
Noname manuscript No.
(will be inserted by the editor)

Modeling and Reasoning about Uncertainty in Goal
Models: A Decision-Theoretic Approach

Sotirios Liaskos · Shakil M. Khan · John
Mylopoulos

Received: date / Accepted: date

Abstract Goal models have been a popular subject of study by researchers in
Requirements Engineering, due to their ability to capture and analyze alterna-
tive solutions through which a software system can achieve business objectives.
A plethora of analysis methods for automated identification of optimal alter-
natives has been proposed. However, such methods often assume an idealized
reality where all tasks are successfully performed when attempted and all goals
are eventually satisfied with certainty when pursued according to a solution.
In reality, some tasks run the risk of failure while others produce chance out-
comes. In this paper, we extend the standard goal modeling language to allow
representation and reasoning about both uncertainty and preferential utility
in goals. Tasks are extended to allow for probabilistic effects and preferential
statements of stakeholders are captured and translated into utilities over pos-
sible effects. Moreover, solutions are not mere specifications (functions, quality
constraints, and assumptions), but rather policies, that is sequences of situ-
ational action decisions, through which stakeholder goals can be fulfilled. An
AI reasoning tool is adapted and used for identifying optimal policies with

Sotirios Liaskos
School of Information Technology
York University
4700 Keele Street, Toronto, ON
E-mail: liaskos@yorku.ca

Shakil M. Khan
Department of Computer Science
University of Regina
3737 Wascana Parkway, Regina, SK
E-mail: Shakil.Khan@uregina.ca

John Mylopoulos
Department of Computer Science
University of Toronto
214 College St, Toronto, ON
E-mail: jm@cs.toronto.edu

This version of the article has been accepted for publication, after peer
review (when applicable) but is not the Version of Record and does not
reflect post-acceptance improvements, or any corrections. The Version of
Record is available online at:
https://doi.org/10.1007/s10270-021-00968-w
Use of this Accepted Version is subject to the publisher’s Accepted
Manuscript terms of use
https://www.springernature.com/gp/open-research/policies/
acceptedmanuscript-terms

https://doi.org/10.1007/s10270-021-00968-w
https://www.springernature.com/gp/open-research/policies/acceptedmanuscript-terms
Sotirios
Rectangle

2 S. Liaskos, S. M. Khan and J. Mylopoulos

respect to the value they offer to stakeholders measured against their proba-
bility of failure. Evaluation of the approach includes a simulation study and
scalability experiments to assess the applicability of automated reasoning for
larger problems.

Keywords Goal Modelling, Markov Decision Processes (MDP), DT-Golog,
Golog

1 Introduction

Goal models have long been studied as tools for capturing, representing, and
organizing stakeholder intentions within a variety of application contexts such
as software engineering and business analysis [3,10,52]. One of their most ap-
pealing features is their ability to show how top-level strategic objectives of
stakeholders can be analyzed into low-level actions that can be performed
for the fulfillment of these objectives [40]. Moreover, they allow the concise
representation of high degrees of variability in the ways by which the low-
level actions fulfill top-level objectives, capturing large numbers of interre-
lated decisions. Several automated reasoning techniques have been proposed
for computer-aided analysis of such variability of solutions [2,19,31,34,43] (see
also [24] for a survey). Such tools search for groups of actions that both fulfill
high-level functional goals and at the same time bring about optimal value
concerning criteria of interest.

Typically in goal modeling and related techniques for automated reasoning,
actions are deterministic, that is, they are assumed to bring about one and
only one desired effect with certainty every time they are performed. However,
in reality, actions are rarely deterministic. Instead, they bring about different
outcomes with different probabilities. Some actions, such as sending a mes-
sage, or saving a document, have a unique intended outcome but, with some
probability, they may fail to deliver it due to human or system errors. Other
actions, such as making a monetary investment or participating in a compe-
tition such as an election, embody non-determinism by design in that they
can bring about different outcomes, each with different probability, desirabil-
ity, and qualities. Given such a non-deterministic interpretation of actions,
the value of performing the action concerning specific criteria depends on the
outcome of the action rather than the mere fact that it has been attempted.

In this paper, we propose an extension of the standard iStar 2.0 [10] mod-
eling notation to model and automatically reason about optimal solutions to
a requirements problem in the presence of non-deterministic actions. To rea-
son about optimality, we need solutions that are not mere specifications, i.e.,
functions, quality constraints, and assumptions for a system-to-be, but rather
policies, that is, choices of actions to be taken under given circumstances in
order to fulfill stakeholder goals. Accordingly, in this work, a solution to a
requirements problem is a policy rather than a specification. The iStar 2.0
concepts for modeling agent action, tasks, are accompanied by effects, which
are special constructs that describe alternative outcomes that emerge from

Modelling and Reasoning about Uncertainly in Goal Models 3

their performance. Higher-level goal and quality criteria satisfaction is defined
through the use of AND/OR decompositions and contribution links based on
such effects. Diagrammatic and tabular representations are proposed for rep-
resenting probabilities and values of effects and combinations thereof. These
extensions allow the translation of the resulting model into DT-Golog, a lan-
guage for describing decision-theoretic action theories [48,49]. Through DT-
Golog’s automated reasoning tool, we can identify policies using tasks from
the goal model that maximize expected value, taking into account both the
probabilities of task outcomes and the values of these outcomes with respect
to multiple criteria and the relative importance of such criteria. The reasoning
exercise is most useful for design-time exploration and analysis of domains
featuring complex actor operations and is aimed at improved understanding
of the domain and increased accuracy of the model. We demonstrate the ex-
tension and the reasoning practice using an example inspired by the iStar 2.0
guide. To evaluate and further explore the technique we perform simulation
and sensitivity analyses, as well as a scalability study.

The paper extends our earlier publication on the matter [33] in several
ways including (a) complete treatment and presentation of the translation
from Goal Models to DT-Golog, (b) a proposal to diagrammatically present
the proposed extensions, (c) an exploration of probability-maximizing (in ad-
dition to just expected utility-maximizing) reasoning, (d) a new case and its
analysis and validation through simulation, (e) an approach to performing sen-
sitivity analysis for utility elicitation, (f) new, extended tool scalability anal-
ysis. The translation details specifically allow further independent validation,
tool development, and extension of the framework by the research community.

The paper is organized as follows. In Section 2 we review the goal modeling
language we adopt and motivate the proposed extensions and techniques. In
Section 3 we present the proposed extension, while in Section 4 we discuss
the practice of automatically reasoning with it. Section 5 provides details of
the translation from the extended goal model to DT-Golog, and in Section
6 we describe the steps we took to further evaluate and understand the pro-
posed technique, including simulation, sensitivity, and scalability analysis. We
present related work in Section 7 and conclude in Section 8.

2 Background and Running Example

2.1 Goal Models

The goal models we consider in this work are based on the i* family [3,52] and
specifically the latest iStar 2.0 standard [10]. An example of such a model can
be seen in Figure 1. The model in the Figure is inspired by the guiding example
of the iStar 2.0 document [10]. In that model, the intentions and tasks related
to booking and securing reimbursement for a trip by a research student are
modeled. Here we consider a more elaborate case of reimbursement. Specifi-
cally, the researcher in question is assumed to have a last-minute opportunity

4 S. Liaskos, S. M. Khan and J. Mylopoulos

Authorization
Obtained

Fill in
paper form

(ppr)

Application
Prepared

Fill in
on-line form

(onl)

Authorization
Offerred

Committee
Authorizes

(cmt)

Head-of-Dept
Authorizes

(head)

Tickets
Booked

Book Non-
Refundable

Tickets (nRef)

Travel
Organized

pre

pre

Researcher

Success
Chance

help
hurt

Increase
Efficiency

help

Reduce
Cost

help

Maintain
Privacy

hurt

hurt

Book
Refundable
Tickets (ref)

Avoid
Money Loss

hurt

Task

Goal

Quality

Actor

Actor
Boundary

...

Positive/Negative
Contribution Link

AND
Refinement

OR
Refinement

 Legend

...

help/hurt

...

Fig. 1 Goal Model

to attend a research meeting. The researcher contemplates whether attending
that meeting is worth the time and effort to travel there and decides that she
would go only if she secures a reimbursement for that. However, given that
this is last-minute, she should first book the tickets and then apply for the au-
thorization needed for the reimbursement. Such authorization is not certain.
She applies for it by filling a form and also adding a short research proposal
and then submits it to either a committee or the head of the department,
who operate on different budgets. Applying through the committee is, in some
cases, more likely to lead to an approval but takes more time. Specifically, if
the application is filled using a paper form, it is reviewed by a different, more
lenient subcommittee, compared to when it is filled on-line. That option is bet-
ter than letting the head of the department approve it, as the latter manages a
smaller budget but still receives many requests. On the other hand, having the
entire committee know the actor’s research endeavors may be uncomfortable
to the researcher.

In the model, goals (e.g. ‘Tickets Booked’), that is, states of affairs desired
by actors (represented using circular elements – e.g. ‘Researcher’), are mod-
eled through oval-shaped elements and recursively refined into subgoals and
eventually tasks [10]. The latter, depicted through hexagon-shaped elements
represent actions that an actor wants to be executed to achieve the goals as
per the refinement structure, such as ‘Book Refundable Tickets’ in the figure.
The cloud-shaped elements are qualities (also: quality goals, we use the two
terms interchangeably), i.e. attributes for which an actor desires some level of

Modelling and Reasoning about Uncertainly in Goal Models 5

achievement. Qualities can be precise, i.e., allow for readily measurable and
clear-cut criteria of achievement, such as ‘Errors reduced by 10%’ or imprecise
as in ‘Reduce Errors’ – both types are relevant in our work. Modeling goals
in the absence of a precise definition for their satisfaction reflects the need to
represent and reason about qualities of options in the early stages of analyz-
ing a problem and/or when getting objective evidence of satisfaction is not
possible.

Goal refinement is represented through AND-refinement and OR-refinement
links. The AND-refinement implies that every sub-goal of the parent goal
must be fulfilled for the parent goal to also be considered fulfilled. The OR-
refinement signifies that fulfillment of one of the sub-goals suffices for assuming
that the parent goal is fulfilled as well. Furthermore, quality goals can be the
targets of contribution links, labelled with help or hurt. A help (respectively
hurt) link signifies that if the origin of the link is satisfied or performed, this
constitutes evidence of satisfaction (resp. denial) of the destination. Contri-
bution links offer a rough indication of how a choice of an option within an
OR-decomposition affects our belief about the satisfaction of a quality goal.
For example, an alternative that includes {nRef,onl,head} (referring to the
abbreviations in the diagram of Figure 1) is preferable if we are interested in
the goal ‘Reduce Cost’, due to the presence of nRef but not good for ‘Success
Chance’ due to the presence of head. Thus, depending on our priority between
those two high-level goals, the above or some other alternative is suitable for
the top goal.

Note finally that, to remind us that all the above intentional elements are
desired by an actor (‘Researcher’), the elements are included within the scope
of the actor boundary associated with the specific actor.

2.2 Probabilistic Effects of Tasks

Traditionally, goal models do not consider uncertainty concerning task execu-
tions and their impact on goal fulfillment. In reality, however, tasks do not
always have the same outcome. Some tasks which have a unique success out-
come may fail, and other tasks have multiple possible outcomes each with a
different probability. Recognizing that tasks are of this nature, requires us to
adopt a different view of how we model and reason with them within goal
models.

Let us go back to our example of Figure 1 and explore how probabilities
become relevant, by also adding detail to the example. Any task in the model
such as ‘Book Refundable Tickets’ always carries a probability of not being
performed properly for a variety of reasons. For example, the researcher may
have thought they booked it but they forgot to finish the booking, they may
have booked the wrong flight or time, or the company promising the booking
may not deliver. In consequence, ‘Tickets Booked’ and, by extension, ‘Travel
Organized’ are not guaranteed to succeed.

6 S. Liaskos, S. M. Khan and J. Mylopoulos

Alternative tasks ‘Fill in paper form’ and ‘Fill in online form’ also face the
risk of failure for the application to reach its destination. In addition, while
the actor can generally consider online forms to be more efficient, that will not
turn out to be the case in the presence of errors and problems while completing
it, including an unavailable server, lost passwords, etc. So the convenience of
filling in an online form is only enjoyed with a certain probability; frustration
and delays are experienced with a different probability. In that case, filling in a
paper form may be more convenient, even when problems emerge that require
help from the appropriate administrative officer. In other words, contributions
to qualities can depend on the possible outcomes of the task from which the
contribution originates, in a way that, in turn, affects the preferability of the
task against other tasks.

While the previous tasks may unintentionally fail due to, e.g., error and
mishaps, tasks ‘Committee Authorizes’ and ‘Head-of-Dept. Authorizes’ are ex-
pected to succeed or fail with a probability, by the nature or design of the
underlying process or system. For example, both authorization tasks may as-
sume a fixed success rate. Importantly, the probabilities of success may depend
on probabilistic events captured elsewhere in the model. In our case, recall that
paper applications are more likely to be accepted than online applications when
sent to a committee. Online applications may have a better fate with the head
of the department. In light of this information, the relationship between the
choice of authorization body and ‘Success Chance’ becomes more complex.

Note, finally, the choice between buying refundable and non-refundable
tickets. The task ‘Book Non-refundable Tickets’ helps ‘Reduce Cost’ based on
the idea that non-refundable tickets are less expensive. In practice, however,
the dilemma between refundable and non-refundable could be a comparison
between two more nuanced refund schedules (e.g., 50% refund for a 20% lower
purchasing price versus 80% refund at original price), in a way that decision of
which choice affects ‘Reduce Cost’ the most depends on what is the likelihood
that a refund will be needed, even when the actor is willing to take a risk.

