Name: \qquad

YorkU email: \qquad

Student Number:

READ THE FOLLOWING INSTRUCTIONS.

- Do not open your exam until told to do so.
- No calculators, cell phones or any other electronic devices can be used on this exam.
- Clear your desk of everything excepts pens, pencils and erasers.
- If you need scratch paper, the last page is blank.
- Show all your work unless otherwise indicated. Write your answers clearly! Include enough steps for the grader to be able to follow your work.
- You will be given exactly 60 minutes for this exam.

I have read and understand the above instructions: \qquad
SIGNATURE

Multiple Choice. Circle the best answer. No work needed. No partial credit available.

1. (5 points) Which of are the following relations on $\{1,2,3\}$ is symmetric?
A. $\{(1,2),(2,3),(2,1),(3,2)\}$
B. $\{(1,1),(2,2),(3,3),(1,3)\}$
C. $\{(1,2),(2,3),(3,1)\}$
2. (5 points) The graph $G=(V, E)$ where

$$
E=\{\{1,2\},\{2,3\},\{3,4\},\{1,4\},\{2,4\}\}
$$

and $V=\{1,2,3,4\}$ is:
A. a bipartite graph
B. NOT a bipartite graph
3. (5 points) If a_{n} is the number of bit strings which do not contain four consecutive 0's, then a_{n} satisfies which recurrence:
A. $a_{n}=a_{n-1}+2 a_{n-2}+3 a_{n-3}$
B. $a_{n}=a_{n-1}+a_{n-2}+a_{n-3}+a_{n-4}$
C. $a_{n}=2 a_{n-1}+2^{n-1}$
D. $a_{n}=3 a_{n-2}+a_{n-4}$.

Fill in the Blanks. No work needed. No partial credit available.
4. (5 points) If $f(1)=3$ and $f(n)=f(n / 5)+1$, then $f(125)=$ \qquad 6
5. (5 points) Give an example of a partition of the set $\{1,2, x, y, z\}$:

$$
\{\{1, x\},\{2, y, z\}\}
$$

6. (5 points) The number of edges in K_{5} (the complete graph on 5 vertices) is \qquad .

Extra Work Space.

Standard Response Questions. Show all work to receive credit.
7. (15 points) Consider the set Σ^{*} of bit strings (i.e. $\Sigma=\{0,1\}$). Let $A \subseteq \Sigma^{*}$ be the set of bit strings such that any 0 is followed by at least two 1 's. Give a recursive definition of the set A and list all bit strings of length 5 that are in A.

Solution: We can define the set A by the following properties:

- $\lambda \in A$
- $w 1 \in A$ if $w \in A$
- $w 011 \in A$ if $w \in A$

The bit strings of length 5 in A are:
01111, 10111, 11011, 11111
8. (20 points) Solve the recurrence relation $b_{n}=\frac{7}{2} b_{n-1}-\frac{3}{2} b_{n-2}$ with $b_{0}=2$ and $b_{1}=3$.

Solution: The characteristic equation is

$$
r^{2}-\frac{7}{2} r+\frac{3}{2}=\left(r-\frac{1}{2}\right)(r-3)
$$

and so

$$
b_{n}=A\left(\frac{1}{2}\right)^{n}+B(3)^{n}
$$

for some constants A and B. The initial conditions give us

$$
\begin{aligned}
A+B & =2 \\
\frac{1}{2} A+3 B & =3
\end{aligned}
$$

which implies $-5 B=-4$. So, we see that $B=4 / 5$ and $A=6 / 5$. Therefore

$$
b_{n}=\frac{6}{5}\left(\frac{1}{2}\right)^{n}+\frac{4}{5}(3)^{n}
$$

9. (15 points) We consider the relation

$$
R=\{(a, b) \in \mathbb{Z} \times \mathbb{Z}: a-b=5 k \text { for some } k \in \mathbb{Z}\}
$$

on \mathbb{Z}. Prove that R is an equivalence relation.

Solution: For any $a \in \mathbb{Z}$ we have that

$$
a-a=0=5 \cdot 0 .
$$

Thus, $(a, a) \in R$ and R is reflexive.
Assume that $(a, b) \in R$, then $a-b=5 k$ for some $k \in \mathbb{Z}$. Then $b-a=-(5 k)=5(-k)$ and so $(b, a) \in R$ since $-k \in \mathbb{Z}$. Hence, R is symmetric.
Assume that $(a, b) \in R$ and that $(b, c) \in R$. This means that

$$
\begin{aligned}
& a-b=5 k_{1} \\
& b-c=5 k_{2}
\end{aligned}
$$

for some $k_{1} \in \mathbb{Z}$ and $k_{2} \in \mathbb{Z}$. We then find

$$
a-c=(a-b)+(b-c)=5 k_{1}+5 k_{2}=5\left(k_{1}+k_{2}\right)
$$

and so $(a, c) \in R$ because $k_{1}+k_{2} \in \mathbb{Z}$. Therefore R is transitive and hence an equivalence relation.
10. (20 points) Let W_{n} be the graph with vertex set $V=\{1,2, \ldots, n+1\}$ and edge set

$$
E=\{\{i, n+1\}: 1 \leq i \leq n\} \cup\{\{i, i+1\}: 1 \leq i \leq n-1\} \cup\{\{1, n\}\} .
$$

(a) Draw the graph W_{7}.
(b) Find the chromatic number of W_{7}.

Solution: The graph W_{7} looks like

on the left with vertices labeled and on the right with a proper coloring with 4 colors. Since the vertices $\{1,2,3,4,5,6,7\}$ make an odd length cycle these vertices need at least 3 colors. Since the vertex 8 is connected to all other vertices it needs to be its own color. Therefore we can conclude the chromatic number of W_{7} is 4

Extra Work Space.

