is needed, and execute the plan.
All of these activities provide a wealth of alternatives that
need to be systematically represented and analyzed.

For example, in case of the monitoring, the paramount
problem is the selection of data that needs to be captured
in order for an AC system to be able to perform the self-*
activities. For example, for self-optimization, the sys-
tem needs to evaluate the currently executing alternative in
terms of how it meets quality constraints such as perfor-
mance to determine if a switch to another option is war-
ranted. For self-healing, data on successes/failures of its
constituent components are needed. For self-protection,
data on, for example, failed login attempts, must be cap-
tured. Similarly, there are several parameters that need to be
decided on when designing a monitoring framework for an
AC system. The characteristics of the individual monitors
themselves need to be defined. Monitors can be on-line or
off-line, intrusive or non-intrusive, adaptive or maladaptive.
The specifics of the measurement process such as sampling
rates and data storage constitute additional variability con-
cerns. Then, the specific monitoring policy in relationship
with the monitored system needs to be established. We are
currently working towards constructing a richer categoriza-
tion of such concerns. We also explore ways by which we
can construct models that facilitate both understanding of
the available options in a monitoring problem and making
the appropriate decisions.

The aspect of diagnosis gives rise to another variability
space with a wealth of options and concerns (e.g., how ea-
ger the system is to generate diagnosis vs. to wait and col-
lect more data). Similarly, the system’s adaptivity strategy
can be aggressive (possibly resulting in frequent oscillation
among behavior alternatives), conservative (possibly result-
ing in missed opportunities for optimization, but provid-
ing a more stable behavior) or can depend on the diagnosis
(e.g., very aggressive in case of security concerns/failures
and conservative in case of self-optimization). Variability
manifests itself in many other aspects of AC systems de-
sign, such as the selection of components for achieving the
leaf-level goals in the goal models. Component’s character-
istics such as cost or performance play a role in this.

4.3. Information Modeling and Database
Design

Information modeling is concerned with the construc-
tion of computer-based symbol structures (i.e., information



bases) which model some part of the real world (i.e., the
application domain) [40]. In the case of databases, data
modeling focuses on the static aspect of the application
domain and uses modeling constructs that denote particu-
lar individuals, generic concepts and associations that are
part of the domain. Classic approaches [4, 45, 12] divide
the overall database design into three phases: conceptual,
logical and physical design. At conceptual level, the de-
signer collects, analyzes, structures and formalizes relevant
domain concepts, referring to a conceptual data modeling
language (e.g. Entity-Relationship models). Furthermore,
data abstraction mechanisms are essential components in
conceptual data modeling and an important part of the rel-
evant modeling languages. These abstraction mechanisms
include the classic ones such as classification, generaliza-
tion and aggregation as well as less known ones such as
contextualization [51], materialization [43] and parameteri-
zation [16].

To understand how variability occurs in conceptual de-
sign we need to understand the process with which such
designs are developed. Conceptual database design is, to
all intents and purposes, an engineering process. It con-
sists of a series of decision-making steps and is guided by
well-defined design strategies. For example, in the clas-
sic conceptual database design methodology [4], the top-
down strategy produces a conceptual schema by a series of
successive refinements. In this approach, starting from an
initial schema that describes all the data requirements by
means of a few highly abstract concepts and then gradu-
ally refining the schema by transforming these concepts into
ones with more complex structure, capable of describing the
original concepts in more detail. For each design strategy,
a set of transformation primitives is proposed to guide the
transformation process. For example, one top-down primi-
tive may transform an entity into two entities connected by
a relationship while another may instead transform the en-
tity into a generalization hierarchy. In addition, conceptual
rules ([4]) may help designers make strategy-independent
decisions, such as whether to model a concept as an en-
tity, relationship or attribute. The application of alternative
transformation primitives and conceptual rules lead to alter-
native designs, in a way similar to how alternative variabil-
ity implementation techniques are chosen in [22].