To be able to express and reason with probabilistic effects of tasks and the
impact of various outcomes on the satisfaction of goals and qualities, we in-
troduce a series of decision-theoretic extensions, presented in the next section.

3 Goals, Probabilities and Utilities

3.1 Overview

We now turn our focus to the extensions we introduce to the standard goal
modeling language. The core of an extended model contains a set of tasks T ,
a set of goals G and a set of quality goals O as per the iStar 2.0 specification
[10]. The following concepts are then introduced:

– A set D of domain predicates.
– A set Et of effects for each task t ∈ T ; the effects are individuals or sets of

elements drawn from D.

Modelling and Reasoning about Uncertainly in Goal Models 7

Effect Profile

Priority
Table

Quality

1

0..1

0..1

1..*

1..*

1..*

1

1

1

1..*

1 1..* Utility Group

Domain
Predicate

Effect Group

Quality

includes

includes

describes effects

Fluent

1

1

Nature
Action

1

1

1

1

Stochastic
Action

1 2..*

Effect

1..*

1

Task

iStar 2.0 Concepts
Decision Theoretic Extension Concepts
DT-Golog Concepts

Legend

Utility Profile

0..*

1..*

1

1..*

1

can have
1

1..*

Goal

Procedure

1

0..*
1

0..*

1

1

Fig. 2 Metamodel showing the extensions. Key concepts are annotated with the symbol
used in the translation Algorithms 1, 2, 3 and 4 to denote the set of the concept instances
in a specific model. In the algorithms, subscripts are used to denote specific subsets, e.g. Et
is the set of effects connected to task t. The complete iStar 2.0 metamodel can be found in
the iStar 2.0 Language Guide [10].

– A set Pt of effect profiles for each task t ∈ T , called the effect group of
t. An effect profile is an effect augmented with a probability value and a
condition under which the value holds.

– A set Uo of utility profiles for each quality o ∈ O, called the utility group
of o. A utility profile contains a utility value with respect to o and the
condition, a formula over D, under which the utility value holds.

– Effect groups and utility groups can be represented diagrammatically or
tabularly. In the latter format, they take the form of effect tables and
utility tables, respectively.

A meta-model demonstrating the new concepts and how they relate is
shown in Figure 2. We next describe the above in more detail.

3.2 Domain Predicates and Probabilistic Effects

Our first concern is to introduce constructs to represent what is true in the
environment before, after, or independent of the performance of tasks. The
set of domain predicates D is introduced for that purpose. Domain predicates
typically represent the fact that, in the process of attempting to fulfill the root
goal, a task has been performed and an effect has occurred as the result of such
performance. For example, we could use domain predicates ‘Non-Refundable
Tickets Booked’, ‘Paper Submitted’, or ‘Committee Denied Authorization’ to
denote outcomes of tasks ‘Book Non-Refundable Tickets’, ‘Fill in paper Form’
and ‘Committee Authorizes’. However, any kind of contextual information can
also be captured and used for reasoning irrespective of tasks, such as ‘Travel

8 S. Liaskos, S. M. Khan and J. Mylopoulos

Fill in
paper form (ppr)

Application
Prepared

Fill in
on-line form (onl)

Authorization
Signed

Committee
Authorizes (cmt)

Head-of-Dept
Authorizes (head)

Tickets
Booked

Book Non-
Refundable

Tickets (nRef)

Book
Refundable
Tickets (ref)

Paper
Submitted

Paper Lost

0.7

0.1

Cmt. Granted Cmt. Denied

eff

eff
eff eff

+
eff

Head
Granted

Head Denied

Text0.7
0.3

++
Online

Submitted

0.89 0.01+Ref. Tickets
Booked Ref. Tickets

Failed to Book

0.95

0.05

+
eff

Non-Ref. Tickets
Booked

Non-Ref. Tickets
Failed to Book

0.95

0.05

+

Efficiency
[Auth Choice]

0.5

Efficiency
[Application Prep]

1.0

Privacy

0.8

0.7

1.0

0.2

Authorization
Obtained

Travel
Organized

pre

pre

Reduce
Cost

Paper Submitted
with Problems

0.2
Paper Submitted

with Problems

Online Lost

0.2

0.1

0.4

Avoid
Money Loss

0.0

1.0

Ref. Tickets
Booked

Non-Ref. Tickets
Booked

Paper
Submitted

Paper Submitted
with Problems

 Legend

Effect Group

...
Effect

(task attaining)

...
+

... ...

pre

Precedence
Link

Negative
Precedence Link

eff

Effect Link

0.8

Utility Link
Effect

(non attaining)

Effect/Utility Table
defined elsewhere

npr

Fig. 3 Effect Model for Tasks

Season High’, ‘Number of Applicants High’, ‘Actor Dislikes Computers’, ‘Uni-
versity Closed’. The space S = 2D of all possible combinations of truth values
of the set of all domain predicates D, represents the space of all possible stages
of a process towards fulfilling the root goal – though not all such stages are
necessarily reachable given temporal constraints.

Tasks have the capability of causing changes to domain predicates effec-
tively resulting in transitions within S. As we argued above, however, this
rarely happens in a deterministic way. Rather, each task t has the potential of
affecting the truth value of a number of domain predicates Qt ⊆ D and each
with a different probability. We call these domain predicates effect predicates
of t. The probabilistic effects (or simply effects) of tasks are tuples et = (t, ~qt)
forming a set Et, where t is the task in question, ~qt a set of elements from Qt
that the effect makes true leaving all other elements of Qt unaffected.

For example, task t = ‘Book Refundable Tickets’ is associated with two
effect predicates Qt = {‘Ref. Tickets Booked’,‘Ref. Tickets Failed to Book’},
representing success and failure respectively. Upon performance of the task,
effects e1t = (t, {‘Ref. Tickets Booked’}) and e2t = (t, {‘Ref. Tickets Failed to
Book’}) may happen with different probabilities and turn the domain predi-
cates mentioned in the effect true, leaving the rest of the domain predicates
unaffected. Note that, for clarity and uniformity, we represent negative effects
with designated predicates, (e.g. ‘Task Failed’) rather than negations of suc-
cess predicates (such as ¬‘Task Succeeded’). Our formalization ensures that
only one of these effects is realized after the occurrence of the associated task.

Modelling and Reasoning about Uncertainly in Goal Models 9

To associate probabilities with effects we use effect profiles. An effect profile
is a triple (et, φct , p), signifying that, upon performance of t, effect et will
happen with probability p if φct is true, where φct is a condition formula
built from a subset of predicates Ct ⊂ D that are relevant to the probability
definition of effects for t; we call these the condition predicates of t. Thus, in
the above example t = ‘Book Refundable Tickets’ is associated with two effect
profiles, (e1t , true, 0.95), (e2t , true, 0.05). The effect profiles Pt associated with
a task t are grouped together to signify this association, forming an effect
group. The probabilities of the effect profiles of an effect group that share the
same condition formula should add up to 1; as is the case in the above example.

An additional component of effect groups associated with task t is the
attainment formula φattt , constructed using elements from Qt. The attainment
formula represents the conditions under which the tasks can be considered to
be successfully performed, in a way that can inform the satisfaction status of
the parent and other high-level goals. Thus the attainment formula of task
t = ‘Fill in paper form’ is φatt

t = ‘Paper Submitted’ or ‘Paper Submitted With
Problems’.

Let us now see how we can diagrammatically visualize effects, effect profiles
and effect groups and map them with tasks. For effects we use beliefs, a con-
struct borrowed from the original GRL language [51]. These are represented as
elliptical shapes in the effect model of Figure 3. Each belief element represents
an effect and the elliptical shape contains the set ~qt ∈ 2Qt the effect concerns;
in the example, they all contain one predicate. Individual effects are grouped
together as effect profiles into an effect group through a connection link to a
common solid dot and an annotation on that link signifying the correspond-
ing probability. Such representation of effect groups is preferable when Ct is
empty, hence φct = true. The association of the task with its effect group is

signified through effect links
eff−−→ drawn from the task to such an effect group.

Attainment formulae can be represented diagrammatically as well. In the ex-
ample of Figure 3, color coding of the outline of the belief shapes signify which
effects of the exclusive disjunction are considered to be task attaining, i.e. their
satisfaction implies satisfaction of the attainment formula.

Whenever Ct is non-empty, meaning that the probabilities of the effects of
a task depend on the truth status of other domain predicates, effect groups
are difficult to represent diagrammatically. In that case, we use effect tables to
represent effect groups. In Figure 4, such tables are shown. Each table mentions
the task t it concerns, the set of affected domain predicates Qt (“Affects”), and
the a set of condition predicates Ct (“Depends on”). The table is populated
with an exhaustive list of effect profiles, i.e., combinations of φct formulae,
predicate sets ~qt constituting effects, and the probability p of each. The tables
also contain attainment formulae when diagrammatic representation thereof
is difficult.

To see a complete example of an effect table, consider task ‘Committee
Authorizes’. The task introduces a complex set of effects with a non-empty Ct
in which the probability that the committee grants the authorization depends

10 S. Liaskos, S. M. Khan and J. Mylopoulos

Task: Fill in Paper form
Affects: Paper Submitted, Paper Submitted
with Problems, Paper Lost
Depends on: -

Effect Profiles
ID Effect p
1. Paper Submitted 0.7
2. Paper Submitted with Problems 0.2
3. Paper Lost 0.1
Attainment Formula: Paper Submitted or
Paper Submitted with Problems

(a)

Task: Committee Authorizes
Affects: Cmt. Granted, Cmt. Denied
Depends on: Fill in Paper Form, Fill in Online form.

Effect Profiles
ID Condition Effect p
1. Fill in Paper Form Cmt. Granted 0.9
2. Cmt. Denied 0.1
3. Fill in Online Form Cmt. Granted 0.5
4. Cmt. Denied 0.5
Attainment Formula: Cmt. Granted

(b)

Quality: Efficiency [Auth Choice]
Depends on: Cmt. Granted, Cmt. Denied,
Head Granted, Head Denied
 Condition u
1. Cmt. Granted 0.5
2. Head Granted 1.0
3. Cmt. Denied 0.5
4. Head Denied 1.0

(c)

Quality: Reduce Cost
Depends on: Cmt. Granted, Cmt. Denied, Head Granted, Head
Denied, Ref. Tickets Booked, Non. Ref Tickets Booked
 Condition u
1. Cmt. Grnt. or Head Grnt. Ref. Tickets Booked 0.7
2. Cmt. Grnt. or Head Grnt. Non. Ref. Tickets Booked 1.0
3. Cmt. Den. or Head Den. Ref. Tickets Booked 0.7
4. Cmt. Den. or Head Den. Non. Ref Tickets Booked 0.0

(d)

Pr
io

rit
ie

s

 Reduce Cost 0.3
 Increase Efficiency

Efficiency [Application Prep] 0.9
Efficiency [Auth Choice] 0.1

0.2

 Maintain Privacy 0.3
 Avoid Money Loss 0.2

 (e)

Fig. 4 Examples of effect tables [(a) and (b)], utility tables [(c) and (d)] and priority table
(e)

on whether it was an online or paper form. Due to its complexity, the resulting
effect group is difficult to be represented diagrammatically and, hence, a table-
looking annotation is added in Figure 3, to inform of the existence of a detailed
effect table outside the diagram. That effect table is shown in Figure 4(b). The
table shows how, for example, the effect {‘Cmt. Granted’} is different when
‘Fill in paper form’ is performed (0.9) from when ‘Fill in online form’ has
been performed (0.5). Note that, for brevity, instead of condition predicates,
the names of tasks are used in the table, implying reference to the attainment
formula of the task. Thus, in our case condition ‘Fill in paper form’ stands for
its attainment formula ‘Paper Submitted’ or ‘Paper Submitted with Problems’,
as per Figure 4(a).

Finally, two additional kinds of links are introduced to the goal diagram,

the
pre−−→ link and the

npr−−→ link – the former seen in both Figures 1 and 3. The
links can be drawn from any goal or task to any other goal or task, provided
that origin and destination are not part of the same path to the root. The
former link, which we call precedence link, indicates that the destination task
(resp. goal) cannot be performed (resp. attempted) unless the origin has been
performed (task) or satisfied (goal) – as per the attainment formula. A goal is
considered attempted, if any of the leaf level tasks that have that goal as an

Modelling and Reasoning about Uncertainly in Goal Models 11

ancestor is executed. Thus, a precedence link towards a goal is a shorthand
for multiple precedence links towards each of the leaf level tasks under that

goal. Likewise, the negative precedence link
npr−−→ indicates that the destination

task (resp. goal) cannot be performed (resp. attempted) if the origin has been
performed (task) or satisfied (goal).

3.3 Probabilistic Goal Satisfaction, Utilities and Preferences

Interpreting tasks as probabilistic implies that overlaying goals, which tasks
are meant to satisfy, are also achieved by a certain probability. Satisfaction
of hard goals is defined by way of constructing conjunctions and disjunctions
of leaf-level task attainment formulae, in a way that mirrors the AND/OR
refinement structure. For example each of ‘Application Prepared’ and ‘Autho-
rization Signed’ has a probability of success equal to the probability of the
attainment formulae of the tasks chosen to perform for fulfilling each of the
goals. Satisfaction of goal ‘Authorization Obtained’, in turn, is the product
of the probabilities calculated for the aforementioned goals. Traversing the
AND/OR tree upwards, we see that the root goal, e.g. ‘Travel Organized’ in
our case, has a probability of success based on the choices made at the OR-
decompositions, which, in turn, imply the choice of different tasks at the leaf
level and, as such, different probabilities of success at that level.

