Name: \qquad

YorkU email:

\qquad

Student Number:

READ THE FOLLOWING INSTRUCTIONS.

- Do not open your exam until told to do so.

- No calculators, cell phones or any other electronic devices can be used on this exam.
- Clear your desk of everything excepts pens, pencils and erasers.
- If you need scratch paper, the last page is blank.
- Without fully opening the exam, check that you have pages 1 through 10 .
- Fill in your name, etc. on this first page.
- Show all your work unless otherwise indicated. Write your answers clearly! Include enough steps for the grader to be able to follow your work.
- Do first all of the problems you know how to do immediately. Do not spend too much time on any particular problem. Return to difficult problems later.
- You will be given exactly 60 minutes for this exam.

I have read and understand the above instructions:

Multiple Choice. Circle the best answer. No work needed. No partial credit available.

1. (5 points) The compound proposition $(p \vee q) \wedge(p \rightarrow(\neg q))$ is:
A. Satisfiable.
B. Unsatisfiable.
2. (5 points) The negation of $\exists x \exists y(x+y=7)$ is:
A. $\forall x \exists y(x+7=0)$
B. $\exists x \exists y(x+y \neq 7)$
C. $\forall x \forall y(x+y \neq 7)$
3. (5 points) A proposition logically equivalent to $p \rightarrow q$ is:
A. $\neg p \rightarrow \neg q$
B. $q \rightarrow p$
C. $\neg q \rightarrow \neg p$

Extra Work Space.

Fill in the Blanks. No work needed. No partial credit available.
4. (5 points) For $B=\{2, y\}$ the powerset is

$$
\mathcal{P}(A)=\underline{\{\emptyset,\{2\},\{y\},\{2, y\}\}}
$$

5. (5 points) When x and y are taken for the domain consisting of all integers, the truth value of $\exists x \forall y(x y=1)$ is False
6. (5 points) The intersection $(1,10) \cap[2,4] \cap[3,5]$ expressed as a single interval is $[3,4]$

Extra Work Space.

Standard Response Questions. Show all work to receive credit.
7. (10 points) Construct a truth table for the compound proposition $(\neg p) \rightarrow(p \vee q \vee r)$.

Solution:

p	q	r	$\neg p$	$p \vee q \vee r$	$(\neg p) \rightarrow(p \vee q \vee r)$
T	T	T	F	T	T
T	T	F	F	T	T
T	F	T	F	T	T
T	F	F	F	T	T
F	T	T	T	T	T
F	T	F	T	T	T
F	F	T	T	T	T
F	F	F	T	F	F

8. (15 points) Show using a chain of logical equivalences that $\neg(p \vee r \vee(\neg p \wedge q))$ is equivalent to $\neg p \wedge \neg q \wedge \neg r$.

Solution:

$$
\begin{aligned}
\neg(p \vee r \vee(\neg p \wedge q)) & \equiv \neg p \wedge \neg r \wedge \neg(\neg p \wedge q) \\
& \equiv \neg p \wedge \neg r \wedge(p \vee \neg q) \\
& \equiv(\neg p \wedge \neg r \wedge p) \vee(\neg p \wedge \neg r \wedge \neg q) \\
& \equiv F \vee(\neg p \wedge \neg r \wedge \neg q) \\
& \equiv \neg p \wedge \neg r \wedge \neg q \\
& \equiv \neg p \wedge \neg q \wedge \neg r
\end{aligned}
$$

9. (20 points) Prove that $3 n^{2}+3$ is even if and only if n is an odd integer.

Solution: First we show that if n is odd, then $3 n^{2}+3$ is even. Suppose n is odd, then write $n=2 k+1$ for some integer k. We then find that

$$
\begin{aligned}
3 n^{2}+3 & =3(2 k+1)^{2}+3 \\
& =12 k^{2}+12 k+3+3 \\
& =12 k^{2}+12 k+6 \\
& =2\left(6 k^{2}+6 k+3\right)
\end{aligned}
$$

and can conclude that $3 n^{2}+3$ is even.
We will demonstrate that $3 n^{2}+3$ is even implies that n is odd by proving the contrapositive. Assume n is even. So, we write $n=2 k$ for an integer k. In this case

$$
\begin{aligned}
3 n^{2}+3 & =3(2 k)^{2}+3 \\
& =12 k^{2}+3 \\
& =12 k^{2}+2+1 \\
& =2\left(6 k^{2}+1\right)+1
\end{aligned}
$$

and it follows that $3 n^{2}+3$ is odd.
10. (10 points) Provide examples of two finite sets S and T so that $|\mathcal{P}(S)|=16$ and $|S \times T|=16$. List all members of set $S \times T$ for your chosen sets S and T.

Solution: One possible solution is $S=\{x, y, z, w\}$ and $T=\{1,2,3,4\}$. The fact that $|\mathcal{P}(S)|=16$ means $|S|=4$ and $|S \times T|=16$ means $|S||T|=16$. In this case the members of $S \times T$ are:

$(x, 1)$	$(y, 1)$	$(z, 1)$	$(w, 1)$
$(x, 2)$	$(y, 2)$	$(z, 2)$	$(w, 2)$
$(x, 3)$	$(y, 3)$	$(z, 3)$	$(w, 3)$
$(x, 4)$	$(y, 4)$	$(z, 4)$	$(w, 4)$

11. (15 points) Let x and y be from the domain consisting of all rational numbers. Prove that the statement $\exists!x, \forall y(x y \neq 1)$ is true.

Solution: We first see when $x=0$, for any $y \in \mathbb{Q}$ we have that $x y=0 \cdot y=0 \neq 1$. Thus we can conclude that $\exists x, \forall y(x y \neq 1)$ is true. We must now show the uniqueness.

Now take any $x \in \mathbb{Q}$ with $x \neq 0$. This means $x=\frac{a}{b}$ for $a, b \in \mathbb{Z}$ with both $a \neq 0$ and $b \neq 0$ (by the definition of a rational number $b \neq 0$, and $a \neq 0$ because $x \neq 0$). For such x we can then take $y=\frac{b}{a}$ which is also a rational number (hence in our domain) and see that $x y=1$. Therefore we can conclude that $\exists!x, \forall y(x y \neq 1)$ is true as desired.

[^0][^1]
[^0]: Extra Work Space.

[^1]: Extra Work Space.

