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Abstract. Goal models have long been regarded to be useful instru-
ments for visualizing and analysing decision problems. Key to using goal
models for the purpose is the concept of satisfaction contribution be-
tween goals. Several proposals have been offered in the literature for
representing contributions and performing inferences therewith. Theo-
retical arguments and demonstrative examples are typically used to sup-
port the usefulness and soundness of such proposals. However, the degree
to which users of goal models intuitively understand the meaning of a
specific contribution representation and use it for making valid infer-
ences constitutes an additional measure of the appropriateness of the
representation. We report on an experimental study to compare the in-
tuitiveness of two alternative contribution representation approaches via
measuring the degree to which untrained users perform inferences com-
pliant with the semantics defined by the language designers. We further
explore the role of individual differences such as cognitive style and at-
titude and ability with arithmetic in establishing and applying the right
semantics. We find significant differences between the representations
under comparison as well as effects of various qualities and levels with
regards to individual factors. The results inspire further research on the
specific matter of contribution links and support the overall soundness
and operationalizability of the intuitiveness construct.

Keywords: Conceptual Modelling · Goal Models · Model Comprehen-
sion · Experimental Study.

1 Introduction

For more than two decades, goal models [39,4] have been extensively studied
as an instrument for capturing and communicating intentional structures for
a variety of purposes within information technology. One of the strengths of
such models is their ability to represent alternative ways by which stakeholder
goals can be materialized into design solutions [34,26,27]. Using goal models
business/systems analysts can reason about and communicate the advantages
and disadvantages of alternative solutions with respect to their impact to higher
level business objectives. Multiple proposals for doing such analysis have been
proposed in the literature [3,15,26,27] ([21] for a survey).
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To make such analysis possible, goal models employ a concept commonly
referred to as contribution to represent how satisfaction of one goal affects the
satisfaction of another. There is variety with regards to how different goal mod-
elling frameworks treat the representation and meaning of contributions. The
traditional approach for representing contributions is through symbolic labels
(e.g.“+’, “–”) [39,15,20] or words (“help”,“break”) [9] expressing the quality
(positive or negative) and the size of contribution in high-level terms. The use of
numeric values in various ways has also been proposed [25,30,3], whereby, e.g.,
sign and absolute value are used to represent quality and size of contribution.
The approaches vary with regards to both representation and underlying seman-
tics. Theoretical analyses and demonstrations are usually employed to support
the soundness and usefulness of each approach. However, an additional indica-
tion of the quality of the chosen representation and semantics could be the extent
to which untrained users of the model can intuitively understand the meaning
of the representation and use it to make inferences in a way that complies with
the semantics intended by the modelling language designers.

In this paper, we experimentally explore the intuitiveness of two choices for
representing contribution links in goal models, one symbolic and one numeric.
At the core of the experiment, a series of decision problems modelled in either
of the two ways are presented to untrained users who are asked to use the
contributions to perform inferences and make decisions. We measure the extent
to which their inferences comply with the semantics of each representation. We
further explore how individual differences pertaining to cognitive style, attitude
and ability with mathematics and mental arithmetic as well as overall working
approach taken by the participants affect the degree of success in performing
compliant inferences. Among other things, we find that numeric models evoke
much more compliant responses, especially among participants who claim to
have followed a methodical rather than an intuitive working approach.

The rest of the paper is organized as follows. In Section 2 we offer background
on goal models, contribution links and their semantics as well as the concept of
intuitiveness and individual differences that may affect its manifestation. In Sec-
tions 3 and 4 we describe the experimental design and the results and in Sections
5 and 6 we review some of the related work and offer concluding remarks.

2 Background

2.1 Goal Models and Contribution links

The type of goal modelling notation we use in this research is akin to the i*
family of goal modelling notations [39,4]. Two examples can be seen in Figure
1. The oval- and cloud-shaped nodes represent actor goals (states of the world
the actor wants to hold in the future), the ovals describing hard-goals and the
cloud-shaped ones soft-goals. As per their standard meaning [39], soft-goals – as
opposed to hard-goals – do not have a precise satisfiability criterion. Further,
the goal models we study follow a specific structural pattern. Specifically, using
means-ends and decomposition links, hard-goals form a decomposition that shows
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Fig. 1. Goal models with symbolic (left) and numeric (right) contribution links.

how different subsets of low-level goals can enable the achievement of the top-
level hard-goal. Soft-goals are recipients of contribution links, the curved directed
lines. Such links can originate from hard-goals or other soft-goals.