Satisfaction of quality goals is also assumed to depend on the outcome of
the tasks rather than the mere fact that they were attempted. For example,
it is relevant to say that booking non-refundable tickets hurts ‘Avoid Money
Loss’, if we assume that the purchasing of such tickets was successful. If ticket
purchase actually fails (e.g. the travel agent lost the order), money loss does
not occur, and the contribution is not relevant. As another example, not shown
in the figure, it may be known to the agent that flying with company A is a
gamble comfort-wise: sometimes it is an extremely comfortable experience,
while other times it is not. Hence, task ‘Book with Company A’ makes a differ-
ent contribution to quality goal ‘Travel Comfort’ depending on the effect (e.g.
‘Flight Comfortable’ vs. ‘Flight Uncomfortable’) in a way that it is difficult to
draw the contribution without explicating these effects.

In the effect model of Figure 3, the original quality goals of Figure 1 have
been refined, replaced, and/or abstracted and a different kind of contribution
links now connect effects or effect groups with quality goals. To represent the
impact of task effects to a quality goal o we define the utility function uo of the
goal to be a mapping from a combination of truth values of domain predicates
to the real interval [0,1]: uo : S 7→ [0, 1]. Naturally, a subset Co ⊆ D of the
domain predicates affects the value of uo. Thus, each combination of truth
values for the elements from Co implies a different satisfaction value for the
quality goal in question, 1.0 associated with full satisfaction and 0.0 associated
with no satisfaction. We represent uo as a collection Uo of utility profiles, i.e.,
triples (o, φico , u

i
o) of the quality goal o in question, the truth value combination

12 S. Liaskos, S. M. Khan and J. Mylopoulos

of domain predicates from Co in the form of a formula φico , and a utility value
uio. We call such a collection of utility profiles, utility group.

In simple cases in which Co consists of a small set of mutually exclusive
predicates, the corresponding utility profiles can be represented diagrammati-
cally as in Figure 3. A special kind of links, utility links are utilized to represent
a utility profile, decorated with the utility value of quality goal o when the
origin effect or effect group is true. For example, for quality goal ‘Privacy’,
the utility link from the effect group of o = ‘Committee Authorizes’ is deco-
rated with 0.2, meaning that uo = 0.2 if ‘Committee Authorizes’ is performed
irrespective of the actual effect. Note that although utility links are akin to
contribution links, we prefer here to treat them as a separate construct due to
their specific semantics and quantitative labeling.

When larger numbers of predicates affect uo, diagrammatic representation
is difficult. Thus, in a way similar to that of effect tables, we define utility
tables in which the utility profiles of uo are exhaustively listed. In Figures
4(c) and 4(d) we see examples of such utility tables for goals ‘Efficiency [Auth
Choice]’, which is also represented diagrammatically in Figure 3, and ‘Reduce
Cost’ which is too complex to be represented diagrammatically.

Through utility tables we are able to map each state s ∈ S to a utility value
uo(s) with respect to each quality goal o. To obtain a total utility value U for
each state in S, the individual uo’s need to be combined to one global quality
value. We follow the preference specification approach introduced in our ear-
lier work [30,31,35] and combine individual utilities through the formation of
(nested, if needed) linear combinations.

Given a set of quality goals o1, o2, . . . , oi of interest and w1, w2, . . . , wi
weights reflecting their relative importance, the total quality U of a state s
is simply U(s) =

∑
i wi × uoi(s). One way to represent such combinations

is through a third kind of table, priority tables, as seen in Figure 4(e). For
example, given the table, In a state s in which:

uReduceCost(s) = 0.7
uEfficiency[ApplicationPrep](s) = 0.2
uEfficiency[AuthChoice](s) = 0.1
uAvoidMoneyLosses(s) = 1.0
uPrivacy(s) = 0.8

... the total utility is:

U(s) = 0.3 · uReduceCost(s)

+ 0.2 · [0.9 · uEfficiency[App.Prep](s) + 0.1 · uEfficiency[AuthChoice](s)]

+ 0.3 · uPrivacy(s) + 0.2 · uAvoidMoneyLosses(s)

= 0.3 · 0.7 + 0.2 · [0.9 · 0.2 + 0.1 · 0.1] + 0.3 · 0.8 + 0.2 · 1.0
= 0.688

As we discuss below, hierarchies of such priority distributions can be elicited
following, e.g., AHP-like pairwise comparisons, as we have also shown in [30],
or other techniques [45].

Modelling and Reasoning about Uncertainly in Goal Models 13

4 Reasoning with the Extended Model

With the goal model appropriately extended we are now in the position to
automatically reason about optimal solutions of the goal tree on the basis of
maximizing global utility, as specified in the utility and priority tables, taking
into account the probability by which the utility will be observed as per the
probability tables. For this purpose, we adopt DT-Golog [9,49], a tool that
combines Golog-style [47] action theory-based high-level program execution
and reasoning with Markov Decision Processes (MDPs) [50] to allow for the
generation of policies that maximize cumulative expected utility.

At the level of the extended goal model we can think of a policy as a
conditional task sequence, dictating what choice of action an agent should
make at each stage of a process of fulfilling the root goal. Specifically a policy
π would have the following form:

π = t; if (t ’s outcome = e1
t) then π1

else if (t ’s outcome = e2
t) then π2

. . .

else if (t ’s outcome = ek
t) then πk

where π1, . . . , πk are policies or elementary tasks t, the latter being either a
task from the goal model, or one of two reserved instructions stop, denoting
execution failure, or nil meaning the executing agent should just do noth-
ing. The above is simply a concise representation of a DT-Golog policy that
the DT-Golog reasoner returns when given the appropriate translation of the
corresponding extended goal model. The policy can then be given to an exe-
cuting agent to allow such agent decide what action to perform in each stage
of a process to fulfil the root goal. The policy maximizes cumulative expected
utility in a sense that repeated policy-compliant executions bring about, on
average, higher utility than repeated executions of any other policy.

Let us consider the model of our example as extended in Figure 3 and
the tables in Figure 4. For these specific numbers (Scenario 1) DT-Golog will
return the top left policy of Figure 5, where the conditional task sequence
constituting the policy is represented graphically. The policy implies that, in
repeated occurrences of the need to fulfill the root goal, whenever there is a
choice for booking the tickets, the researcher should book refundable ones,
whenever there is a choice of mode of submission, she will submit the appli-
cation online and whenever there is a choice to select authorization body, she
will choose the head of the department. With this strategy, her probability of
succeeding (i.e. having a ticket, a successfully submitted application, and the
authorization, as per the root goal decomposition) would be 0.66 and the cu-
mulative expected utility is 0.55. The 1.0−0.66 = 0.34 probability refers to any
combination of task performances that can go wrong, including not being able

14 S. Liaskos, S. M. Khan and J. Mylopoulos

ref
refFailed

refBooked

onl
head

granted
nil

stop
denied

submitted

submitted
with problems

stop

failed

Scenario 1
(u = 0.55, p = 0.66)

nRef
nRefFailed

nRefBooked

ppr
cmt

granted
nil

stop
denied

submitted

submitted
with problems

stop

failed

nRef
nRefFailed

nRefBooked

onl

submitted

submitted
with problems

stop

failed

head
granted

nil

stop
denied

ref
refFailed

refBooked

ppr
cmt

granted
nil

stop
denied

submitted

submitted
with problems

stop

failed

Scenario 2
(u = 0.77, p = 0.77)

Scenario 3
(u = 0.61, p = 0.77)

Scenario 4
Policy 1/2

(u = 0.56, p = 0.66)

In policy 2/2:
"ref"

Fig. 5 Simplified DT-Golog policies for Scenarios (1)-(4). Paths that lead to stop states
have been abbreviated for simplicity.

to book the ticket, having the application lost, and having the authorization
request denied.

If her goal was exclusively minimizing costs, we would update the priority
table so that Reduce Costs has weight 1.0 making all other weights 0.0 (Sce-
nario 2). In that case the output is the policy on the top right of Figure 5: the
actor would buy a non-refundable ticket and then apply through paper form
and have the authorization granted by a committee. The probability of suc-
cess is now higher at 0.77, thanks to seeking authorization from a committee
using a paper form. This explains the reasoner’s confidence to recommend a
non-refundable ticket. The expected utility is the same number, 0.77, as the
value of the specific outcome – if we do not normalize for its probability of
occurrence – is 1.0. However, the actor may still want to minimize the loss
from having the reimbursement request denied. By reducing Reduce Costs’s
weight to 0.7 and adding weight 0.3 to Avoid Loss Possibility (Scenario 3), the
optimal becomes the one seen on the bottom left of Figure 5, which is equally
likely to succeed but with lower expected utility, due to the risk-averse choice.
In other words, in repeated executions of the strategy, the actor would, on av-
erage, pay more than what they would if they remained to the non-refundable
strategy. However, the money loss event will always be the minimum possible.

As a final scenario (Scenario 4), assume that the actor is not interested in
Reduce Cost (so, now, weight is set to 0.0) but is interested in Privacy (0.6),
and Efficiency (0.4). There are now two optimal policies one of which can be
viewed at the bottom right of Figure 5 and the other one – not depicted here
for simplicity – is identical except that instead of rRef, ref is considered. In
order to safeguard her privacy and efficiency, the actor appears to need to
follow a policy of a slightly lower success probability. Note that choice of rRef
or ref is irrelevant to expected utility in that ‘Reduce Cost’ does not weigh
in the priority specification.

Modelling and Reasoning about Uncertainly in Goal Models 15

Interestingly, DT-Golog can be tweaked in terms of the criteria it uses to
base its optimality calculations [49]. Specifically, by default and in accordance
with MDP theory, policies are calculated on the basis of maximization of cu-
mulative expected utility. However, we can change this objective function to
e.g. be more reliant on the probability of success. For example, if we base the
decisions exclusively on maximizing success probability, for Scenario 1 prior-
ities, DT-Golog returns policies that involve actions [nRef,ppr,cmt] (U =

0.37, p = 0.77) and [ref,ppr,cmt] (U = 0.46, p = 0.77), which have
poorer utility but maximize probability. Note that here and in subsequent sec-
tions we use the notation [t1, t2, t3, . . .] to refer to a more complex policy using
a branch that contains task-attaining tasks – omitting the detailed policy for
simplicity.

Through the exploration process we described in this section, analysts are
able to investigate solutions that best match elicited priorities and qualities
of interest. Probability is accounted both in the calculation of the optimal, as
possible total utility values are factored by the probability that these values
occur, and in assessing how likely the optimal policy is to succeed. In what
follows, we describe how the extended goal model is translated to DT-Golog
to allow for such reasoning.

5 Translating to DT-Golog

5.1 DT-Golog Basics

Overview. DT-Golog [9,49] is a decision-theoretic extension of the high-level
agent programming language Golog [29], which is, in turn, based on the sit-
uation calculus [47], a language for modeling and reasoning about dynamic
domains. More specifically, DT-Golog incorporates Markov Decision Processes
(MDPs) [50] in Golog’s reasoning infrastructure, enabling the integration of
programming and decision-theoretic planning. On one hand, DT-Golog allows
the specification of a high-level program that cuts down the search space by
prescribing a partial policy: the agent can only adopt policies that are consis-
tent with the execution of the program. On the other hand, decision-theoretic
planning in DT-Golog allows the programmer to specify uncertain worlds and
probabilistic actions subject to the optimization of expected utility.

In the following, we briefly describe the aspects of DT-Golog that are
essential for understanding the subsequent translation procedures, referring
the reader to the respective literature for more details [49]. The following are
a summary of the concepts we introduce below:

– Elementary Concepts: fluents, actions and situations.
– Axioms: action precondition axioms and successor-state axioms.
– Program Constructs: including procedures and sequences.
– Decision Theoretic Features: stochastic actions, nature actions, reward pred-

icates and probability predicates.
– The outputs of DT-Golog: policies.

16 S. Liaskos, S. M. Khan and J. Mylopoulos

Elementary Concepts. The core of DT-Golog consists of constructs pre-
scribed by the situation calculus: fluents, actions and situations. Fluents, play-
ing the role of state features and represented through n-ary predicates with
a situation term as their last argument, are understood as properties whose
value can vary from situation to situation due to the performance of actions.
For example, fluent ticketBooked(traveler, location, s) holds in situation s as a
result of an action of submitting a booking order. Actions are first-order terms
signifying specific activity performed by agents, e.g. bookTicket(traveler, loca-
tion). A situation is also a first-order term that denotes a sequence of actions,
those that have been performed in the history of this situation. In particular
the function symbol do(a, s) denotes the situation which results from perform-
ing action a in situation s. A special constant S0 denotes the initial situation,
one where no action has been performed. Finally, there is a special predicate
Poss(a, s) used to state that action a is executable in situation s.

