Name:	
YorkU email:	
Student Number:	

READ THE FOLLOWING INSTRUCTIONS.

- Do not open your exam until told to do so.
- No calculators, cell phones or any other electronic devices can be used on this exam.
- Clear your desk of everything excepts pens, pencils and erasers.
- If you need scratch paper, the last page is blank.
- Without fully opening the exam, check that you have pages 1 through 10.
- Fill in your name, etc. on this first page.
- Show all your work unless otherwise indicated. Write your answers clearly! Include enough steps for the grader to be able to follow your work.
- Do first all of the problems you know how to do immediately. Do not spend too much time on any particular problem. Return to difficult problems later.
- You will be given exactly 60 minutes for this exam.

I have read and understand the above instructions:	
	SIGNATURE

Multiple Choice. Circle the best answer. No work needed. No partial credit available.

- 1. (5 points) The compound proposition $(p \lor q) \land (p \to (\neg q))$ is:
 - A. Satisfiable.
 - B. Unsatisfiable.
- 2. (5 points) The negation of $\exists x \exists y (x + y = 7)$ is:
 - A. $\forall x \exists y (x+7=0)$
 - B. $\exists x \exists y (x + y \neq 7)$
 - C. $\forall x \forall y (x + y \neq 7)$
- 3. (5 points) A proposition logically equivalent to $p \to q$ is:
 - A. $\neg p \rightarrow \neg q$
 - B. $q \to p$
 - C. $\neg q \rightarrow \neg p$

Fill in the Blanks. No work needed. No partial credit available.

4. (5 points) For $B = \{2, y\}$ the powerset is

$$\mathcal{P}(A) = \{\emptyset, \{2\}, \{y\}, \{2, y\}\}\$$

- 5. (5 points) When x and y are taken for the domain consisting of all integers, the truth value of $\exists x \forall y (xy = 1)$ is False.
- 6. (5 points) The intersection $(1,10) \cap [2,4] \cap [3,5]$ expressed as a single interval is [3,4]

${\bf Standard\ Response\ Questions}.\ {\bf Show\ all\ work\ to\ receive\ credit}.$

7. (10 points) Construct a truth table for the compound proposition $(\neg p) \rightarrow (p \lor q \lor r)$.

C	_1	١	t.i	_	

p	q	r	$\neg p$	$p \lor q \lor r$	$(\neg p) \to (p \lor q \lor r)$
T	T	T	F	T	T
T	T	F	F	T	T
T	F	T	F	T	T
T	F	F	F	T	T
\overline{F}	T	T	T	T	T
\overline{F}	T	F	T	T	T
\overline{F}	\overline{F}	T	T	T	T
\overline{F}	\overline{F}	F	T	F	F

8. (15 points) Show using a chain of logical equivalences that $\neg (p \lor r \lor (\neg p \land q))$ is equivalent to $\neg p \land \neg q \land \neg r$.

Solution:

$$\neg (p \lor r \lor (\neg p \land q)) \equiv \neg p \land \neg r \land \neg (\neg p \land q)$$

$$\equiv \neg p \land \neg r \land (p \lor \neg q)$$

$$\equiv (\neg p \land \neg r \land p) \lor (\neg p \land \neg r \land \neg q)$$

$$\equiv F \lor (\neg p \land \neg r \land \neg q)$$

$$\equiv \neg p \land \neg r \land \neg q$$

$$\equiv \neg p \land \neg q \land \neg r$$

9. (20 points) Prove that $3n^2 + 3$ is even if and only if n is an odd integer.

Solution: First we show that if n is odd, then $3n^2 + 3$ is even. Suppose n is odd, then write n = 2k + 1 for some integer k. We then find that

$$3n^{2} + 3 = 3(2k + 1)^{2} + 3$$

$$= 12k^{2} + 12k + 3 + 3$$

$$= 12k^{2} + 12k + 6$$

$$= 2(6k^{2} + 6k + 3)$$

and can conclude that $3n^2 + 3$ is even.

We will demonstrate that $3n^2 + 3$ is even implies that n is odd by proving the contrapositive. Assume n is even. So, we write n = 2k for an integer k. In this case

$$3n^{2} + 3 = 3(2k)^{2} + 3$$

$$= 12k^{2} + 3$$

$$= 12k^{2} + 2 + 1$$

$$= 2(6k^{2} + 1) + 1$$

and it follows that $3n^2 + 3$ is odd.

10. (10 points) Provide examples of two finite sets S and T so that $|\mathcal{P}(S)| = 16$ and $|S \times T| = 16$. List all members of set $S \times T$ for your chosen sets S and T.

Solution: One possible solution is $S = \{x, y, z, w\}$ and $T = \{1, 2, 3, 4\}$. The fact that $|\mathcal{P}(S)| = 16$ means |S| = 4 and $|S \times T| = 16$ means |S||T| = 16. In this case the members of $S \times T$ are:

(x, 1)

(y, 1)

(z, 1)

(w, 1)

(x, 2)

(y,2)

(z, 2)

(w, 2)

(x, 3)

(y,3)

(z, 3)

(w, 3)

(x,4)

(y,4)

(z, 4)

(w,4)

11. (15 points) Let x and y be from the domain consisting of all rational numbers. Prove that the statement $\exists !x, \forall y(xy \neq 1)$ is true.

Solution: We first see when x = 0, for any $y \in \mathbb{Q}$ we have that $xy = 0 \cdot y = 0 \neq 1$. Thus we can conclude that $\exists x, \forall y (xy \neq 1)$ is true. We must now show the uniqueness.

Now take any $x \in \mathbb{Q}$ with $x \neq 0$. This means $x = \frac{a}{b}$ for $a, b \in \mathbb{Z}$ with both $a \neq 0$ and $b \neq 0$ (by the definition of a rational number $b \neq 0$, and $a \neq 0$ because $x \neq 0$). For such x we can then take $y = \frac{b}{a}$ which is also a rational number (hence in our domain) and see that xy = 1. Therefore we can conclude that $\exists !x, \forall y(xy \neq 1)$ is true as desired.