A contribution link from goal A to soft-goal B expresses the hypothesis that
evidence of satisfaction or denial of goal A has an effect to our belief about the
satisfaction or denial of soft-goal B. The exact quality (positive or negative) and
level of effect is expressed using a label on top of the contribution link. The
literature offers several proposals for what could be used as a label and what it
would mean. The original approach [39,15,4] is to use symbols “+”, “++”, “−”
and “−−” denoting respectively various levels of positive and negative contri-
bution. As of iStar 2.0 [9] words are used (“help”, “make”, “hurt” and “break”)
in place of symbols. An alternative approach to symbols and words is numbers:
a numerical value in the interval [0.0,1.0] [15,25] or [-100,+100] [3], describes
the level of contribution of A to B. Of these various labelling options, the two
that are of particular interest here can be seen in Figure 1. They are henceforth
referred to as the symbolic and the numeric representation (mode).

Even without describing the meaning of the contribution links in any more
precision, the models in the figure can already be used for performing useful
inferences. Focussing on the symbolic model on the left side of Figure 1, a user
who is only minimally informed to the specifics of the notation and has no knowl-
edge of the precise semantics of “+” and “−−”, can probably infer that the goal
(Choose Schedule) Automatically is preferable to goal (Choose Schedule) Man-
ually when we are interested in the goal Reduce Scheduling Effort. It is easy to
see however that more complex inferences are not possible without an appeal to
more formal and precise semantics. Such precise semantics unambiguously define
a way for performing inferences. In the absence of such semantics, i.e., without
more information about what the labels precisely mean and how they are to be
used, in neither model of Figure 1 is it easy to confidently infer optimal decisions
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vis-à-vis the root goal Overall Scheduling Quality. Various such semantics have
been proposed in the literature with both ontological motivation (to clarify what
contributions really mean, e.g. [16]) and operational motivation (to suggest how
contributions can be used, e.g. [25]). In our study, we pick two proposals of the
latter kind, one for each of the representation modes of Figure 1.

The semantic framework for symbolic contributions we consider is due to
Giorgini et al. [15]. According to that framework each goal is associated with
two variables, each measuring satisfaction and denial of the goal respectively.
The variables take one of three values: Full evidence (denoted with prefix F),
Partial Evidence (P) and No Evidence (N) – of, respectively satisfaction (suffix
S) or denial (D). For example, we may have partial evidence of satisfaction and
no evidence of denial for one goal (denoted {PS,ND}) and partial evidence of
denial and full evidence of satisfaction for another goal ({FS,PD}); the incon-
sistency being perfectly acceptable here and actually one of the strengths of the
framework. Given a symbolic contribution link as described thus far, a set of
rules, seen in Table 1, defines completely what the satisfaction and denial value
of the destination of the link is, given the type of the label (“+”,“++”, etc.) and
the corresponding satisfaction and denial values of the origin goal. No evidence
(NS or ND) in the origin is propagated as-is independent of label. Multiple
incoming links are treated following a precise evidence maximization principle.

Label Effect Label Effect Label Effect Label Effect

++

FS → FS
PS → PS
PD → PD
FD → FD

−−

FS → FD
PS → PD
PD → PS
FD → FS

+

FS → PS
PS → PS
PD → PD
FD → PD

−

FS → PD
PS → PD
PD → PS
FD → PS

Table 1. Symbolic Contribution Semantics

While Giorgini et al. offer an equally comprehensive numeric version of their
satisfaction propagation framework we here focus on one used (directly or by
implication) by Maiden et al. [30] and Liaskos et al. [25], following the same logic
as the one followed by the Unified Requirements Notation (URN) [3]. According
to this interpretation each goal has a unique satisfaction value in the real interval
[0.0,1.0]. The numeric label on the contribution link represents the share of
influence of the satisfaction of the origin goal to the satisfaction of the destination
goal. Thus, when a soft-goal is targeted by one or more contribution links, its
satisfaction is a linear combination of the satisfaction values of the origin goals
weighted by the labels of the corresponding contribution links, as in:

s(g) =
∑

g′∈Og

{s(g′)× w(g′, g)} (1)

where g is the soft-goal targeted by the links, Og the set of goals g′ from which
the contribution links originate, w(g′, g) the numeric weights of those links, and
s(g) the satisfaction value of a goal g.

