Name	
rame.	

YorkU email: _____

Student Number: _____

READ THE FOLLOWING INSTRUCTIONS.

- Do not open your exam until told to do so.
- No calculators, cell phones or any other electronic devices can be used on this exam.
- Clear your desk of everything excepts pens, pencils and erasers.
- If you need scratch paper, the last page is blank.
- Without fully opening the exam, check that you have pages 1 through 10.
- Fill in your name, etc. on this first page.
- Show all your work unless otherwise indicated. Write your answers clearly! Include enough steps for the grader to be able to follow your work.
- Do first all of the problems you know how to do immediately. Do not spend too much time on any particular problem. Return to difficult problems later.
- You will be given exactly 60 minutes for this exam.

I have read and understand the above instructions:

SIGNATURE

Multiple Choice. Circle the best answer. No work needed. No partial credit available.

1. (5 points) The compound proposition $(p \lor q) \land (\neg p) \land (\neg q)$ is:

A. Satisfiable.

B. Unsatisfiable.

- 2. (5 points) The negation of $\forall x \exists y (xy = 0)$ is:
 - A. $\forall x \exists y (xy \neq 0)$ B. $\exists x \forall y (xy \neq 0)$
 - C. $\exists x \forall y (xy = 0)$
- 3. (5 points) A proposition logically equivalent to $p \to q$ is:
 - A. $\neg p \rightarrow \neg q$ B. $q \rightarrow p$ C. $\neg q \rightarrow \neg p$

Fill in the Blanks. No work needed. No partial credit available.

4. (5 points) For $A = \{1, z\}$ the powerset is

 $\mathcal{P}(A) = \{\emptyset, \{1\}, \{z\}, \{1, z\}\}$

- 5. (5 points) When x and y are taken for the domain consisting of all integers, the truth value of $\exists x \forall y (xy = y)$ is <u>True</u>.
- 6. (5 points) The union $(1, 10) \cup (11, 13) \cup (9, 12)$ expressed as a single interval is (1, 13)

${\bf Standard \ Response \ Questions.} \ Show \ all \ work \ to \ receive \ credit.}$

7. (10 points) Construct a truth table for the compound proposition $(p \land q) \leftrightarrow ((\neg r) \land q)$.

Solution:

p	q	r	$p \wedge q$	$(\neg r) \land q$	$(p \land q) \leftrightarrow ((\neg r) \land q)$
Τ	T	T	T	F	F
Т	T	F	T	T	T
Т	F	T	F	F	T
Т	F	F	F	F	T
F	T	T	F	F	T
F	T	F	F	T	F
F	F	T	F	F	T
F	F	F	F	F	T

8. (15 points) Show using a chain of logical equivalences that $\neg(p \lor r \lor (\neg p \land q))$ is equivalent to $\neg p \land \neg q \land \neg r$.

Solution:

$$\neg (p \lor r \lor (\neg p \land q)) \equiv \neg p \land \neg r \land \neg (\neg p \land q)$$
$$\equiv \neg p \land \neg r \land (p \lor \neg q)$$
$$\equiv (\neg p \land \neg r \land p) \lor (\neg p \land \neg r \land \neg q)$$
$$\equiv F \lor (\neg p \land \neg r \land \neg q)$$
$$\equiv \neg p \land \neg r \land \neg q$$
$$\equiv \neg p \land \neg q \land \neg r$$

9. (20 points) Prove that $3n^2 + 2$ is even if and only if n is an even integer.

Solution: First we show that if n is even, then $3n^2 + 2$ is even. Suppose n is even, then write n = 2k for some integer k. We then find that

$$3n^{2} + 2 = 3(2k)^{2} + 2$$

= 12k² + 2
= 2(6k² + 1)

and can conclude that $3n^2 + 2$ is even.

We will demonstrate that $3n^2 + 2$ is even implies that n is even by proving the contrapositive. Assume n is odd. So, we write n = 2k + 1 for an integer k. In this case

$$3n^{2} + 2 = 3(2k + 1)^{2} + 2$$

= 3(4k² + 4k + 1) + 2
= 12k² + 12k + 5
= 12k² + 12k + 4 + 1
= 2(6k² + 6k + 2) + 1

and it follows that $3n^2 + 2$ is odd.

10. (10 points) Provide examples of two finite sets A and B so that $|\mathcal{P}(A)| = 8$ and $|A \times B| = 12$. List all members of set $A \times B$ for your chosen sets A and B.

Solution: One possible solution is $A = \{a, b, c\}$ and $B = \{1, 2, 3, 4\}$. The fact that $|\mathcal{P}(A)| = 8$ means |A| = 3 and $|A \times B| = 12$ means |A||B| = 12. In this case the members of $A \times B$ are:

(b,1)	(c,1)
(b,2)	(c,2)
(b,3)	(c,3)
(b,4)	(c,4)
	(b, 1) (b, 2) (b, 3) (b, 4)

11. (15 points) Let x and y be from the domain consisting of all rational numbers. Prove that the statement $\exists !x, \forall y (xy \neq 1)$ is true.

Solution: We first see when x = 0, for any $y \in \mathbb{Q}$ we have that $xy = 0 \cdot y = 0 \neq 1$. Thus we can conclude that $\exists x, \forall y (xy \neq 1)$ is true. We must now show the uniqueness.

Now take any $x \in \mathbb{Q}$ with $x \neq 0$. This means $x = \frac{a}{b}$ for $a, b \in \mathbb{Z}$ with both $a \neq 0$ and $b \neq 0$ (by the definition of a rational number $b \neq 0$, and $a \neq 0$ because $x \neq 0$). For such x we can then take $y = \frac{b}{a}$ which is also a rational number (hence in our domain) and see that xy = 1. Therefore we can conclude that $\exists ! x, \forall y (xy \neq 1)$ is true as desired.

SC/MATH 1019B

Solutions to Test 1A

Oct. 2nd 2018

SC/MATH 1019B

Solutions to Test 1A

Oct. 2nd 2018