The notion of relevance can be considered as the general
criterion for selecting among alternatives. For example, the
specialization of a general concept into more concrete sub-
concepts relies on the determination of the “discriminator”
[9], which is the property of the concept that is “more rel-
evant” to the problem at hand. Consider the concept Mate-
rial. It can be specialized into sub-concepts Book and Jour-
nal on the basis of the format, or into Paper, Audio or Video
on the basis of the medium. Thus, as with variability con-
cerns in the intentional case, such discriminators both guide

the identification of alternative specializations and allow us
assess the relevance (fitness) of particular specializations
through reference to such discriminating characteristics.

Furthermore, more concrete variability concerns and fit-
ness criteria can be used for particular purposes. For ex-
ample, temporality specifies whether the temporal aspect
of an entity in the application domain is of interest in the
context of a particular problem. In a hospital management
system, for example, temporality questions whether the his-
torical data of patient medical profile need to be kept in the
database. On the other hand, accuracy is concerned with
the degree by which details of the relevant concepts are in-
cluded in the model (e.g. what configuration of attributes
to use to model properties of a concept or how to separate
units and values for measurement concepts). In both cases,
an obvious fitness criterion is the accommodation of data
queries that are already known to be of interest, or are con-
jectured to be of potential interest. As a last example, access
refers to alternative ways by which external agents can read
and manipulate the data entities. Here the degree of trust
amongst various stakeholders may be an example of a crite-
rion for selecting among alternative permission schemes.

4.4. General Architectural Design

Several frameworks for architectural modeling based on
views have been proposed, including Kruchten’s 4+1 view
framework ([32]), as well as Clements et al. approach ([11])
based on viewtypes. Independent of the views one chooses
to represent an architecture, each such view becomes a vari-
ability dimension that needs to be addressed. Further, each
view is associated with one or more modeling notations. In
Section 2 we already discussed several existing approaches
in modeling variability in architectural designs. These in-
clude accommodating variability in use cases, class dia-
grams, component-connector views, statecharts and inter-
action diagrams. The question is whether existing efforts
are sufficient for representing variability in every essential
architectural view.

Our experience in analyzing problems that called for so-
lutions of ubiquitous nature (e.g. advanced nurse notifica-
tion systems for the health care domain), showed the ex-
tensive need of variability representation mechanisms for
deployment views. Such views describe the assignment of
software elements to environmental entities (i.e. computing
hardware). Likewise, variability occurs within the nodes in
terms of their capabilities (e.g. a PC vs. a PDA), which can
often dynamically change (e.g. network connectivity of a
mobile device). Interestingly, dynamic change of capabili-
ties may depend on pure environmental factors. Thus, net-
work connectivity or power supply may need to be modeled
as properties of a location, rather than properties of devices.

From there, an initial allocation of software components



to devices requires modeling of both what software com-
ponents assume about their environment and what capabil-
ities nodes (e.g. devices) actually offer. In addition to the
hard-constraints implied by the capability matching prob-
lem, soft-constraints related to quality attributes, such as
usability, performance and cost, need to be set for further
evaluating the admissible assignments of components to de-
vices.

5. Managing the Design Space

In every dimension, variability is present in the form of
variation points. A variation point can be explicit by ap-
pearing as a separate construct of the modeling language (as
e.g. variation point elements in use case diagrams – [23]) or
implicit, through the use of existing constructs (e.g. alterna-
tive specializations in class diagrams – [21]). In both cases,
the variation point offers alternative instantiations of a high-
variability model, by being bound appropriately. Putting all
dimensions together, the resulting design space is a cross-
product of the alternatives found in each dimension. Thus,
since the design space encompasses all possible combina-
tions of alternatives, it can be vast. This constitutes a prob-
lem when e.g. in a product derivation context ([15]) a point
in this space is sought that best solves a problem.