2.2 Intuitiveness and Individual Differences

The intent of a developer of visualized conceptual models like the above
box-and-line goal models is to evoke a mental model of how the visualization is
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supposed to be understood and used to make inferences about the domain. Our
research question here is whether and to what degree the mental model that is
actually evoked within the reader’s mind is indeed consistent with the designers’
intent, hence promoting “correct” inferences. We use the term intuitiveness to
furthermore refer to attainment of such consistency with limited or no training.
The intuitiveness construct is akin to the concept of semantic transparency as
per Moody’s framework for principled visual design of modeling languages [32]:
an intuitive visualized conceptual modelling language is one that allows its users
recognize and understand the meaning of the language’s constructs based on the
visual appearance of the constructs, thus without reference to additional training
or explanatory material.

Moreover, when users of a modelling notation are asked to guess the meaning
of shapes/symbols and perform inferences therewith, we can hypothesise that
individual differences in terms of skills, attitudes and styles may affect their
choices. One question is whether users attempt to develop a complete and precise
theory of how the notation works and make conscious inferences with it or make
rough gut-feeling ones based on intuition. A construct that attempts to formalize
this distinction is cognitive style [1]. According to that construct the approach
that decision makers take in solving a judgement problem lies in a cognitive
continuum [18] between analytical and intuitive cognitive work. While the former
describes conscious, controlled, systematic, detail-oriented work towards making
an inference, the latter describes quick, approximate, holistic, synthetic and less
conscious approach. While Hammond et al. support that cognitive style is largely
induced by the task at hand [18], Hayes et al. have shown that decision makers
may have a tendency towards one or the other extreme as a personality trait and
have developed the CSI (Cognitive Style Index) to measure it [1]. At the same
time, simple ability and comfort with mental arithmetic can be a predictor of
successful performance of symbol-intensive inferences within a model. Likewise,
math anxiety, i.e. the presence of feelings of fear, tension, and apprehension
with mathematics [19], may affect both how the mathematical/symbolic (e.g.
contribution labels) are interpreted and used.

3 Experimental Design

Overview and Research Questions. The goals of our experimental study
are to (a) compare the intuitiveness of alternative contribution link representa-
tions in the context of assessing optimal decisions within goal models and (b)
assess the role of individual differences to the enablement of intuitiveness in the
said task. Specifically, the experiment has a confirmatory and an exploratory
aspect. We first want to compare the two modes of representation, symbolic
(Figure 1 left, Table 1) vs. numeric (Figure 1 right, Equation 1), with regards
to their intuitiveness, testing the hypothesis that numeric models are bound to
be more intuitive for the purpose of detecting optimal solutions (RQ1). The
hypothesis is based on the belief that the specific numeric representation utilizes
participants’ familiarity with numbers and proportions, commonly used in their
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daily lives. We further want to explore whether individual differences and ways
of working, specifically ability and attitude towards math, cognitive style as well
as followed approach, affect intuitiveness (RQ2). In the absence of earlier expe-
rience, no explicit hypotheses are made with regards to RQ2. The experimental
design is an extension/revision of an earlier one presented elsewhere [29].

Constructs and Measures. Our central construct is intuitiveness as dis-
cussed above. To measure it, we expose experimental participants to a set of
models and ask them to perform inferences based on the information in the
model. The participants have only basic awareness of the language and the ab-
stract meaning of its constructs but no knowledge of precise semantics. Intuitive-
ness is measured primarily via accuracy of the participant inferences, i.e., the
number of inferences that match the ones that the language semantics dictate.
Wherever applicable, we also measure efficiency, which is the number of accu-
rate (matching) responses divided by the time it took to make the necessary
inferences as well as self-reported confidence levels of the method followed to
make the inferences (method confidence) as well as confidence in the inferences
themselves (response confidence).

With regards to individual difference factors, we administer the 38-point CSI
(Cognitive Style Index) [1] to measure cognitive style (CSI Score) and the 9-
point AMAS (Abbreviated Math Anxiety Scale) [19] to measure math anxiety
(AMAS Level). We further measure ability with arithmetic using a series of cus-
tom non-standard exercises in mental arithmetic. We attempted various types
and scoring methods for these. The ones that turn out to have some effect,
as discussed below, consist of direct multiplication, scored in [0..10] though an
exponentially decaying function of the distance between participant response
and correct answer, comparisons of two two-number products and comparisons
of two linear combinations each containing two terms. Finally the working ap-
proach that participants followed, between “using their intuition” and “following
a specific method” was captured through self-reporting.