Axioms. A set of axioms D over the above basic constructs are then
specified in order to describe the domain. From these, the most important are
action precondition axioms that tell us when actions are possible and successor-
state axioms that describe how fluent values change due to the performance
of actions. The former are defined for each action α, and are of the form

∀s. Poss(α, s)↔ Πα(s) (Action Precondition)

signifying that performance of the action α in some situation s is possible if
and only if some formula Πα is true in situation s. Successor-state axioms, on
the other hand, are defined for each fluent and are of the form

∀a, s. f(~x, do(a, s))↔ Φf (~x, a, s) (Successor-State Axiom)

where f is an n-ary fluent symbol, ~x represents its n arguments, and Φf is a
formula that intuitively says that the fluent f will be true after the performance
of action a, if and only if, either a is an action that enables f and the conditions
under which a brings about f hold in situation s, or f was already true in s
and a did not turn it false.

Program Constructs. Having the background action theory D defined
using the above set of axioms, languages in the Golog family further allow the
development of high-level programs that describe behavior to be followed by
agents while abiding by the action theory. Constructs found in most procedural
languages are used for constructing Golog programs. Relevant to our purposes
are primitive actions, defined as above, procedures δ, sequences (of actions
or other procedures) denoted as (δ1; δ2), non-deterministic choices of actions
(denoted as (δ1 | δ2)), tests/wait for conditions (denoted by φ?) and if-then-
else conditionals.

In executing programs written using the above constructs, the Golog in-
terpreter finds an execution of the specified high-level program relative to
the action theory D. The presence of non-deterministic choices within such
programs, allows Golog to behave in part as an AI planner, searching for a

Modelling and Reasoning about Uncertainly in Goal Models 17

legal sequence of actions that amount to a legal execution of the high-level
non-deterministic program such that the action theory is satisfied.

Decision Theoretic Features. The above features are found in all mem-
bers of the Golog family. DT-Golog augments these with an additional com-
ponent, an optimization theory, in which non-deterministic choices are made
with respect to maximization of a decision-theoretic objective function – by
default, the cumulative expected utility. To achieve this, DT-Golog extends the
standard Golog features as follows.

Firstly, to the (deterministic) agent actions of core Golog, which are called
nature actions in the context of DT-Golog, stochastic actions are added to
denote exogenous events. Each stochastic action α is associated with a finite
set of deterministic nature actions αi. We use a set of nature actions to rep-
resent the actions that might have actually happened due to the influence of
nature when α was attempted; hence the use of the term “nature”. Successor-
state axioms are provided for deterministic nature actions directly, but not
for stochastic actions. The probability predicates prob(αi, pi, s) are used to as-
sign probabilities pi to each such nature action αi in situation s. Note that the
probabilities pi can be simple numerical values or complex numerical functions
of fluent values holding in the particular situation s. Further, reward predicates
reward(r, do(αi, s)) assign a reward value to situations, actions or both.

Policies. In the face of non-deterministic choices, DT-Golog’s reasoning
engine searches for an optimal policy that maximizes the total accumulated
expected utility defined as a sum of the products of the reward and the prob-
ability that this reward occurs when following a certain action trajectory.
The policy π returned by the interpreter is a conditional Golog program1 of
(roughly) the form [49]:

a; senseEffect(a); if φ1 then π1

. . .

. . .

else if φk−1 then πk−1

else (φk)?; πk

... where πi are policies and φ’s are outcomes of the senseEffect(a) actions.
The latter, sense-effect actions, are actions that the policy executing agent
performs in order to identify the nature action ai that was evoked by the
stochastic action. The outcome of the sense-effect action is registered through
a sense-condition axiom of the form senseCond(ai, φ), that holds if φ is a
logical condition that identifies the occurrence of nature’s action ai. This way,
each branch of the policy is conditioned on a test formula that identifies the

1DT-Golog’s definition of a policy is slightly different from the usual concept of a non-
stationary Markov policy [50], which is a function mapping each state and a decision epoch
to an action. In particular, DT-Golog policies prescribe an action only in those states that
are reachable from the initial state (that corresponds to the initial situation S0).

18 S. Liaskos, S. M. Khan and J. Mylopoulos

nature’s outcome that was implemented. Accordingly, the choice is dictated
by the nature and not by the agent.

To acquire a high-level view of how the DT-Golog policy is calculated
and appreciate the meaning of cumulative expected utility maximization we
mention here the Bellman optimality equation [49,50]:

Vn(si) = R(si) + max
a
{
∑
sj

Pr(si, a, sj)Vn−1(sj)}

In the above, R(s) is the reward gained by reaching state s, Pr(si, a, sj) is
the probability of transitioning to state sj after executing action a at state si
while Vn(s) is the calculated cumulative expected utility of the process after n
steps, where V0(s) = R(s). This basic MDP formulation shows how the value of
a given state depends on the respective value of subsequent states, calculated
recursively up to a horizon, multiplied by the probability of reaching each such
subsequent state, while also making action choices that maximize such value.

DT-Golog combines such MDP optimization approach with Golog pro-
gram execution, where Golog situations play the role of states, the MDP re-
ward function is represented through the predicate reward(r, s) and the tran-
sition probabilities are captured through the nature action probability clauses
prob(αi, pi, s). The details and nuances of this synergy are not of direct rel-
evance here and we refer the reader to the DT-Golog sources for a detailed
presentation of DT-Golog semantics and the exact relationship to the standard
MDP formulation [49].

Note that, for our purposes, the off-line version of the DT-Golog interpreter
is used, in which the optimal policy is identified prior to execution. However,
on-line versions of DT-Golog exist [15,49] in which sensing or other exogenous
actions or events can be interleaved with action execution and trigger policy
recalculation.

We now turn our focus to the translation of the probabilistic goal mod-
els into a DT-Golog specification – readers interested in more details on the
Situation Calculus, Golog, and DT-Golog are referred to the corresponding
literature [29,47,48,49].

5.2 From Goal Models to DT-Golog

To allow reasoning about goal alternatives in light of probabilistic effects we
translate it into a DT-Golog specification. The translation is such that it can
be automated allowing analysts to perform the subsequent reasoning activities
without having any knowledge of the DT-Golog formalisms. For illustration
purpose, we sketch how the translation is possible based on the example of
Figure 6 translated into DT-Golog specifications as described in Figures 7
and 8. The general translation procedures can be found in Algorithms 1, 2, 3
and 4. The DT-Golog translation of the running example can be found in the
accompanying technical report [32].

Modelling and Reasoning about Uncertainly in Goal Models 19

Algorithm 1: Translating Tasks and Effects
Let G be the set of hard-goals, T the set of leaf-level tasks, Et the set of

probabilistic effects of task t and Qt the effect predicates of a task t.

1 ST ← ∅; /* initialize the set of stochastic actions */

2 F ← ∅; /* initialize the set of satisfaction fluents */

3 N ← ∅; /* initialize the set of nature actions */

4 SC ← ∅; /* initialize the set of sense conditions */

/* add a stochastic action at for each task in T ; add a fluent φet and a

nature action ait for each effect et of t; set up t’s attainment

formula */

5 for t ∈ T do
6 ST ← ST ∪ {at};

/* for each domain predicate */

7 for qt ∈ Qt do
8 F ← F ∪ {φqt}; /* add satisfaction fluent φqt */

9 Nφqt
← ∅; /* a set of actions that affect it */

10 end
11 for et ∈ Et do
12 N ← N ∪ {ait}; /* add nature action ait for et */

13 SC ← SC ∪ {senseCond(ait, scait
)}; /* scait

signifies performance of ait

in the resulting policy */

14 foreach qt ∈ Qt mentioned in et do
15 Nφqt

← Nφqt
∪{ait};/* keep track of actions ait affecting φqt */

16 end

17 end
/* attainment formula below constructed based on effect table;

constituent atoms are replaced with corresponding satisfaction

fluents and may involve other elements from D */

18 φattt ← attainment formula for t;

19 end
20 ST ← ST ∪ {af}; /* add the final stochastic action */

21 N ← N ∪ {as-ef , af-ef
}; /* add the nature actions for af */

22

/* set up hard-goal g’s attainment formula */

23 for g ∈ G do
/* attainment formula below reflects the AND/OR structure of the

decomposition and is grounded on attainment formulae of leaf level

tasks; construction through recursion omitted here for simplicity */

24 φattg ← attainment formula for g;

25 end
26

Translating the elementary constructs. The translation of the ele-
mentary goal modeling constructs into DT-Golog ones is performed as follows
(Lines 1-21 of Alg. 1). First, each leaf level task t is translated into a stochas-
tic agent action at (Line 6). An additional stochastic agent action af is also
produced (Line 20), playing the role of the final action. The final action is in-
troduced to allow consideration of rewards only at the final stage of the action
sequence, allowing for more accurate calculation of the expected utility – this
will become clearer below. For each such stochastic action, we also introduce

20 S. Liaskos, S. M. Khan and J. Mylopoulos

a set of nature actions ait each distinctly representing each of the possible ef-
fects et ∈ Et due to the execution of at (Line 12). For each such action we
also include a sense-condition clause, that associates the nature action with a
fluent (Line 13). As we saw, these sense conditions are used for describing the
resulting policy to a run-time policy execution environment.

Each task t is also associated with as many satisfaction fluents φqt as the
effect predicates (Line 8), each of which is true if the nature action that was
actually performed made it so – we see below how we represent this through a
successor-state axiom. For each task t, an attainment formula φt is also defined
to denote what combinations of domain predicates make the task satisfied;
this is simply a translation of the task’s attainment formula grounded on the
corresponding fluents (Line 18). Similarly, a DT-Golog attainment formula φg
is introduced to represent the goal-level attainment formula of higher-level
hard-goal g, in turn grounded on satisfaction formulae φt of leaf-level tasks
(Lines 22-26).

Thus in Table 1 of Figure 7, task t2 of Figure 6 has been translated into four
nature actions denoting the four different effects of t2 constructed, as per the
table, through combinations of the predicates Qt2 = {s-e2, s-e′2, f -e2, f -e′2}.
Actions as-e2,s-e′2 and as-e2,f-e′2 are examples of how such nature actions are
denoted based on the effects they bring about. The final action af is associated
with two nature actions as-ef and af-ef (Line 21). Note that in these examples
the s- and f - prefixes denote success and failure of that action, respectively,
but meanings alternative to success and failure can be utilized depending on
the specific problem. Further, Table 2 of Figure 7 shows how the attainment
formulae from Figure 6 are represented using simple DT-Golog axioms.

Precondition Axioms. For each nature action, we specify an action-
precondition axiom. In particular, if there is an incoming

pre→ link to a task
node t from a goal or task h, then the attainment formula of h is added as a
conjunct to the preconditions of all the associated nature actions ait (Line 6
of Algorithm 2). Moreover, if there is an incoming

npr→ link to the task node t,
then the negation of the attainment formula for the source node of this link is
added as a conjunct to the preconditions of ait (Line 10). In the absence of any
such links, these actions are specified to be always executable. The resulting
formulae are assigned to the special predicate Poss(a, s), which, as we saw,
denotes that action a is executable in situation s (Line 12).

In Table 3 of Figure 7, we specify the preconditions of the tasks of Figure 6.
We see below how we treat precedence links targeting higher-level hard goals.

Successor-State Axioms. For each satisfaction fluent φqt associated with
effect predicates of task t, we need a successor-state axiom that succinctly
encodes both direct effects and non-effects and specifies exactly when the fluent
changes. Such axioms are generated according to Lines 16-24 of Alg. 2. In short,
a satisfaction fluent will retain its truth value unless one of the associated
nature actions is performed, which will necessarily make it true. The nature
actions ait associated with the fluent are known by examining if q is a domain
predicate that is part of the effect associated with ait – see again Lines 14-16
of Alg. 1.

Modelling and Reasoning about Uncertainly in Goal Models 21

g2

g3

t5

t2

t3

t4

t1

o2
o1

g1

+

-
-OR

AND

pre

pre

pre

+

Fig. 6 Translation by Example

An example is shown in Table 4 of Figure 7. Thus, for t2 there are four
axioms, each describing how each satisfaction fluent constructed from Qt2
becomes or remains true.

Procedures. For each goal g, we also introduce a DT-Golog procedure
procg, which comprises of a test action φ? that waits for the preconditions of
the procedure to hold, followed by some program δ. The precondition requires
that conjunction of all incoming

pre→ links must be satisfied and the disjunction
of all incoming

npr→ links must not be satisfied. If g is AND-decomposed, δ
consists of the interleaving of its subtasks and subgoal procedures. On the other
hand, if g is OR-decomposed, the program δ consists of the non-deterministic
choice between its various subgoals and subtasks. The generation of procedures
is described in Algorithm 3.