A first step towards coping with large design spaces is
the use of cross-dimensional interdependency links between
elements and decisions involved in variation points. For ex-
ample, in a study of alternative event notification designs for
nurses in hospitals, a leaf level task Send Audio No-
tification in the intentional dimension, a component
audioNotifier in a structural dimension, and a state
Audio Notification Being Sent in a behavioral
dimension can all be associated through such interdepen-
dency links. Then, when they appear as alternative selec-
tions in the context of a variation point (which in our case
may concern alternative notification modes such as visual
or haptic), binding of a variation point in one dimension au-
tomatically constraints the way others are bound.

This way, we can greatly reduce the size of the design
space through a small number of decisions. In [58], we
introduce a set of patterns that can guide the derivation
of interdependency links between the intentional variabil-
ity dimension at the problem level and other dimensions at
the solution level, namely the behavioral, modeled through
statecharts, and the component interconnection dimension,
modeled through component-connector diagrams.

Furthermore, the fact that variability is modeled and un-
derstood across dimensions, offers the opportunity to lever-
age the design space by specifying preferred characteristics
of the alternatives of interest, instead of directly handling
variation points. This is exactly where the fitness criteria
identified in each dimension play a major role. In our inves-

tigation of the intentional dimension, fitness criteria such as
the ones discussed in Section 3 were used for restricting the
design space implied by the AND/OR-hierarchy of the hard
goals. In one of the applications ([35]) we showed that it
is possible to configure an e-mail client by only referring to
desired satisficing of soft-goals, which was the primary fit-
ness criterion. For example, a stakeholder’s desire to max-
imize Privacy while receiving e-mail, implies the selec-
tion of the subgoal Use Encrypted Communication
(as opposed to not using an encrypted one) which, by fol-
lowing a pre-established interdependency link to configura-
tion details of the software system, enables secure sockets
layer or secure authentication. Thus, fitness criteria spec-
ified for one dimension, automatically pose constraints to
other dimensions through the interdependency links. The
use of fitness criteria in other dimensions can have the same
effect. For example, a reference to discriminators allows
the leverage of variability in static structures, which again
may have consequences on behavioral views (e.g. remove
states related to objects that are absent from the reduced
static structure).

Note that the criteria specification approach to variabil-
ity leverage is not distant from the notion of domain specific
languages (DSLs - [8, 13]), since DSLs allow the use of do-
main specific terms to describe a particular solution. One of
the differences, however, may be that fitness criteria specifi-
cation, the way we envision them, have the form of hard and
soft-constraints that prune a design space that is already de-
fined, instead of languages for generating members of that
space.

On the other hand, handling the design space that
emerges from the combination of individual dimensions is
greatly facilitated if the space is of propositional nature. If
the variation points of each dimension can be modeled in
AND/OR trees with lateral constraints amongst their nodes
as well as between their nodes and the nodes of the respec-
tive trees of the other views, then the reasoning problem
is one of satisfiability of the underlying propositional the-
ory. However, in order to enjoy the benefits of dimension-
specific criteria specification, an extra step must precede to
convert such criteria into actual bindings of variation points
expressed in a propositional form.

6. Conclusions

Putting variability modeling and analysis in the context
of the particular dimensions in which variability appears,
allows better understanding of its meaning and offers sev-
eral analysis and evaluation opportunities. Throughout our
work on several domains we have acquired an initial under-
standing of potential variability dimensions and the special
concerns each of these introduces. However, our work is
still at an early stage. In the future, we expect to have an



exact picture of what these dimensions are and a systematic
framework for defining interdependencies among them.

We also intend to focus on modeling aspects of these
ideas. We saw that the literature is already rich of propos-
als for accommodating or explicitly representing variability
in a number of different modeling notations. One question
is whether and how variation points appearing in models
of each dimension can form dependency hierarchies that
can be translated to propositional formulae. This, together
with a framework for establishing interdependencies across
dimensions (again based on propositions), would provide
a convenient representation of the design space amenable
to well known reasoning techniques. Furthermore, for the
variability space to be accessible, the translation of fitness
criteria into part of the propositional representation poses
an additional challenge.