Experimental Units. To construct our experimental instruments we first
develop a number of goal models. Two (2) sets of models are developed: symbolic
and numeric, each containing only the corresponding type of contribution links.
All models consist of one (1) OR-decomposition of hard-goals and an hierarchy
of soft-goals to act as criteria for choosing the optimal choice within the OR-
decomposition. The soft-goal hierarchy has a unique root goal (such as “Overall
Scheduling Quality” of Figure 1) and the contribution labels are chosen such that
one of the alternatives of the OR-decomposition is optimal compared to the oth-
ers, with respect to the top goal. The optimal is calculated by evaluating the
impact of full satisfaction of each of the children of the OR-decomposition to the
satisfaction of the root soft-goal when the satisfaction values of all other decom-
position children are set to N or zero, and then identifying the child that results
to the maximum such satisfaction. The exact mechanics depend on the type
of model and the corresponding semantics. Consider, for example, the Choose
Schedule decomposition of Figure 1. To evaluate the impact of alternative Manu-
ally in the left model of Figure 1 we assign it satisfaction values {FS,ND} while
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assuming Automatically stays {NS,ND}. Similarly, for the numeric model on
the right we set s(Manually) = 1 and s(Automatically) = 0. We then recursively
apply the propagation rules of Table 1, or, respectively, Equation 1 for numeric
models, in order to evaluate the satisfaction labels of the higher level goals up
to the root soft-goal which is the goal of interest.

Model Sampling. We developed the models used for the instrument by
picking a goal structure and populating the contribution links with random
contribution labels such that the optimal alternative has a fixed distance from
the second optimal one, as measured by the satisfaction each induces to the root
soft-goal. This is aimed at allowing sufficient difference between the best and
second best to allow for some intuitive detection, but not too obviously.

Calculating the distance from best to second best alternative is straightfor-
ward in the case of numeric models: the choice of each alternative will result
in a number representing the satisfaction value of the root soft-goal for that
alternative; we simply ensure that the largest value is about 0.4 higher than
the second largest. For the symbolic models, however, the comparison is less
straightforward due to the presence of both satisfaction and denial values. Thus,
to allow for comparisons, we aggregate the two values into one. To do so we firstly
associate qualitative satisfaction labels N, P, F with numeric values 0,1,2, re-
spectively. Let then sat(g) and den(g) be the resulting numeric satisfaction and
denial values for goal g. The aggregated satisfaction value is then sat(g)−den(g)
which is an integer in [-2,2]. For example, the aggregated satisfaction value of a
goal g1 with {PS,FD} is sat(g1)− den(g1) = 1− 2 = −1 and of a goal g2 with
{FS,ND}, sat(g2) − den(g2) = 2 − 0 = 2. Given this aggregation procedure,
we demand that our sample models have a distance of 2 satisfaction levels. For
example, a label configuration in which the best alternative makes the root soft-
goal {FS,ND}, hence aggregated value 2−0 = 2, and the second best makes the
root soft-goal {PS,PD}, hence aggregated value 1−1 = 0, qualifies as 2−0 = 2.
To see why this distance matches the one chosen for the numeric models for a fair
comparison, observe first that the maximum distance between alternatives in the
symbolic case in terms of aggregated value is 4 ({FS,ND} versus {NS,FD}).
The distance we demanded in symbolic models is 2, thus half of that space. Ob-
serving now that the corresponding maximum distance in numeric models is 1.0,
it follows that half-space-size distance would be 0.5. However we end up with
0.4, slightly biasing against numeric models, as for some of our structures we fail
to find label configurations yielding 0.5 distance.

Instrument and Tasks. For the experimental instrument we develop a
total of six (6) model structures, representing decision problems within three (3)
domains: Choosing an Apartment, Choosing a Course, and Choosing a Means of
Transportation. Thus, two (2) structures are dedicated to each domain, a smaller
one with two alternatives and a larger one with three alternatives. For each of
the six structures two sets of labels (henceforth: labelsets) are sampled in either
of the two frameworks (symbolic vs. numeric). In all, two sets of (3 domains)×(2
sizes)×(2 labelsets) = 12 distinct goal models are constructed and placed in two
separate instruments, the symbolic and the numeric.
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Each instrument is then organized as follows. Participants are offered two
video presentations introducing them to the concepts of decision alternatives
and criteria, as well as goal models and the high-level meaning of either type
(depending on instrument) of contribution links. Care is taken so that: (a) the
videos are as much as possible identical to each other (e.g. use of same examples
and points, about same length, same narrator, same visuals etc.), (b) the videos
do not prescribe any exact method for interpreting satisfaction propagation that
would allude to specific semantics. Subsequently, participants are sequentially
presented with the goal models and are asked to enter which of the two or three
alternatives they think is optimal. In the end, they are asked if they used a
specific method in making their decision, and what that method is, or whether
they used their intuition. The CSI, AMAS questionnaires and math ability test
precede the aforementioned tasks. We note that midway in the data collection
process, the instrument underwent the following revisions: (a) the math ability
test was changed and moved to the end and (b) two questions asking for the
participants’ confidence in their responses and method followed were added.