In Table 5 of Figure 7, the translation of the AND/OR structure of Figure 6
through applying these ideas can be seen as an example. Note that (a‖b‖c) de-

22 S. Liaskos, S. M. Khan and J. Mylopoulos

Table 1: Actions and Fluents
Task Stochastic Action Nature Action Fluent
t1 a1 as-e1 , af-e1

φs-e1
, φf-e1

t2 a2
as-e2,s-e′2

, as-e2,f-e′2
φs-e2

, φf-e2

af-e2,s-e′2
, af-e2,f-e′2

φs-e′2
, φf-e′2

t3 a3 as-e3 , af-e3
φs-e3

, φf-e3

Table 2: Attainment Formulae:
Task/Goal Axiom

t1 φt1
↔ φs-e1

t2 φt2
↔ φs-e2

∧ φs-e′2
t3 φt3

↔ φs-e3
g1 φg1

↔ φt1
∨ φg2

g2 φg2
↔ φt2

∧ φt3
∧ φt4

Table 3: Action Precondition Axioms:

Task Precondition Axioms

t1
Poss(as-e1 , s)↔ true
Poss(af-e1

, s)↔ true

t2

Poss(as-e2,s-e′2
, s)↔ true

Poss(as-e2,f-e′2
, s)↔ true

Poss(af-e2,s-e′2
, s)↔ true

Poss(af-e2,f-e′2
, s)↔ true

t3
Poss(as-e3 , s)↔ φt2

(s) ∧ φg3
(s)

Poss(af-e3
, s)↔ φt2 (s) ∧ φg3 (s)

- Poss(as-ef , s)↔ φg1

- Poss(af-ef
, s)↔ φg1

Table 4: Successor State Axioms:

Task Successor State Axioms

t1
φs-e1

(do(a, s))↔ φs-e1
(s) ∨ a = as-e1

φf-e1
(do(a, s))↔ φf-e1

(s) ∨ a = af-e1

t2

φs-e2
(do(a, s))↔ φs-e2

(s) ∨ a = as-e2,s-e′2
∨ a = as-e2,f-e′2

φf-e2
(do(a, s))↔ φf-e2

(s) ∨ a = af-e2,s-e′2
∨ a = af-e2,f-e′2

φs-e′2
(do(a, s))↔ φs-e′2

(s) ∨ a = as-e2,s-e′2
∨ a = af-e2,s-e′2

φf-e′2
(do(a, s))↔ φf-e′2

(s) ∨ a = as-e2,f-e′2
∨ a = af-e2,f-e′2

t3
φs-e3 (do(a, s))↔ φs-e3 (s) ∨ a = as-e3
φf-e3

(do(a, s))↔ φf-e3
(s) ∨ a = af-e3

− φs-ef
(do(a, s))↔ φs-ef (s) ∨ a = as-ef

φf-ef
(do(a, s))↔ φf-ef (s) ∨ a = af-ef

Table 5: Procedures:
Goal Procedures

g1 procg1
def
= [(a1|procg2); af]

g2 procg2
def
= [¬φt5

?; (a2||a3||a4)]

Fig. 7 Examples of DT-Golog Specifications for Figure 6

notes the non-deterministic choice between all possible interleaving of actions
a, b, and c – though some may not be feasible due to lower-level precedence
constraints. Note also that the top-level procedure is augmented with the final
action af at the end, in a way that no policy is successful without concluding
with that action.

Once the core Golog aspect has been developed as above, the decision-
theoretic component is added by defining the probability distributions and
the reward functions as follows.

Modelling and Reasoning about Uncertainly in Goal Models 23

Algorithm 2: Generating Axioms
Let G be the set of hard-goals, T the set of leaf-level tasks, Et the set of

probabilistic effects of task t and Qt the effect predicates of a task t.

/* set up precondition axioms for nature actions */

1 APA ← ∅; /* initialize the set of action precondition axioms */

2 for n ∈ N do
3 ψn ← true;

4 Let InPre be the set of nodes from which there is an incoming
pre→ to t;

5 for i ∈ InPre do
6 ψn ← ψn ∧ φatti ; /* φatti is attainment formula for i */

7 end

8 Let InNpr be the set of nodes from which there is an incoming
npr→ to t;

9 for i ∈ InNpr do
10 ψn ← ψn ∧ ¬φatti ; /* φatti is attainment formula for i */

11 end
12 APA ← APA ∪ {Poss(n, s)↔ ψn};
13 end

/* φroot below is the attainment formula of the root goal */

14 APA ← APA ∪ {Poss(as-ef , s)↔ φroot,Poss(af-ef , s)↔ φroot};
15

/* set up successor-state axioms for satisfaction fluents */

16 SSA ← ∅; /* initialize the set of successor-state axioms */

17 for φe ∈ F do
18 ψe ← φe(do(a, s))↔ φe(s);
19 Let Nφe be the set of nature actions that make φe true; /* a task is

associated with various nature actions as described above */

20 for n ∈ Nφe do
21 ψe ← ψe ∨ a = n;
22 end
23 SSA ← SSA ∪ {ψe};
24 end

Probabilities. Recall that effects are used for the construction of effect
profiles, which are triples of the form (eit, φ

i
ct , pi) representing the probability

of effect et occurring with probability pi, if φict is true, once task t is performed.
For each such effect profile we introduce predicates of the form prob(ait, pi, s),
where ait is the nature action associated with effect eit (see Line 12 of Algorithm
1) whose probability we define to be pi for each situation s (Lines 1-4 of
Algorithm 4). The formula is written in the form prob(ait, pi, s) if φict(s), i.e.
the pi probability is assigned in situation s if φict is true in situation s.

Finally we assign the final action to be certainly successful. Table 6 of
Figure 8 shows the probability definitions for nature actions related to tasks
t1, t2 and t3 of Figure 6.

Rewards. The reward function is calculated in a very similar way, with
the difference that, since a reward is a unique value that characterizes an entire
solution, values from individual reward tables are merged together based on
the given quality goal preference profile. Recall that a priority specification
describes the relative importance of each of the top-level goals. At the same
time, for each truth assignment for the effects, the satisfaction function of each

24 S. Liaskos, S. M. Khan and J. Mylopoulos

Algorithm 3: Translating the Goal Structure
Let G be the set of hard-goals

/* set up procedures for each goal g ∈ G */

1 for g ∈ G do
2

/* first set up the preconditions of g */

3 Preg ← true; /* initialize the preconditions of g */

4 Let InPre be the set of nodes from which there is an incoming
pre→ to g;

5 for i ∈ InPre do
6 Preg ← Preg ∧ φatti ; /* φatti is attainment formula for i */

7 end

8 Let InNpr be the set of nodes from which there is an incoming
npr→ to g;

9 for i ∈ InNpr do
10 Preg ← Preg ∧ ¬φatti ; /* φatti is attainment formula for i */

11 end
12

/* now deal with the structure for g */

13 Let c be the first child of g;
14 Let Cg be the rest of the children of g;
15 δg ← c;
16 if g is AND-decomposed then
17 for c′ ∈ Cg do
18 δg ← δg ‖ c′;
19 end

20 else
21 for c′ ∈ Cg do
22 δg ← δg | c′;
23 end

24 end
25

26 δg ← Preg?; δg ; /* add preconditions of g to δg */

27

28 if g is the top level goal then
29 δg ← δg ; af ;
30 end

31 end

quality has a specific value. Gathering all those values, multiplying them by
the weight of their corresponding quality in the preference specification, and
adding them up gives us the overall reward value for the situation. Lines 6-15
of Algorithm 4 describe the logic of the translation.

In the reward formulation, the rationale for the inclusion of the final ac-
tion af finally becomes apparent. Specifically, we want DT-Golog to assign
values only to complete policies, i.e. policies in which af has been included,
which allows for accurate calculation of expected utility. Omission of af will
add to the final utility value the values of intermediate states, which may be
counter-intuitive in most applications of our framework, in which successful
performance of a task brings about a reward only once and for the entire pol-
icy. This is indeed the case in our running example. However, for problems in
which effects can be undone by subsequent tasks, it may be more pertinent

Modelling and Reasoning about Uncertainly in Goal Models 25

Algorithm 4: Translating Effect Tables/Groups and Utility Tables

Let Pt be the set of effects profiles of task t
Let O be the set of quality goals oi, each with global priority wi
Let Uo be the set of utility profiles of quality goal o

1 RA ← ∅; /* initialize the set of probability clauses */

2 for p ∈ Pt do
/* p is of the form (et, φict , pi) where each et maps 1-1 with nature

action ait */

3 RA ← RA∪ {prob(ait, pi, s)↔ φict (s)};
4 end
5

6 for o ∈ O do
7 ψo(r, s)← false;
8 ψō(s)← true;

/* each v below is of the form (q, φico , ui), where q the quality, ui a

utility value, φico a condition under which ui is obtained */

9 for v ∈ Uo do
/* if φico (s) then unify r with the corresponding ui */

10 ψo(r, s)← ψo(r, s) ∨ (φico (s) ∧ (r = ui));

/* collect also the negations of the conditions */

11 ψō(s)← ψō(s) ∧ ¬φico (s);

12 end
/* if none of the conditions apply unify r to zero (0) */

13 ψô(r, s)← ψo(r, s) ∨ (ψō(s) ∧ (r = 0));

14 end
/* unify all the r’s from each quality, then weight-average them based on

the corresponding priorities; note the role of φs-ef (s) */

15 reward(rT , s)↔ φs-ef (s) ∧ ψô1 (r1, s) ∧ ψô2 (r2, s) ∧ . . . ∧ (rT =
w1 · r1 + w2 · r2 + . . .) ∨ ¬φs-ef (s) ∧ (rT = 0)

to keep track of the values of the intermediate states by simply omitting any
mention of the final action af in the translation.

For the example of Figure 6 the translation can be seen in Table 7 of Fig-
ure 8; noting that, for comprehensibility, disjunctions are written in separate
clauses as in a Prolog-style program. In a situation in which s-e1, s-e

′
2, s-e3 are

true and s-e2 is false, by looking at the tables, o1 is satisfied by 0.5 and o2
by 0.75, and given their relative importance 0.8 and 0.2, the total reward is
0.5 · 0.8 + 0.2 · 0.75 = 0.55.

Policies. As we saw, given the procedures and domain theory, DT-Golog’s
reasoner will return a policy that includes: stochastic actions a, senseEffect(a)
actions to identify the nature action ai that was evoked by the stochastic ac-
tion, test conditions (φ)? and if-then-else conditionals that lead to different
choices of subsequent actions based on the nature actions that result from a.
The abstract policies introduced in Section 4 are simplified representations of
the same policy construct with reference to tasks and effects that correspond to
the mentioned action and fluent. Specifically, to produce the high-level repre-
sentations, we: (a) remove the senseEffect(a) actions, (b) abbreviate branches
that inevitably lead to failure/stop, and (c) remove references to af .

26 S. Liaskos, S. M. Khan and J. Mylopoulos

Table 6: Probabilities:
Task Clause

t1
prob(as-e1 , 0.8, s)
prob(af-e1

, 0.2, s)

t2

prob(as-e2,s-e′2
, 0.7, s)

prob(as-e2,f-e′2
, 0.15, s)

. . .

t3

prob(as-e3 , 0.9, s) if φs-e′2
(s)

prob(af-e3
, 0.1, s) if φs-e′2

(s)

prob(as-e3 , 0.7, s) if ¬φs-e′2
(s)

prob(af-e3
, 0.3, s) if ¬φs-e′2

(s)

.
- prob(as-ef , 1.0, s)

prob(af-ef
, 0.0, s)

Table 7: Rewards:

Reward Clause
reward(0.5 · 0.8 + 0.5 · 0.2, s)

if φs-e1
(s) ∧ φs-e2

(s) ∧ φs-e′2
(s) ∧ φs-e3

(s) ∧ φef
(s)

reward(0.0 · 0.8 + 0.5 · 0.2, s)
if φs-e1

(s) ∧ φs-e2
(s) ∧ φs-e′2

(s) ∧ ¬φs-e3
(s) ∧ φs-ef

(s)

reward(0.5 · 0.8 + 0.7 · 0.2, s)
if φs-e1

(s) ∧ φs-e2
(s) ∧ ¬φs-e′2

(s) ∧ φs-e3
∧ φs-ef

(s)

reward(0.0 · 0.8 + 0.7 · 0.2, s)
if φs-e1

(s) ∧ φs-e2
(s) ∧ ¬φs-e′2

(s) ∧ ¬φs-e3
∧ φs-ef

(s)

. . .
reward(0.0, s)

otherwise.

Fig. 8 Examples of Probabilities and Rewards for Figure 6

6 Analysis and Evaluation

We now turn our focus to steps we have taken to evaluate and explore the
capabilities and limitations of the proposed modeling and reasoning approach.
We specifically report on (a) a simulation analysis, (b) a sensitivity analy-
sis approach, and a (c) scalability analysis. The simulation code, the models
used for performance evaluation described in this section, as well as DT-Golog
installation and execution instructions, can be found in the accompanying
technical report [32].

6.1 Simulation Analysis

As a first evaluative step for the meaningfulness of the translation procedure
and the tool output, we develop a simulation of our running problem of Figure
1. The program simulates a large number of instances in which the main actor,
the researcher, is confronted with the problem of quickly scheduling a trip and
making the corresponding decisions. Monte-Carlo sampling of outcomes of
stochastic actions is used in each run based on probabilities defined in the
model. Likewise, the reward structure follows the one defined in the extended
goal model of Figures 3 and 4. The simulation calculates success probabilities
by counting the proportion of runs in which the policy led to the achievement

Modelling and Reasoning about Uncertainly in Goal Models 27

0.5

0.6

0.7

0.8

1 2 3 4
Scenario

P
ro

ba
bi

lit
y

(p
)

Group Experimental Random Theoretical

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4
Scenario

U
til

ity
 (

U
)

Group Experimental Random Theoretical

Fig. 9 Calculated (Experimental) vs. Random Policies

1

2

3

4

0.64 0.68 0.72 0.76
Probability (p)

S
ce

na
rio

1

2

3

4

0.6 0.7 0.8
Utility (U)

S
ce

na
rio

Fig. 10 Observed vs. Theoretical Probabilities and Utilities

of the root goal. The expected utility is, likewise, calculated by averaging the
values acquired in each run, including the zero utilities acquired in policies that
led to failure. This calculation is suitable when the model assumes reward upon
the success of the final task in a policy, maintaining a zero reward up to that
point, as is the case in our example model.

The two different scenarios for actor decisions include following the policy
generated by DT-Golog under the same parameters, versus making a random
choice every time. We expect that, if DT-Golog’s proposed policy is optimal,
then, following that policy offers, on average in the long term, a higher total
value than simply making random actions.