References

[1] P. America, E. Rommes, and J. H. Obbink. Multi-view vari-
ation modeling for scenario analysis. In Fifth International
Workshop on Product Family Engineering (PFE), pages 44–
65, 2003.

[2] P. America and J. van Wijgerden. Requirements modeling
for families of complex systems. In IW-SAPF-3: Proceed-
ings of the International Workshop on Software Architec-
tures for Product Families, pages 199–209, London, UK,
2000. Springer-Verlag.

[3] A. I. Anón and C. Potts. The use of goals to surface re-
quirements for evolving systems. In Proceedings of the 20th
International Conference on Software Engineering, 1998.

[4] P. Atzeni, S. Ceri, S. Paraboschi, and R. Torlone.
Database Systems - Concepts, Languages and Architectures.
McGraw-Hill Book Company, 1999.

[5] F. Bachmann and L. Bass. Managing variability in software
architectures. In Proceedings of the 2001 Symposium on
Software Reusability (SSR ’01), pages 126–132. ACM Press,
2001.

[6] F. Bachmann, M. Goedicke, J. Leite, R. Nord, K. Pohl,
B. Ramesch, and A. Vilbig. A Meta-model for Represent-
ing Variability in Product Family Development. In Proceed-
ings of the 5th International Workshop on Software Product-
Family Engineering (PFE5), Siena, Italy, 2003.

[7] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig,
K. Schmid, T. Widen, and J.-M. DeBaud. PuLSE: A
methodology to develop software product lines. In Proceed-
ings of the Symposium on Software Reuse (SSR’99), 1999.

[8] J. Bentley. Programming pearls: little languages. Commu-
nications of the ACM, 29(8):711–721, 1986.

[9] A. Borgida and R. J. Brachman. Conceptual modeling
with description logics. In The description logic handbook:
theory, implementation, and applications, pages 349–372.
Cambridge University Press, New York, NY, USA, 2003.

[10] Business process modeling notation, version 1.0. www.
bpmi.org.

[11] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers,
R. Little, R. Nord, and J. Stafford. Documenting Software
Architectures: Views and Beyond. Addison Wesley Profes-
sional, 2003.

[12] T. M. Connolly and C. E. Begg. Database Solutions: A step
by step guide to building databases. Addison Wesley, 2nd
edition, 2003.

[13] K. Czarnecki and U. W. Eisenecker. Generative Program-
ming - Methods, Tools, and Applications. Addison-Wesley,
June 2000.

[14] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-
directed requirements acquisition. Science of Computer Pro-
gramming, 20(1-2):3–50, 1993.

[15] S. Deelstra, M. Sinnema, and J. Bosch. Product derivation in
software product families: a case study. Journal of Systems
and Software, 74(2):173–194, 2005.

[16] E. Dubois, P. D. Bois, and A. Rifaut. Elaborating, structur-
ing and expressing formal requirements of composite sys-
tems. In International Conference on Advanced Information
Systems Engineering (CAiSE’92), pages 327–347, 1992.

[17] S. R. Faulk. Product-line requirements specification (PRS):
An approach and case study. In Proceedings of the 5th
IEEE International Symposium on Requirements Engineer-
ing (RE’01), pages 48–55, 2001.

[18] D. Fischbein, S. Uchitel, and V. Braberman. A foundation
for behavioural conformance in software product line ar-
chitectures. In Proceedings of the ISSTA 2006 workshop
on Role of software architecture for testing and analysis
(ROSATEA’06), pages 39–48, New York, NY, USA, 2006.

[19] C. Gacek and M. Anastasopoulos. Implementing product
line variabilities. SIGSOFT Softw. Eng. Notes, 26(3):109–
117, 2001.

[20] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebas-
tiani. Reasoning with goal models. In Proceedings of
the 21st International Conference on Conceptual Modeling
(ER’02), pages 167–181, London, UK, 2002.