Participants. Participation is sought from two sources: (a) undergraduate
students of the School of Information Technology, York University, attending a
human computer interaction course, and (b) Mechanical Turk (MT) participants
with a US college degree. We argue in support of these choices below.

4 Results

Sample. A total of 102 participants are included in the analysis: 27 students
(21 males and 6 females) and 75 MT participants (41 males and 34 females).
The sample predominantly consists of STEM (Science, Technology, Engineering,
Mathematics – 49 total) and Business/Economics (22) students/graduates, but
also has a mix of Social Science, Humanities, Arts and other backgrounds (31).
Their CSI scores are slightly skewed towards the analytical side – 61 above
(analytical) and 41 below (intuitive) population average. Of the AMAS scores,
44 are above (more anxious) and 58 are below (less anxious) population average.

Accuracy Analysis. Accuracy is measured as the raw number (out of 12)
of correct (wrt. semantics) choices of optimal alternative. To explore accuracy
we first attempt to fit a linear model [38] including representation (numeric
vs. symbolic), AMAS Level, CSI Score, and approach as main effects, ignoring
interactions for the moment. Most factors seem to offer statistically significant
or near-significant results: representation (F (1, 97) = 72.2, p < 0.001, Cohen
d = 1.51 – numeric more accurate than symbolic), AMAS Score (F (1, 97) =
5.7, p < 0.05, d = 0.33 – the lower the more the accuracy) and working approach
(F (1, 97) = 5.6, p < 0.05, min robust d = 0.39 – methodical approach more
accurate than intuitive approach). The representation effect is very large and
the rest of the effects are small to medium by Cohen’s d. Thus, those with
below average AMAS level (less anxious) score 0.96 more correct questions than
those above average. Finally, accuracy is the only measure in which a certain
type of mathematical ability tests, described earlier, seem to have a marginally
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statistically significant effect (p < 0.025 tested as a lone factor in a separate
model): 2.4 more points (out of the 12) in those arithmetic tests results in 1
more correct response in the decision exercises. A small CSI effect detected
presents increased Type I error probability and does not emerge in robust tests;
it is, thus, dismissed.

Extending the model with interactions we observe that working approach
strongly interacts with representation. Specifically, when participants work me-
thodically (by their declaration), that seems to significantly improve their accu-
racy (3.4 out of 12 more correct answers) but only in numeric models (F (1, 91) =
6.7, p < 0.05, d = 1.38). Seeing this through a simple effects analysis, whereby
we fix approach to a value and explore the effect of representation to accuracy,
the representation effect is only present when participants worked methodically
– about 4/5 (symbolic group) and 3/4 (numeric group) of the participants.

Efficiency Analysis. Efficiency, operationalized as the ratio of accuracy over
total response time, is considered only for the 27 student sample, where response
time can be reliably measured; the 75 MT participants are not invigilated thus
their exclusive and uninterrupted focus on the experimental tasks cannot be
guaranteed. Representation, CSI level, AMAS level and math ability and their
interactions are explored. Approach is not considered due to it being highly
unbalanced. Representation appears to have a very strong effect to efficiency
(Yuen’s t(9.41) = 3.8, p < 0.01, min robust d = 0.93) with a gain of 3.07 correct
answers per minute in numeric models versus symbolic ones. However, no other
effect or interaction therewith is observed.

Confidence Analysis. Response confidence and method confidence mea-
surements were introduced to the instrument for the last 45 MT participants
only and thus the analysis is based on that sample. They are measured on a
7-point “Likert”-style scale and treated as ratio as per normal practice [36]. We
again attempt to explain differences in both measures subject to CSI, AMAS,
representation mode and approach. In the result, highly analytical respondents
have slightly lower response confidence (F (1, 40) = 4.8, p < 0.05, d = 0.42) as
expected [18]. Representation also appears to have a small (d = 0.23) effect to
response confidence but with higher Type I error chance (p < 0.1). Analysis of
method confidence does not yield notable effects.