For a total of 50 simulations, each including 100 runs, the results acquired
can be seen in Figure 9. As expected, following the suggested policy offers
a higher probability and utility compared to choosing randomly each time.
Further, the probabilities and utilities that DT-Golog calculates fall at all
times within the 95% confidence interval of the observed values, as can be
seen in Figure 10.

6.2 Number Acquisition and Sensitivity Analysis

The presented extension and its use heavily rely on the identification of num-
bers of three kinds: probabilities, utility values, and preference weights.

Within the decision theory literature methods for eliciting probabilities
and utility measures, as well as priorities have long been studied (e.g., [7,

28 S. Liaskos, S. M. Khan and J. Mylopoulos

25]). Probabilities can come in the form of measurements in the domain. In
our running example, the majority of success rates of various tasks (e.g. suc-
cess rate for authorization granting) can be assumed to be available in past
data. Whenever this is not possible, probabilities can be subjective evalua-
tions. Utility values, on the other hand, can be more challenging to identify
[46]. The problem is common in most quantitative goal modeling frameworks,
decision-theoretic or otherwise [3,19]. As has been shown [30], quantitative
contributions can be the results of a sequence of simple AHP-style pairwise
comparisons [26], when certain structural assumptions can be made about the
models. In our diagram, this would imply treating each OR-decomposition
as a separate decision problem and (a) performing pairwise comparisons be-
tween each OR-decomposition alternative with respect to each of the relevant
quality goals or conditions, effectively constructing utility tables such as those
of Figure 4(c-d), (b) performing pairwise comparisons between soft-goals with
respect to the overall quality in meeting the root hard-goal, producing thereby
the preference table of Figure 4(e).

Sensitivity analysis can also assist utility and preference value identifica-
tion. To perform such analysis in our context we start from an initial set of
numbers that yields a specific policy. Then, focusing on a specific utility or
preference value, we identify the policies that DT-Golog would generate if the
value were to be replaced by values in the entire [0.0,1.0] interval, leaving all
other probability, utility, and preference values unchanged. To acquire those
results, a linear traversal of the interval is performed, following a precision step
(e.g. 0.05, i.e., 21 evaluations). The goal is to identify threshold values within
the interval, above and below which different optimal policies are produced.

The results of this analysis for utility values taken from utility tables or
utility links can be seen in the sensitivity chart of Figure 11. The figure shows
an analysis based on Scenario 1 of Section 4, and numbers as in Figures 3 and
4. Each horizontal bar represents a different variable. For example, the top bar
represents the utility value taken from the utility link from ‘Head Authorizes’
to ‘Privacy’. The red vertical bar represents the initial value of the variable in
question (0.8, in our case). The lightly shaded part of the bar represents the
values of the contribution in which the policy is the same as the initial one,
[ref,onl,head] in our case using the notation we introduced in Section 4 for
abbreviating policies. Darker shades show values of the variable in question in
which DT-Golog would produce a different policy, even if all else stayed the
same. The policy to which it would switch is annotated in the corresponding
area. Thus, to switch from [ref,onl,head] to [ref,ppr,cmt] the apprecia-
tion of how well it serves ‘Privacy’ to have the head authorize the application
(first bar from the top) must lower from 0.8 to 0.32, assuming all else stays
equal. Alternatively, the perception of the contribution to privacy when having
a committee to authorize the application must increase from 0.2 to 0.6 (second
bar from the top) for DT-Golog to decide that [ref,ppr,cmt] is now a better
policy, all else being equal. Notice in the diagram that certain contributions
do not seem to have any effect in the determination of the optimal policy, as,
regardless of their value, the optimal policy remains the same.

Modelling and Reasoning about Uncertainly in Goal Models 29

{ref,paper,cmt}

{ref,paper,cmt}

{ref,paper,head}

0.5

1

0.7

0.4

11

0.2

0.20.2

0.80.8

0.24

0.6

0.32

cmt >>
Efficiency[Auth]

head >>
Efficiency[Auth]

paper submitted >>
Efficincy[Prep]

paper with problems
>> Efficincy[Prep]

online submitted >>
Efficincy[Prep]

online with problems
>> Efficincy[Prep]

cmt >> Privacy

head >> Privacy

0.00 0.25 0.50 0.75 1.00

Fig. 11 Sensitivity Analysis for Individual Utility Values

{nonref,online,head}

{nonref,online,head}

{nonref,online,head}

{ref,paper,cmt}

{nonref,paper,cmt}{nonref,online,head}

0.20.2

0.020.02

0.180.18

0.30.3

0.30.30.3 0.49

0.98

0.98

0.06

0.1

Avoid Loss

Efficiency[Auth]

Efficiency[Prep]

Privacy

Reduce Cost

0.00 0.25 0.50 0.75 1.00

Fig. 12 Sensitivity Analysis for Preferences

30 S. Liaskos, S. M. Khan and J. Mylopoulos

To perform such analysis with preferences or contributions that are results
of comparisons (as per [30]), we relax the holding-all-else-constant condition as
follows. Considering a preference table such as that of Figure 4(e), to maintain
a total weight equal to 1.0, when considering an increased (resp. decreased)
weight for one component of the preference by an amount e the other com-
ponents must share a decrease (resp. increase) of the same amount e. More
specifically, when testing sensitivity with respect to the component i of the
preference, by updating its initial value wi into w′i = wi + e, e ∈ [−wi, 1−wi],
then for all other components j 6= i we adjust w′j = wj − e wj∑

k 6=i wk
. Thus, the

share of each of the other components to the overall amount of adjustment is
based on its weight compared to the weight of the other affected components.

Following this approach, the sensitivity chart of the analysis for prior-
ity table of Figure 4(e) can be seen on Figure 12. For example, if we were
to increase ‘Reduce Cost’ from 0.3 to 0.49 the optimal policy switches from
[ref,onl,head] to [nRef,onl,head]. The switch is due to the effect of both
the increase of ‘Reduce Cost’ and the decrease of ‘Avoid Loss’ as per the
above preference-wide adjustment. The same effect would be observed if we
reduced the ‘Avoid Loss’ weight from 0.2 to 0.1. Increasing ‘Reduce Cost’ fur-
ther to 0.63, discounting the other weights accordingly, the policy switches to
[nRef,ppr,cmt].

It may be of value to make identification of the most sensitive parameter
the focal point of this exercise. In our case, it is ‘Avoid Loss’, for which the
value in which we obtain a different policy (0.1) is the closest to its current one
(0.2). In addition, looking at what changes within the policy offers information
with regards to what the weight updates actually affect. In the last example,
it is the choice between a refundable and non-refundable ticket that appears
to be sensitive to parameter fluctuation.

6.3 Scalability

DT-Golog is able to offer us solutions for smaller problems like the one we dis-
cussed in previous sections in fractions of a second. However, MDP problems
are known to be computationally intractable. DT-Golog, thanks to its con-
straining the search/calculation space using pertinent domain information, is
expected to perform well in larger problems. To evaluate this proposition we
developed a number of goal models of different sizes and structures and mea-
sured the amount of time it takes for DT-Golog to produce the optimal policy.
A first set of models is random and is constructed manually from scratch.
A second set of models was based on re-purposing real goal models from a
variety of domains that we have developed in the past, including for a meet-
ing scheduler, an online bookstore, an automatic teller machine as well as a
geriatric clinic. Working manually we combined these models in various ways
to produce larger models. That we used real goal models allows the result-
ing structures to preserve some naturalness. For all probabilities and utilities,
automatically generated random numbers are used.

Modelling and Reasoning about Uncertainly in Goal Models 31

Total Nodes Goals Tasks Precedences Time (sec)
1 20 9 11 4 0.08
2 30 13 17 7 0.00
3 40 17 23 8 0.02
4 50 21 29 9 1.36
5 55 23 32 10 95.20
6 60 25 35 11 354.10
7 65 27 38 12 8031.80
8 70 29 41 13 16819.80
9 80 33 47 16 *

Table 1 Performance Results for Randomly Generated Models (’*’ means no result within
5h)

Total Nodes Goals Tasks Precedences Time (sec)
1 35 20 15 10 0.57
2 40 19 21 12 1.60
3 45 21 24 15 10.73
4 55 25 30 17 285.24
5 65 29 36 21 *

Table 2 Performance Results for Combined Models (’*’ means no result within 5h)

Experiments are run on an Intel ® Core� i7-6700 CPU @ 3GHz x8 with
16GB of RAM running Linux 4.16.0 (Debian 10). The results for the random
and combined realistic models can be seen in Tables 1 and 2, respectively. We
observe that the “knee” in the running time emerges in model sizes between
50 and 60 goals. Up to about 40 goals, reasoning seems to be possible in a
small number of seconds allowing usable exploratory and sensitivity analysis.
We note that the presence of x number of tasks in the model entails an MDP
of x actions and at least 22x states, assuming that each task has a success and
a fail effect, each modeled by the corresponding binary variable. DT-Golog’s
ability to encode detailed domain information through a control program –
in our case the procedure resulting from translating the decomposition tree
– allows concise representation of the problem, ruling out transitions that do
not satisfy precondition axioms, while also enabling quicker identifications of
solutions.

For large models, a strategy to address increased computational time is
through breaking the problem into sub-problems and efficiently solving each.
This is possible when the sub-problems do not depend on each other in any
way. For example, when the top goal is AND-decomposed into two or more
sub-trees with top-level precondition dependencies between each other, the
individual optimal policies can be used to construct a combined optimal one.

6.4 Validity Threats

We now discuss some of the validity threats that emerge from our evaluation
effort, focusing on external and internal validity.

32 S. Liaskos, S. M. Khan and J. Mylopoulos

External validity is concerned with the generalizability of our analysis. In
our case, this concerns the representativeness of the models we have applied the
framework to and the tests we run. Aspects of interest include computational
performance and the pragmatic quality of the language. We have addressed
performance by firstly, randomly generating goal structures, and, secondly,
generating structures by combining existing goal models, so that the result-
ing model preserves some of the naturalness of the original models. In case
there is a class of models that, unbeknownst to the current analysis, possesses
structural characteristics that are drastically detrimental to performance, the
scalability tactics we described above may offer a first line of defense. Prag-
matic quality of the language itself [42], i.e. the ability to develop models
such as the grants adjudication described here or the meeting scheduling ones
described in [33] that are useful for communication and decision making in
real-world settings is a matter that requires extensive empirical work which
we are hoping to conduct in the future.

Let us turn to internal validity, which is concerned with whether evaluation
claims follow from our procedures and the results. The performed simulations
are chosen as evaluative instruments in that they constitute a sanity check
of the translation theory, the tool and its utilization, as well as the way we
interpret its results. While the fact that both the DT-Golog specification and
the simulation (written in R) are produced by the same team and on the basis
of the same probabilistic and reward model can be construed as a validity
threat, the observed consistency between calculated and simulated scenarios
diminishes the chance of important issues with the translation or our inter-
pretation of the results such as misunderstanding of DT-Golog’s constructs or
its definition of optimality. For example, if the optimal policies resulting from
our decision-theoretic analysis did not turn out optimal in the simulation,
this would raise questions with regards to how the DT-Golog specification is
produced and how it is used. While this was not observed in the model we
tried, to rule out coincidental positive results, more and preferably indepen-
dently conducted simulation analyses could be conducted. In fact, given that
simulations may also help identify problems with the models themselves, it
may be a good practice to generally accompany DT-Golog analysis with an
independently developed simulation. We are working on developing toolsets
for supporting such activities. Finally, the development and correctness of the
DT-Golog reasoner itself are discussed at length in the DT-Golog literature
[49].

7 Related Work

The idea to view the performance of tasks and achievement of goals within
goal models as stochastic events has been investigated in the literature. Letier
and van Lamsweerde [28] use the goal model structure to construct probability
functions for probabilistically measuring the achievement of non-functional ob-
jectives. A top-down approach for selecting solutions that optimize such prob-

Modelling and Reasoning about Uncertainly in Goal Models 33

abilistically constructed objectives was later introduced by Heaven and Letier
[20]. These techniques are most suitable when there is a need for analyzing how
various solutions of goal models affect the satisfaction probability of high-level
system goals – we review more work with that goal below. Our work takes ad-
ditional aspects into consideration for when the problem at hand requires more
expressive modeling and analysis – and the resources are available to pursue
such expressiveness. This includes dynamic aspects of agent actions (including
effects and preconditions), combining probability with measures of utility and
preference to allow for a decision-theoretic formulation of the optimality crite-
rion and the generation of agent policies, i.e., ordered action sequences rather
than simple alternative selection within the goal model.

A view of goal models as tools for multi-criteria decision representation is
one that has attracted substantial interest as well. Ma and de Kinderen, for ex-
ample [37], introduce a reference model and a process for performing MCDA
(Multi-criteria Decision Making) using goal models; though not through a
decision-theoretic perspective (e.g., considering probabilities and utilities).
Elsewhere, Nguyen et al. [43] offer an extended goal modeling language for
efficient reasoning with preferences among multiple objectives backed by ef-
ficient optimization modulo theory solvers. While the specific work also does
not consider probabilities and rewards, it is possible that SMT/OMT solvers
promoted in it can be adapted to perform some form of decision-theoretic rea-
soning. This would assume that objective functions and temporal constraints
are formulated in a way that reflects, on the one hand, the probabilistic and re-
ward components of the decision-theoretic aspect and, on the other hand, the
components of the action theory aspect (preconditions, effects, domain facts,
etc.). While such investigation may be warranted by SMT/OMT’s reported
computational performance, DT-Golog is readily suited to satisfy the model-
ing requirements adding also the important ability to refine specifications with
procedures using common imperative constructs.