[21] H. Gomaa. Object oriented analysis and modeling for fam-
ilies of systems with UML. In ICSR-6: Proceedings of the
6th International Conference on Software Reuse, pages 89–
99, London, UK, 2000. Springer-Verlag.

[22] J. V. Gurp, J. Bosch, and M. Svahnberg. On the notion of
variability in software product lines. In WICSA ’01: Pro-
ceedings of the Working IEEE/IFIP Conference on Software
Architecture (WICSA’01), page 45, Washington, DC, USA,
2001. IEEE Computer Society.

[23] G. Halmans and K. Pohl. Communicating the variability of a
software-product family to customers. Software and System
Modeling, 2(1):15–36, 2003.

[24] B. Hui, S. Liaskos, and J. Mylopoulos. Requirements anal-
ysis for customizable software: A goals-skills-preferences
framework. In Proceedings of the 11th IEEE International
Requirements Engineering Conference (RE’03), 2003.

[25] A. Jameson, B. Großmann-Hutter, L. March, R. Rummer,
T. Bohnenberger, and F. Wittig. When actions have conse-
quences: Empirically based decision making for intelligent
user interfaces. Knowledge-Based Systems, 14:75–92, 2001.

[26] S. Jarzabek, W. C. Ong, and H. Zhang. Handling variant
requirements in domain modeling. Journal of Systems and
Software, 68(3):171–182, 2003.



[27] I. John and D. Muthig. Tailoring use cases for product line
modeling. In International Workshop on Requirements En-
gineering for Product Lines (REPL’02), 2002.

[28] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson. Feature-oriented domain analysis (FODA) feasi-
bility study. Technical Report CMU/SEI-90-TR-21, Soft-
ware Engineering Institute, November 1990.

[29] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh.
FORM: A feature-oriented reuse method with domain-
specific reference architectures. Annals of Software Engi-
neering, 5:143–168, 1998.

[30] V. Kavakli and P. Loucopoulos. Goal-driven business pro-
cess analysis application in electricity deregulation. Infor-
mation Systems, 24(3):187–207, 1999.

[31] J. O. Kephart and D. M. Chess. The vision of autonomic
computing. Computer, 36(1):41–50, 2003.

[32] P. Kruchten. The 4+1 view model of architecture. IEEE
Software, 12(6):42–50, 1995.

[33] C. Kuloor and A. Eberlein. Aspect-oriented requirements
engineering for software product lines. In 10th IEEE In-
ternational Conference on Engineering of Computer-Based
Systems (ECBS), pages 98–107, 2003.

[34] A. Lapouchnian, Y. Yu, S. Liaskos, and J. Mylopoulos.
Requirements-driven design of autonomic application soft-
ware. In Proc. 16th Annual International Conference on
Computer Science and Software Engineering (CASCON
2006), October 2006.

[35] S. Liaskos, A. Lapouchnian, Y. Wang, Y. Yu, and S. East-
erbrook. Configuring common personal software: a
requirements-driven approach. In 13th IEEE International
Conference on Requirements Engineering, 2005.

[36] S. Liaskos, A. Lapouchnian, Y. Yu, E. Yu, and J. Mylopou-
los. On goal-based variability acquisition and analysis.
In Proceedings of the 14th IEEE International Conference
on Requirements Engineering (RE’06), Minneapolis, Min-
nesota, September 2006. IEEE Computer Society.

[37] W. E. Mackay. Triggers and barriers to customizing soft-
ware. In CHI ’91: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 153–160, New
York, NY, USA, 1991. ACM Press.

[38] J. McGrenere, R. M. Baecker, and K. S. Booth. An evalua-
tion of a multiple interface design solution for bloated soft-
ware. In CHI ’02: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 164–170, New
York, NY, USA, 2002. ACM Press.

[39] H. Muccini and A. Bucchiarone. Formal behavioral specifi-
cation of a product line architecture. Technical Report Tech-
nical Report TRCS 014/2004, Univ. of L’Aquila, 2004.

[40] J. Mylopoulos. Information modeling in the time of the rev-
olution. Inf. Syst., 23(3-4):127–155, 1998.