Summary and Explanatory Remarks. The results present substantial
evidence that the numeric representation according to the linear model of Equa-
tion 1 leads to more compliant decision-making inferences by untrained users and
faster than the qualitative one of Table 1. We can attribute this to the familiar-
ity that users have with numbers and proportions, on which the numeric model
is based, and the lack thereof for symbolic labels. However, the effect emerges
(strongly) only when the participants say they work methodically, which we in-
terpret as them developing a deeper and more explicit mental model. It follows
that in the symbolic case either the evoked method/model is in strong disagree-
ment with the authoritative one, or the latter is correctly guessed but poorly
executed. At the same time, the general lack of correlation between arithmetic
ability and accuracy, assuming that our custom instruments have any reliabil-
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ity, may indicate that participants in the numeric group do not perform the
exact mental calculations as per Equation 1, which would require to strongly
utilize their mental arithmetic skills, but base their success on an evoked heuris-
tic/approximation that works as well. Furthermore, counter to our expectation
that AMAS Level would affect only the numeric group it seems to affect both
groups, implying the possibility that the requirement for either kind of symbolic
inference is akin to a mathematical task, in which, in turn, highly math-anxious
individuals tend to perform worse. Finally, we fail to observe any notable effect
of cognitive style trait to accuracy, efficiency or even approach taken, indicat-
ing that the index might not be useful for studying the phenomena at hand,
possibly also indicating exploration of alternative cognitive style constructs [11].
However, the strong effect of self-reported approach taken suggests that cogni-
tive style remains relevant when seen as choice of cognitive strategy inspired by
the characteristics of the task at hand [18] rather than a trait.

Validity Threats. We briefly address the most important of construct, in-
ternal, external and statistical conclusion validity threats. In terms of construct
validity our fundamental assumption that intuitiveness can be measured by the
alignment between participant-supplied and authoritative inferences can be crit-
icised as avoiding examination of what goes on in participants’ minds when
confronted with an unknown notation. A possible response is pragmatic: the
observed substantial effect on representation accuracy and efficiency is immedi-
ately usable even when theoretical clarity is pending: numbers seem to “just”
be more intuitive for the particular task. A further criticism can be extended
to the ad-hoc development of non-standard math ability tests, which, however,
took place in the absence of suitable standard instruments – and are not ma-
jor effects regardless. Two main threats to internal validity revolve around the
representation factor. On one hand, the “difficulty” of the symbolic models (dis-
tance between first and second optimal) is constructed based on an operation of
comparing satisfaction and denial values that may be argued to be arbitrary and
off-specification (by [15]). However, in our view, insofar as the two representa-
tions can be used for the same purpose (comparing alternatives) they cannot be
considered incomparable vis-à-vis that purpose. Thus, one still needs to address
the question of what ways, other than the ones adopted here, can be considered
for fairly constructing absolute preferability distance between satisfaction levels
in a two-valued setting. Furthermore, difference in training quality can be ar-
gued to work against one of the conditions. Such bias is difficult to measure and
control for. We are hoping that our carefully scripted, video-recorded training
videos (versus live lectures commonly adopted in similar studies) offer a first
line of defence against this threat. Threats to external validity concentrate on
the choice of participants and models. We first claim that our participants being
non-experts and (some of them) students does not harm generalizability. On one
hand, there seems to be an implicit desire in the goal modelling community that
non-technical stakeholders (users, owners, clients) should be able to use such
models. On the other hand, although we could not find research that describes
the typical characteristics of either business and systems analysts or their clients,
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we cannot assume that they are exclusively of a technical background. We, thus,
find that our participants constitute a good sample of the population that may
be a user of goal models. Furthermore, the choice of models that we used for
the instruments brings unavoidable structural, size and domain commitments.
Larger models, for example, may be less advantageous for numeric represen-
tations, when the method followed does not scale in terms of cognitive effort.
Likewise, the tasks we tested them against (picking an optimal alternative) were
very particular. Thus, until research with different models is conducted, general-
izations should be carefully done for models and tasks of similar characteristics.
As a final note on statistical conclusion validity, while we pre-hypothesized the
effect of representation format, the rest of the factors and interactions thereof
were the result of some statistical model exploration. This exploratory attitude
aimed at identifying candidate future research directions rather than firmly con-
firming hypotheses. Thus, except for the effect of representation, the remaining
effects continue to be tentative and subject for further confirmation.