Earlier, we have utilized various forms of preference-enabled planning for
both reasoning about requirements alternatives and for designing adaptive
software [31,34,35]. In these efforts, priority is given to modeling the action-
theoretic aspect and the efficient generation of agent plans that fulfill pri-
oritized – through preference specifications – high-level objectives. However,
they are generally not concerned with the quantitative representation of un-
certainty, although they feature some notion of utility. Nevertheless, when
modeling uncertainty is not a priority, these approaches offer the advantage
of scalable reasoning through state-of-the-art planners such as HTNs [41]. A
relatively different notion of uncertainty within goal models is proposed by
Horkoff et al. [23]. Rather than modeling uncertainty in the domain, the au-
thors propose a way to model uncertainty in the modeling process, by annotat-
ing modeling elements with tags such as “may” or “var” indicating uncertainty
about respectively the existence or constancy of any element within a model.

The application of MDPs is common in the area of self-adaptive systems.
Solano et al. [14] augment contextual goal models [1] with parametric symbolic
formulae for reliability and cost to effectively allow for MDP style reasoning us-

34 S. Liaskos, S. M. Khan and J. Mylopoulos

ing PRISM [22]. The work has several features that serve self-adaptiveness in-
cluding future parameter values, run-time goal substitution (incompleteness),
contexts that are evaluated at run time, and sensing noise, making it suitable
for later-stage analysis of the adaptive system. Our proposal complements this
work in that it is geared towards design-time exploration and may fit better
analyses earlier in the lifecycle when, for example, analysis of a quality goal
hierarchy is more pertinent. More directly connected to goal modeling, Dell’
Anna et al. [11,12] introduced a framework that utilizes a translation of goal
models into Bayesian Networks (BNs) to allow checking of run-time compliance
to requirements models and support thereby the evolution of a Socio-Technical
System (STS) that is modeled by the goal models. The BNs, developed based
on available system data, encode how various factors, including design-time
assumptions of the analysts, affect the satisfaction of high-level requirements,
in a vein similar to the one followed by Letier et al. [20,28], albeit here with a
stronger focus on adaptation. With such a model in hand, the authors go on
to propose a way to allow run-time automatic revision of STS requirements.
The work is complementary to ours in that it focuses on the development
and structure of the probability distributions of the effects of specific design
decisions and optimize accordingly – comparatively, our probability represen-
tations are restricted to the level of low-level action effects – and incorporate
a run-time automation component. In comparison, our approach is based on
decision-theoretic optimization that includes expressions of the relative value
of the top-level objectives, for when the need for dealing with multiple con-
flicting goals is pronounced. In addition, our proposal appears to be more
expressive at the level of complex interactions of agents with their environ-
ment, modeled through preconditions, effects, (potentially) procedures etc.,
which is useful when the problem at hand involves complex business processes
and agent operations.

In the same context of self-adaptive systems, expressing goal models in
terms of model predictive control (MPC) formulations has been suggested [4]
as a way to calculate optimal adaptations with respect to AHP-elicited pref-
erence aggregations of performance indicators and environmental parameters.
The benefit of MPCs is that they optimize on the basis of future predicted
states of the system. As with work we discussed above [11,12,20,28], the fo-
cus is on macroscopic evaluation of high-level requirements (e.g. that “80%
of participants show up in a meeting”, in the meeting scheduling domain) to
inform low-level run-time adaptations, through what can be seen as a learn-
ing process. These features are complementary to our approach which puts
forth and tackles the problem of reasoning in the presence of complex agent
actions and ordering thereof, leaving run-time adaptation and learning outside
its current scope. Work by Moreno et al. [38], investigates the use of MDPs
within the context of adaptive systems while taking adaptation latency into
account. On the matter of accuracy of probability values, the use of para-
metric MDPs (PMDPs) has been proposed for the analysis of the effects of
perturbations in MDP model probabilities [36]. While the focus of that work is
model-checking of reachability properties rather than enriching requirements

Modelling and Reasoning about Uncertainly in Goal Models 35

goal models with decision-theoretic elements and reasoning capabilities, the
toolset utilized could be suitable for the kind of investigation we here perform
through sensitivity analysis.

Another run-time-focused effort is offered by Bencomo et al. [5,6]. They
apply Dynamic Decision Networks (DDNs), through modeling soft-goals as
chance nodes and contribution links as probabilities that are conditional to
alternative strategies employed as realizations of hard-goals (decision nodes).
Furthermore, Paucar and Bencomo employ partially observable MDPs (POMDPs)
for modeling MAPE-K (Monitor-Analyze-Plan-Execute over a shared Knowl-
edge) adaptive architectures, where, while goal models do not occupy the cen-
ter stage in the model, NFRs (Non-Functional Requirements) are modeled as
the main state-describing variables [18]. Interestingly, the same group has pro-
posed an approach to combine to elicit NFR weighting through P-CNP (Prim-
itive Cognitive Network Process) [45], which may be applicable to priority and
reward elicitation in our proposal. These proposals are, again, geared towards
run-time adaptation offering several features to facilitate such use. Through
the use of claims, for example, a goal modeling construct [5], assumptions
about the operational context are modeled and checked at run-time through
associated monitorable variables. This way, effects to quality goals are predi-
cated on environmental sensing. Our approach can complement such methods
by focusing on design-time solution exploration with an emphasis on expres-
sive power including, e.g., nuanced preconditions, successor state axioms, and
probability and reward schemes, with also a strong focus on expressive poli-
cies. Further comparing the merits and drawbacks of this approach with that
of DDNs in the context of run-time adaptation, specifically on the front of
computational performance, is an interesting topic to pursue. Moreover, the
adoption of POMDPs [18] adds expressiveness in the model, in that the sens-
ing of action outcomes and of the state of the environment is not assumed to
be deterministic, as we do in our plain MDP-based work. It follows, however,
that the choice to work with POMDPs may imply additional modeling and
computational burden.

While in many of the efforts we discussed above the focus is run-time adap-
tation – versus design-time exploration and analysis on which we focus here –
DT-Golog has several features that can allow extension of our work to support
run-time policy calculation and execution. Possibilities include systematic use
of sensing actions and utilization of the full policy, as well as utilization of the
on-line DT-Golog interpreter.

As a final remark, probabilistic model checkers such as PRISM [22] based
on MDPs or Discrete-Time Markov Chains (DTMCs) [16] have been used in
a variety of contexts, particularly for verification of system requirements and
adaptive systems engineering as discussed above. Given this trend, our choice
of DT-Golog over those model checkers, such as PRISM, is worth some jus-
tification. The fundamental difference of DT-Golog from such model checkers
is its Golog component rather than its MDP component, that is, its ability
to allow specification of complex executable programs that go beyond state-
transition specifications. Thus, while we would use PRISM to explore various

36 S. Liaskos, S. M. Khan and J. Mylopoulos

properties of the underlying MDP formulation, translation to DT-Golog gives
us a basis for developing executable modules. The result of our automated
translation to DT-Golog remains on the surface of the expressive power of
Golog and constitutes a skeleton for formalizing and developing the domain
theory in much more detail, including, for example, domain objects (as action
parameters), while loops, or complex conditionals. Given Golog’s expressive
power and its potential use as a programming language, for e.g., simulations
or actual controllers, we found it to be particularly appealing for modeling re-
quirements. Similar translations of goal models to non-decision-theoretic Golog
have been successfully attempted in the past, e.g. by Lapouchnian et al. to
ConGolog [27]. Nevertheless, the merits of model checkers such as PRISM for
a variety of queries and analyses that are not the focus of DT-Golog, make
a study of the translation of our extended goal models into such languages a
worthwhile future project.

8 Concluding Remarks

We presented an extension to the iStar modeling language that allows mod-
eling probabilistic tasks and reasoning about goal satisfaction alternatives on
the basis of optimal expected value, for the purpose of design-time solution
exploration and model analysis. Tasks are augmented with effects describing
their possible outcomes and goal satisfaction is redefined based on such ef-
fects. The extended model is translated into a DT-Golog specification, which
allows identification of optimal policies in terms of both expected utility and
probability of successful execution. We further introduce a sensitivity analysis
procedure and visualization approach that can be used to assist elicitation of
relevant numbers. In our scalability analysis, the reasoning tool is found to
perform reasonably well for models of practical size.

The toolset is particularly useful for design-time analysis of operationally
complex requirements problems, where it is important to understand the risks
associated with specific policy options and incorporate that risk in the defi-
nition of optimality. A very fitting use case is, for example, the early design
of a business process, in which the various actor tasks are stochastic or run a
probability of failure which is important to analyze, while, at the same time,
process analysts have specific conflicting process quality objectives in mind.
We briefly discuss below the possibility of extending this framework to process
languages. Another application area example is that of assisting the design of
self-adaptive systems, especially when there are complex human and/or soft-
ware agent actions involved in the domain of interest.

One of the major advantages of our approach is the utilization of DT-
Golog, which allows for writing imperative style programs of varying degrees
of determinism. Hence, analysts can further refine the result of the translation
to develop accurate models of the domain. Furthermore, compared to related
frameworks, our approach is strongly focused on the generation of policies,
that is sequences of agent actions, and, as such, it allows reasoning about

Modelling and Reasoning about Uncertainly in Goal Models 37

how decisions and outcomes early in the policy affect probabilities, values,
and decisions that take place later, making even small models, like the run-
ning example we considered in this paper, difficult to analyze manually and
unsystematically.

Nevertheless, more complex problems imply more complex effect and utility
tables, making their elicitation and comprehension harder. We perceive this
as the main focus for our future work, which is coping with the elicitation
and representation of complex, conditional effect probabilities and utilities.
Thankfully, a variety of approaches for dealing with this have long existed in
the literature and can serve as a source of inspiration. For example, expected
utility networks (EUNs) [39] and UCP-Networks [8] could allow for modular
representation of probability and utility dependencies in a more compact way
compared to exhaustively specifying the effect and utility relations. Further,
elicitation techniques such as regret-based [46], in which reward is elicited
based on minimization of maximum deviation from optimality seem promising
directions for studying the number acquisition problem.

An additional direction for future investigation is, as we saw, exploring
how the framework can best serve run-time adaptation. One opportunity for
investigation is tapping into DT-Golog’s expressiveness [49] as a way to develop
programs utilizable for making run-time decisions. For example, modulo a
fixed horizon, DT-Golog allows the specification of continuous problems –
compared to episodic ones which goal models describe – and, as mentioned,
can also feature richer representations of the domain. Further, proposed on-
line versions of the interpreter [15,49] allow efficient weaving of planning and
execution which can be useful in run-time adaptive context.

Moreover, our framework is founded on pre-calculated probabilities. In the
absence of initial probabilities, the question that emerges, which is also partic-
ularly relevant for adaptive systems, is how goal models can guide the learning
process for accurate and efficient acquisition of those probabilities, as well as
utilities. It appears that meta-constructs such as, for example, goal fulfillment
episodes might need to be introduced for formulating such analyses.

Finally, it is easy to envision possible adaptation of this framework to
modeling languages beyond goal models, such as BPMN [44], UML Activity
Diagrams [17], or other languages for modeling processes and behavior. Taking
BPMN as an example, the question would be the identification of optimal
decisions within gateways (ie., decision nodes in BPMN) given probabilities
and rewards of success of individual process steps. For such reasoning to be
possible in DT-Golog, the appropriate probabilistic and reward extensions
would need to be introduced in the language, and a translation procedure
would need to be designed, whereby e.g., processes translate to DT-Golog
actions and flow links into precondition axioms. Noting work that has already
been conducted in the field – e.g. using stochastic simulations [13] or PRISM
[21] – an attempt to utilize DT-Golog for decision-theoretic analysis of BPMN
models appears to be very promising.