[41] J. M. Neighbors. Draco: a method for engineering reusable
software systems. Software reusability: vol. 1, concepts and
models, pages 295–319, 1989.

[42] D. E. Perry. Generic architecture descriptions for product
lines. In Proceedings of the Second International ESPRIT
ARES Workshop on Development and Evolution of Software
Architectures for Product Families, pages 51–56. Springer-
Verlag, 1998.

[43] A. Pirotte, E. Zimányi, D. Massart, and T. Yakusheva. Ma-
terialization: A powerful and ubiquitous abstraction pattern.
In VLDB ’94: Proceedings of the 20th International Confer-
ence on Very Large Data Bases, pages 630–641, San Fran-
cisco, CA, USA, 1994. Morgan Kaufmann Publishers.

[44] R. Prieto-Díaz. Domain analysis: an introduction. SIGSOFT
Software Engineering Notes, 15(2):47–54, 1990.

[45] R. Ramakrishnan and J. Gehrke. Database Management
Systems. McGraw-Hill Science/Engineering/Math, 2002.

[46] I. Robson. From process measurement to performance
improvement. Business Process Management Journal,
10(5):510–521, 2004.

[47] C. Rolland, G. Grosz, and R. Kla. Experience with goal-
scenario coupling in requirements engineering. In RE ’99:
Proceedings of the 4th IEEE International Symposium on
Requirements Engineering, page 74, Washington, DC, USA,
1999. IEEE Computer Society.

[48] C. Rolland, C. Souveyet, and C. B. Achour. Guiding goal
modeling using scenarios. IEEE Transactions on Software
Engineering, 24(12):1055–1071, 1998.

[49] R. Sebastiani, P. Giorgini, and J. Mylopoulos. Simple and
minimum-cost satisfiability for goal models. In Proceedings
of the 16th Conference On Advanced Information Systems
Engineering (CAiSE’04)., 2004.

[50] T. Ziadi and L. Hélouët and J.-M. Jézéquel. Modeling be-
haviors in product lines. In International Workshop on Re-
quirements Engineering for Product Lines (REPL), pages
33–38, September 2002.

[51] M. Theodorakis, A. Analyti, P. Constantopoulos, and
N. Spyratos. Contextualization as an abstraction mecha-
nism for conceptual modelling. In ER ’99: Proceedings of
the 18th International Conference on Conceptual Modeling,
pages 475–489, London, UK, 1999. Springer-Verlag.

[52] J. M. Thompson and M. P. E. Heimdahl. Extending the
product family approach to support n-dimensional and hier-
archical product lines. In 5th IEEE International Symposium
on Requirements Engineering (RE’01), pages 56–65. IEEE
Computer Society, 2001.

[53] W. Tracz. DSSA (domain-specific software architecture):
pedagogical example. SIGSOFT Software Engineering
Notes, 20(3):49–62, 1995.

[54] W. van der Aalst. The Application of Petri Nets to Workflow
Management. The Journal of Circuits, Systems and Comput-
ers, 8(1):21–66, 1998.

[55] R. van Ommering, F. van der Linden, J. Kramer, and
J. Magee. The Koala component model for consumer elec-
tronics software. Computer, 33(3):78–85, 2000.

[56] E. S. K. Yu. Towards modelling and reasoning support for
early-phase requirements engineering. In Proceedings of
the 3rd IEEE Int. Symposium on Requirements Engineering
(RE’97), Washington D.C., USA, January 1997.

[57] E. S. K. Yu and J. Mylopoulos. Understanding “why” in
software process modelling, analysis, and design. In Pro-
ceedings of the Sixteenth International Conference on Soft-
ware Engineering (ICSE’94), pages 159–168, 1994.

[58] Y. Yu, J. Mylopoulos, A. Lapouchnian, S. Liaskos, and J. C.
Leite. From stakeholder goals to high-variability software
design. Technical report, University of Toronto, 2005.