5 Related Work

There are several research efforts dedicated towards exploring the effective-
ness of common conceptual modeling notations including UML and ER diagrams
[8,35,37,10,14] or process models [5,13,12,31]. Much of the research in the area is
based on various understandability constructs, though there does not seem to be
very strong consensus with regards the definition and exact operationalizations
of such constructs [22]. The concept of intuitiveness, as we introduce it here as
a dimension of understandability, is less frequently considered explicitly, as in
work by Jošt et al., for example, where the intuitive understandability of various
modeling methods are empirically compared [23].

Work focussing on goal models specifically has also emerged. Notable works
are by Horkoff and Yu who devise and evaluate an interactive evaluation tech-
nique for goal models [20], by Caire et al. [6] who experimentally assess the
success of visualization choices for modelling constructs, by Hadar et al. [17]
who compare goal diagrams with use case diagrams on a variety of user tasks
and by Carvallo and Franch who studied empirically the development of strategic
dependency i* diagrams by non-technical stakeholders [7].

Compared to these efforts, our research program has been heavily targeted
towards a specific construct, i.e., contribution links. In earlier work [28], for
example, we attempted an investigation of the qualitative propagation rules of
Table 1. Through an experiment of a nature similar to the one described here,
we observed, among other things, that positive labels and satisfaction values
appear to be more readily understandable than negative labels and denial values.
Likewise, we have also compared the various models for quantitative satisfaction
propagation including the one used here and three versions of the one proposed
by Giorgini et al. [2], to find that there is tendency for participants to follow
some models versus others, motivating further research on the subject. Note that
in all this work our focus is not the effectiveness of just perceiving information
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about contributions, which is what, e.g., Moody et al. [33] attempt to improve,
but rather understand how contribution is operationally understood and what
reasoning it inspires. In a fashion somewhat more similar to that of Moody, Caire
et al. [6], i.e., focussing on perception effectivness, we explored graphical (versus
diagrammatic) ways for representing contribution levels and found that simple
combinations of pie-graphs and bar-graphs allow for better accuracy [24].

6 Conclusions

We presented an experiment for comparing the intuitiveness of symbolic ver-
sus numeric goal models vis-à-vis individual differences and working styles of
model users. A number of experimental participants is presented with decision
problems formalized in either notation and are asked to identify the optimal
alternative, without given much information about the precise meaning of the
modelling constructs. Intuitiveness is attained when participant responses accu-
rately match the ones each kind of model prescribes to be correct. We find that
numeric models lead participants to more accurate responses when the latter are
the result of adopting a specific working method. We further find that mathe-
matics anxiety has a mild negative correlation with performance irrespective of
representation. Finally while we fail to observe any notable effect of cognitive
style as a trait, we find it to be relevant as a chosen cognitive strategy.

Future work can zero-in on identifying the source of inference errors and
inefficiencies through distinguishing between mental model adoption and mental
model execution, each being exposed to different sets of biases and influencing
factors. For the task, instruments that enhance explanatory analysis need to
be devised beyond our black-box technique. Qualitative methods and protocol
analysis may prove to be of value. However, rather than just understanding a
specialized task within a specific notation, our long-term objective is to develop
an empirical perspective and toolset transferable to the study of other important
classes of notations, such as business process or entity models.

References

1. Allinson, C.W., Hayes, J.: The Cognitive Style Index: A Measure of Intuition-
Analysis For Organizational Research. Journal of Management Studies 33(1), 119–
135 (1996)

2. Alothman, N., Zhian, M., Liaskos, S.: User Perception of Numeric Contribution
Semantics for Goal Models: an Exploratory Experiment. In: Proceedings of the 36th
International Conference on Conceptual Modeling (ER’17). pp. 451–465 (2017)

3. Amyot, D., Ghanavati, S., Horkoff, J., Mussbacher, G., Peyton, L., Yu, E.S.K.:
Evaluating goal models within the goal-oriented requirement language. Interna-
tional Journal of Intelligent Systems 25(8), 841–877 (2010)

4. Amyot, D., Mussbacher, G.: User Requirements Notation: The First Ten Years,
The Next Ten Years. Journal of Software (JSW) 6(5), 747–768 (2011)