38 S. Liaskos, S. M. Khan and J. Mylopoulos

References

1. Ali, R., Dalpiaz, F., Giorgini, P.: A goal-based framework for contextual requirements
modeling and analysis. Requirements Engineering 15(4), 439–458 (2010). DOI 10.1007/
s00766-010-0110-z. URL https://doi.org/10.1007/s00766-010-0110-z

2. Amyot, D., Ghanavati, S., Horkoff, J., Mussbacher, G., Peyton, L., Yu, E.S.K.: Evalu-
ating goal models within the goal-oriented requirement language. International Journal
of Intelligent Systems 25(8), 841–877 (2010)

3. Amyot, D., Mussbacher, G.: User Requirements Notation: The First Ten Years, The
Next Ten Years (Invited Paper). Journal of Software (JSW) 6(5), 747–768 (2011)

4. Angelopoulos, K., Papadopoulos, A.V., Silva Souza, V.E., Mylopoulos, J.: Model Pre-
dictive Control for Software Systems with CobRA. In: Proceedings of the 11th Inter-
national Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS’16), pp. 35–46. Madrid, Spain (2016). DOI 10.1145/2897053.2897054. URL
https://doi.org/10.1145/2897053.2897054

5. Bencomo, N., Belaggoun, A.: Supporting Decision-Making for Self-Adaptive Systems:
From Goal Models to Dynamic Decision Networks. In: Proceedings of the 19th Inter-
national Working Conference on Requirements Engineering: Foundation for Software
Quality, pp. 221–236. Essen, Germany (2013)

6. Bencomo, N., Belaggoun, A., Issarny, V.: Dynamic decision networks for decision-
making in self-adaptive systems: A case study. In: Proceedings of the 8th Interna-
tional Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), pp. 113–122. San Francisco, CA (2013). DOI 10.1109/SEAMS.2013.6595498

7. Boland, P.J.: Statistical and Probabilistic Methods in Actuarial Science. Chapman and
Hall – CRC Interdisciplinary Statistics (2007)

8. Boutilier, C., Bacchus, F., Brafman, R.I.: UCP-Networks: A Directed Graphical Repre-
sentation of Conditional Utilities. In: Proceedings of the 17th Conference in Uncertainty
in Artificial Intelligence (UAI’01), pp. 56–64 (2001)

9. Boutilier, C., Reiter, R., Soutchanski, M., Thrun, S.: Decision-Theoretic, High-Level
Agent Programming in the Situation Calculus. In: Proceedings of the 17th Conference
on Artificial Intelligence (AAAI-00), pp. 355–362. AAAI Press, Austin, TX (2000). URL
http://www.cs.toronto.edu/cogrobo/Papers/dtgologaaai00.ps.Z

10. Dalpiaz, F., Franch, X., Horkoff, J.: iStar 2.0 Language Guide. The Computing Research
Repository (CoRR) abs/1605.0 (2016). URL http://arxiv.org/abs/1605.07767

11. Dell’Anna, D., Dalpiaz, F., Dastani, M.: Validating Goal Models via Bayesian Net-
works. In: Proceedings of the 5th International Workshop on Artificial Intelligence
for Requirements Engineering (AIRE), pp. 39–46. Banff, AB, Canada (2018). DOI
10.1109/AIRE.2018.00012

12. Dell’Anna, D., Dalpiaz, F., Dastani, M.: Requirements-driven evolution of sociotechnical
systems via probabilistic reasoning and hill climbing. Automated Software Engineering
26(3), 513–557 (2019). DOI 10.1007/s10515-019-00255-5. URL https://doi.org/10.

1007/s10515-019-00255-5

13. Durán, F., Rocha, C., Salaün, G.: Stochastic analysis of BPMN with time in rewriting
logic. Science of Computer Programming 168, 1–17 (2018). DOI https://doi.org/
10.1016/j.scico.2018.08.007. URL https://www.sciencedirect.com/science/article/

pii/S0167642318303307

14. Félix Solano, G., Diniz Caldas, R., Nunes Rodrigues, G., Vogel, T., Pelliccione, P.: Tam-
ing Uncertainty in the Assurance Process of Self-Adaptive Systems: a Goal-Oriented Ap-
proach. In: Proceedings of the 14th IEEE/ACM International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS), pp. 89–99. Montreal,
Canada (2019). DOI 10.1109/SEAMS.2019.00020

15. Ferrein, A., Fritz, C., Lakemeyer, G.: On-line decision-theoretic Golog for unpredictable
domains. In: Proceedings of the 27th Annual German Conference on AI (KI 2004), pp.
322–336. Ulm, Germany (2004)

16. Filieri, A., Ghezzi, C., Tamburrelli, G.: Run-Time Efficient Probabilistic Model Check-
ing. In: Proceedings of the 33rd ACM International Conference on Software Engineering,
ICSE ’11, pp. 341–350. Waikiki, Honolulu, HI (2011)

17. Fowler, M., Scott, K.: UML Distilled. Addison Wesley (1997)

https://doi.org/10.1007/s00766-010-0110-z
https://doi.org/10.1145/2897053.2897054
http://www.cs.toronto.edu/cogrobo/Papers/dtgologaaai00.ps.Z
http://arxiv.org/abs/1605.07767
https://doi.org/10.1007/s10515-019-00255-5
https://doi.org/10.1007/s10515-019-00255-5
https://www.sciencedirect.com/science/article/pii/S0167642318303307
https://www.sciencedirect.com/science/article/pii/S0167642318303307

Modelling and Reasoning about Uncertainly in Goal Models 39

18. Garcia Paucar, L.H., Bencomo, N.: Knowledge Base K Models to Support Trade-Offs for
Self-Adaptation using Markov Processes. In: Proceedings of the 13th IEEE International
Conference on Self-Adaptive and Self-Organizing Systems (SASO), pp. 11–16. Ume̊a,
Sweden (2019). DOI 10.1109/SASO.2019.00011

19. Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: Formal Reasoning Tech-
niques for Goal Models. In: S. Spaccapietra, S. March, K. Aberer (eds.) Journal on
Data Semantics I, pp. 1–20. Springer, Berlin, Heidelberg (2003)

20. Heaven, W., Letier, E.: Simulating and Optimising Design Decisions in Goal Models.
In: Proceedings of 19th IEEE International Requirements Engineering Conference (RE
2011). Trento, Italy (2011)

21. Herbert, L.T., Hansen, Z.N.L., Jacobsen, P.: SBOAT: A Stochastic BPMN Anal-
ysis and Optimisation Tool. In: M.G. Karlaftis, N.D. Lagaros, M. Papadrakakis
(eds.) Proceedings of the 1st International Conference on Engineering and Applied
Sciences Optimization (OPT-i), pp. 1136–1152. Kos Island, Greece (2014). URL
http://www.opti2014.org/

22. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A Tool for Automatic
Verification of Probabilistic Systems. In: Proceedings of the 12 International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2006),
Lecture Notes in Computer Science (LNCS), vol. 3920, pp. 441–444. Vienna, Austria
(2006)

23. Horkoff, J., Salay, R., Chechik, M., Di Sandro, A.: Supporting early decision-making in
the presence of uncertainty. In: Proceedings of the 22nd International Requirements
Engineering Conference (RE’14), pp. 33–42. Karlskrona, Sweden (2014). DOI 10.1109/
RE.2014.6912245

24. Horkoff, J., Yu, E.: Comparison and evaluation of goal-oriented satisfaction analysis
techniques. Requirements Engineering (REJ) 18(3), 199–222 (2011)

25. Ishizaka, A., Nemery, P.: Multi-criteria Decision Analysis: Methods and Software. Wiley
(2013)

26. Karlsson, J., Ryan, K.: A Cost-Value Approach for Prioritizing Requirements. IEEE
Software 14(5), 67–74 (1997)

27. Lapouchnian, A., Lespérance, Y.: Using the ConGolog and CASL Formal Agent Speci-
fication Languages for the Analysis, Verification, and Simulation of i* Models. In: A.T.
Borgida, V.K. Chaudhri, P. Giorgini, E.S. Yu (eds.) Conceptual Modeling: Foundations
and Applications: Essays in Honor of John Mylopoulos, pp. 483–503. Springer, Berlin,
Heidelberg (2009)

28. Letier, E., van Lamsweerde, A.: Reasoning about Partial Goal Satisfaction for Require-
ments and Design Engineering. In: Proceedings of the 12th International Symposium
on the Foundation of Software Engineering (FSE-04), pp. 53–62. ACM Press, Newport
Beach, CA (2004). URL http://www2.info.ucl.ac.be/people/eletier/

29. Levesque, H.J., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.B.: GOLOG: A logic pro-
gramming language for dynamic domains. The Journal of Logic Programming 31(1-3),
59–83 (1997). DOI 10.1016/S0743-1066(96)00121-5

30. Liaskos, S., Jalman, R., Aranda, J.: On Eliciting Preference and Contribution Measures
in Goal Models. In: Proceedings of the 20th International Requirements Engineering
Conference (RE’12), pp. 221–230. Chicago, IL (2012)

31. Liaskos, S., Khan, S.M., Litoiu, M., Jungblut, M.D., Rogozhkin, V., Mylopoulos, J.: Be-
havioral adaptation of information systems through goal models. Information Systems
(IS) 37(8), 767–783 (2012)

32. Liaskos, S., Khan, S.M., Mylopoulos, J.: Replication Data for: Modeling and Reasoning
about Uncertainty in Goal Models: A Decision-Theoretic Approach (2021). DOI 10.
5683/SP3/R8PGP8. URL https://doi.org/10.5683/SP3/R8PGP8

33. Liaskos, S., Khan, S.M., Soutchanski, M., Mylopoulos, J.: Modeling and Reasoning
with Decision-Theoretic Goals. In: Proceedings of the 32th International Conference on
Conceptual Modeling, (ER’13), pp. 19–32. Hong-Kong, China (2013)

34. Liaskos, S., McIlraith, S.a., Mylopoulos, J.: Towards Augmenting Requirements Mod-
els with Preferences. In: Proceedings of the 24th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE’09), pp. 565–569. Auckland, New
Zealand (2009). DOI 10.1109/ASE.2009.91. URL http://ieeexplore.ieee.org/

lpdocs/epic03/wrapper.htm?arnumber=5431732

http://www.opti2014.org/
http://www2.info.ucl.ac.be/people/eletier/
https://doi.org/10.5683/SP3/R8PGP8
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5431732
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5431732

40 S. Liaskos, S. M. Khan and J. Mylopoulos

35. Liaskos, S., McIlraith, S.A., Sohrabi, S., Mylopoulos, J.: Integrating Preferences into
Goal Models for Requirements Engineering. In: Proceedings of the 10th IEEE Interna-
tional Requirements Engineering Conference (RE’10). Sydney, Australia (2010)

36. Llerena, Y.R.S., Su, G., Rosenblum, D.S.: Probabilistic Model Checking of Perturbed
MDPs with Applications to Cloud Computing. In: Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2017), pp. 454–
464. Paderborn, Germany (2017)

37. Ma, Q., de Kinderen, S.: Goal-Based Decision Making. In: M. Daneva, O. Pastor (eds.)
Proceedings of the 22nd International Working Conference on Requirements Engineer-
ing: Foundation for Software Quality (REFSQ 2016), pp. 19–35. Göteborg, Sweden
(2016)

38. Moreno, G.A., Cámara, J., Garlan, D., Schmerl, B.: Proactive Self-Adaptation under
Uncertainty: A Probabilistic Model Checking Approach. In: Proceedings of the 10th
Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2015), pp. 1–12.
Association for Computing Machinery, Bergamo, Italy (2015). DOI 10.1145/2786805.
2786853. URL https://doi.org/10.1145/2786805.2786853

39. Mura, P.L., Shoham, Y.: Expected utility networks. In: K.B. Laskey, H. Prade (eds.) In
Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence (UAI ’99),
pp. 366–373. Morgan Kaufmann, Stockholm, Sweden (1999)

40. Mylopoulos, J., Chung, L., Liao, S., Wang, H., Yu, E.: Exploring Alternatives During
Requirements Analysis. IEEE Software 18(1), 92–96 (2001)

41. Nau, D.S., Au, T.C., Ilghami, O., Kuter, U., Murdock, J.W., Wu, D., Yaman, F.:
SHOP2: An HTN Planning System. Journal of Artificial Intelligence Research (JAIR)
20, 379—-404 (2003)

42. Nelson, H.J., Poels, G., Genero, M., Piattini, M.: A conceptual modeling quality frame-
work. Software Quality Journal (20), 201–228 (2012)

43. Nguyen, C.M., Sebastiani, R., Giorgini, P., Mylopoulos, J.: Multi-objective reasoning
with constrained goal models. Requirements Engineering 23(2), 189–225 (2018). DOI
10.1007/s00766-016-0263-5. URL https://doi.org/10.1007/s00766-016-0263-5

44. Object Management Group: Business Process Model And Notation (v2.0). Tech. rep.
(2011)

45. Paucar, L.H.G., Bencomo, N.: ARRoW: Tool Support for Automatic Runtime Reap-
praisal of Weights. In: Proceedings of the 25th IEEE International Requirements Engi-
neering Conference (RE), pp. 458–461. Lisbon, Portugal (2017). DOI 10.1109/RE.2017.
58

46. Regan, K., Boutilier, C.: Regret-based reward elicitation for Markov decision processes.
In: Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence (UAI’09),
pp. 444–451. Montreal, QC, Canada (2009)

47. Reiter, R.: Knowledge in Action. Logical Foundations for Specifying and Implementing
Dynamical Systems. MIT Press (2001)

48. Soutchanski, M.: An On-line Decision-Theoretic Golog Interpreter. In: Proceedings of
the 17th International Joint Conference on Artificial Intelligence (IJCAI-2001), pp. 19–
24. Seattle, Washington (2001). URL http://www.cs.toronto.edu/cogrobo/Papers/

onlinedtgi.ps

49. Soutchanski, M.: High-Level Robot Programming in Dynamic and Incompletely Known
Environments. Ph.D. thesis, Department of Computer Science, University of Toronto
(2003)

50. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT Press
(2018)

51. Yu, E.S.: GRL - Goal-oriented Requirement Language. URL http://www.cs.toronto.

edu/km/GRL/

52. Yu, E.S.K.: Towards Modelling and Reasoning Support for Early-Phase Requirements
Engineering. In: Proceedings of the 3rd IEEE International Symposium on Require-
ments Engineering (RE’97), pp. 226–235. Annapolis, MD (1997)

https://doi.org/10.1145/2786805.2786853
https://doi.org/10.1007/s00766-016-0263-5
http://www.cs.toronto.edu/cogrobo/Papers/onlinedtgi.ps
http://www.cs.toronto.edu/cogrobo/Papers/onlinedtgi.ps
http://www.cs.toronto.edu/km/GRL/
http://www.cs.toronto.edu/km/GRL/

	Introduction
	Background and Running Example
	Goals, Probabilities and Utilities
	Reasoning with the Extended Model
	Translating to DT-Golog
	Analysis and Evaluation
	Related Work
	Concluding Remarks