5. Birkmeier, D.Q., Klockner, S., Overhage, S.: An Empirical Comparison of the Us-
ability of BPMN and UML Activity Diagrams for Business Users. In: Proceedings
of the 18th European Conf. on Information Systems (ECIS’10). pp. 51–62 (2010)



Factors affecting comprehension of contribution links in goal models 13

6. Caire, P., Genon, N., Heymans, P., Moody, D.L.: Visual notation design 2.0: To-
wards user comprehensible requirements engineering notations. In: Proceedings of
the 21st IEEE International Requirements Engineering Conference (RE’13). pp.
115–124 (jul 2013)

7. Carvallo, J.P., Franch, X.: An empirical study on the use of i* by non-technical
stakeholders: the case of strategic dependency diagrams. Requirements Engineering
24(1), 1–27 (2018)

8. Cruz-Lemus, J.A., Genero, M., Manso, M.E., Morasca, S., Piattini, M.: Assess-
ing the understandability of UML statechart diagrams with composite states—A
family of empirical studies. Empirical Software Engineering 14(6), 685–719 (2009)

9. Dalpiaz, F., Franch, X., Horkoff, J.: iStar 2.0 Language Guide. The Computing
Research Repository (CoRR) (2016), http://arxiv.org/abs/1605.07767

10. De Lucia, A., Gravino, C., Oliveto, R., Tortora, G.: Data model comprehension
an empirical comparison of ER and UML class diagrams. In: Proceedigns of the
16th IEEE International Conference on Program Comprehension (ICPC’08). pp.
93–102. Amsterdam, The Netherlands (2008)

11. Epstein, S., Pacini, R., Denes-Raj, V., Heier, H.: Individual differences in intu-
itive–experiential and analytical–rational thinking styles. Journal of Personality
and Social Psychology 71, 390–405 (08 1996)

12. Figl, K., Laue, R.: Cognitive Complexity in Business Process Modeling. In: Pro-
ceedings of the 23rd International Conference on Advanced Information Systems
Engineering (CAiSE 2011). pp. 452–466. London,UK (2011)

13. Figl, K., Recker, J., Mendling, J.: A study on the effects of routing symbol design on
process model comprehension. Decision Support Systems 54(2), 1104–1118 (2013)

14. Genero, M., Poels, G., Piattini, M.: Defining and validating metrics for assessing
the understandability of entity-relationship diagrams. Data and Knowledge Engi-
neering 64(3), 534–557 (2008)

15. Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: Reasoning with Goal
Models. In: Proceedings of the 21st International Conference on Conceptual Mod-
eling (ER’02). pp. 167–181. London, UK (2002)

16. Guizzardi, R.S., Franch, X., Guizzardi, G., Wieringa, R.: Ontological distinctions
between means-end and contribution links in the i* framework. In: Proceedings of
the 32nd International Conference on Conceptual Modeling (ER 2013). pp. 463–
470. Hong-Kong, China (2013)

17. Hadar, I., Reinhartz-Berger, I., Kuflik, T., Perini, A., Ricca, F., Susi, A.: Com-
paring the comprehensibility of requirements models expressed in Use Case and
Tropos: Results from a family of experiments. Information and Software Technol-
ogy 55(10), 1823–1843 (2013)

18. Hammond, K.R., Hamm, R.M., Grassia, J., Pearson, T.: Direct comparison of the
efficacy of intuitive and analytical cognition in expert judgment. IEEE Transactions
on Systems, Man, and Cybernetics 17(5), 753–770 (1987)

19. Hopko, D.R., Mahadevan, R., Bare, R.L., Hunt, M.K.: The Abbreviated Math
Anxiety Scale (AMAS): Construction, Validity, and Reliability. Assessment 10(2),
178–182 (2003)

20. Horkoff, J., Yu, E.S.K.: Interactive goal model analysis for early requirements en-
gineering. Requirements Engineering 21(1), 29–61 (2016)

21. Horkoff, J., Yu, E.S.: Comparison and evaluation of goal-oriented satisfaction anal-
ysis techniques. Requirements Engineering (REJ) 18(3), 1–24 (2011)

22. Houy, C., Fettke, P., Loos, P.: Understanding understandability of conceptual mod-
els - What are we actually talking about? In: Proceedings of the 31st International
Conference on Conceptual Modeling (ER 2012). pp. 64–77 (2012)

http://arxiv.org/abs/1605.07767


14 Liaskos and Tambosi
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