
Published in Extended Abstracts of CHI 2001, pp. 319-320

Measuring Errors in Text Entry Tasks:
An Application of the Levenshtein String Distance Statistic

R. William Soukoreff
Dept. of Computer Science, York University

Toronto, Ontario
Canada M3J 1P3

will@acm.org

I. Scott MacKenzie
Dept. of Computer Science, York University

Toronto, Ontario
Canada M3J 1P3

+1 416-736-2100, smackenzie@acm.org

ABSTRACT
We propose a new technique based on the Levenshtein
minimum string distance statistic for measuring error rates
in text entry research. The technique obviates the need to
artificially constrain subjects to maintain synchronization
with the presented text, thus affording a more natural
interaction style in the evaluation. Methodological
implications are discussed, including the additional need to
use keystrokes per character (KSPC) as a dependent
measure to capture the overhead in correcting errors.

Keywords
Levenshtein minimum string distance, text entry, error rates

INTRODUCTION
Research in text entry is thriving, in part due to the demand
for text messaging on mobile phones, and more generally to
the on-going need for text entry on PDAs, pagers, and
electronic organisers. With each new text entry technique
considered, however, an empirical evaluation with users is
paramount in establishing its viability.

Text entry evaluations usually focus on two statistics, speed
and accuracy. Although the calculation of entry speed is
straightforward, accuracy is another matter. Even, the
intuitively simple measure “percent errors” is problematic
unless entry is constrained by forcing the subject to
maintain synchronization with the presented text. In this
paper we present a robust method for measuring character-
level accuracy that avoids the need for artificial constraints
in the text entry task. The accuracy measure we present is
based on a minimum string distance statistic.

TEXT INPUT RESEARCH
Text input research seeks to create and evaluate novel text
input technologies. Empirical evaluations are conducted to
measure speed and accuracy under controlled conditions.
Repeated trials are necessary, yet generate great volumes of
paired data, consisting of presented text (what subjects
were asked to enter) and transcribed text (what they
actually entered). From these data, speed and accuracy are
calculated and analysed.

Speed
Because of the speed-accuracy tradeoff, evaluations must

attend to both the speed of entry and the accompanying
errors. Measuring speed is easy. Software records the
number of characters entered, the elapsed time, and
computes the entry rate in characters per second (cps) or
words per minute (wpm). This contrasts sharply with the
difficulty in measuring accuracy.

Accuracy
To measure accuracy, the transcribed and presented texts
are compared and errors are identified. Using a computer
for this task is preferred because of the volume of data and
the need for consistency. However, automated error
tabulation is tricky. Consider the following:

quick brown fox (presented text)
quixck brwn fox (transcribed text)

 ^^^^^^
How many errors are in the transcribed text? A simple
character-wise comparison suggests six (shown). More
likely, however, there are two: an insertion error “x”, and
an omission error “o”. Although a human can estimate the
number of errors, delegating the task to software is
deceptively difficult. In view of this, experimenters usually
adopt a methodology that (a) artificially constrains the task
to keep subjects in sync with the presented text, (b)
measures only word-level errors, (c) uses an ad hoc
categorization of errors, (d) discards trials with errors, or
(e) ignores errors. Space precludes an exhaustive review,
but see [3].

In the next section, we present an algorithm applied in
DNA analysis, phylogenetics, spelling correction, and
linguistics, to measure the distance between two strings.

MINIMUM STRING DISTANCE
String research emerged from theoretical work on self-
correcting binary codes. The algorithm presented is
credited to Levenshtein [2], however it was discovered
independently by at least nine researchers [1]. The
algorithm yields the minimum distance between two strings
defined in terms of editing primitives. The primitives are
insertion, deletion, and substitution. Given two character
strings, the idea is to find the smallest set of primitives that
applied to one string produces the other. The number of
primitives in the set is the minimum string distance (MSD).

As an example, consider the presented text abcd and the
transcribed text acbd. There are three sets each containing
the minimum number of primitives (two) to perform the
transformation from transcribed to presented text:

Published in Extended Abstracts of CHI 2001, pp. 319-320

Set 1: delete the c, insert a c after the b
Set 2: insert a b after the a, delete the second b
Set 3: substitute b for the c, substitute c for the second b

There are three sets and MSD = 2. This simple example
illustrates the challenge in designing a computer algorithm
to compute the minimum set: there is often more than one
minimum set, and the path through the possibilities is mired
by the quantity, the type, and the location of errors.

The minimum string distance, denoted MSD(A, B), where A
and B are character strings, is a well-behaved statistic with
several properties making it a suitable metric.

• Well-defined zero: MSD(A, B) = 0, if and only if A ≡ B
• It is bounded: 0 ≤ MSD(A, B) ≤ max(|A|, |B|), where |A|

denotes the length of A
• It is commutative: MSD(A, B) = MSD(B, A)

One final feature of the MSD statistic is the ease with
which it may be calculated.

Calculating the Minimum String Distance
The algorithm we present is from [1].

function r(x, y)
 if x = y return 0
 otherwise return 1

function MSD(A, B)

 for i = 0 to |A|
 D[i, 0] = i

 for j = 0 to |B|
 D[0, j] = j

 for i = 1 to |A|
 for j = 1 to |B|

 D[i, j] = min

()















+−−
+−
+−

A[i],B[j]r

1

1

1]j1,D[i

1]jD[i,

j]1,D[i

 return D[|A|, |B|]

Computing the entries in the matrix D starts in the top-left
cell and proceeds to the bottom-right. The value in the
bottom-right cell is the minimum string distance.

TEXT ENTRY ERROR RATE
Using the MSD statistic we propose the following
definition of text entry error rate, given a presented text
string (A) and a transcribed text string (B):

%100
),(

),(
×=

BAmax

BAMSD
ErrorRate (1)

Calculated using Eq. 1, the error rate represents the
smallest proportion of characters considered errors given
the two strings. It is important to use the larger of the two
string sizes in the denominator to ensure (a) the measure
does not exceed 100%, (b) undue credit is not given if the
user enters less text than presented, and (c) an appropriate

penalty is attributed if the user enters more text than
presented. Some examples follow:

Presented/Transcribed Text Length MSD Error Rate
the quick brown fox a 19 - -
thiquick brown fox b 18 2 10.5%
the quicj beown fix b 19 3 15.8%
the quick brown foxxx b 21 2 9.5%
a presented text, b transcribed text

METHODOLOGICAL IMPLICATIONS
Using the MSD error rate removes the need to artificially
constrain the task during text entry evaluations. Subjects
may be directed to proceed “quickly and accurately”;
however, there is no need for strict use of procedures such
as “ignore errors”, “correct all errors”, or “maintain
synchronization with the presented text”. As demonstrated,
Eq. 1 produces a meaningful error metric even in the
presence of various degradations in the transcribed text.

If some, but not necessarily all, errors are corrected, the
task is indeed more natural. However, a new twist is added
that must be accounted for, lest we replace one problem
with another. Now, there are two kinds of errors: those
corrected and those remaining. The MSD error rate (Eq. 1)
is appropriate for the latter, but what about the former? For
this, we propose "keystrokes per character" (KSPC).
Although KSPC has been used as a characteristic of
interaction techniques, we suggest using KSPC as a
dependent measure. Here is a simple example:

the quick brx<own fox → the quick brown fox
 ^^

The user committed one error, entering 'x' instead of 'o', but
correcting took two keystrokes, BACKSPACE (<) followed
by 'o'. Twenty-one keystrokes produced 19 characters, so
KSPC = 21 / 19 = 1.11. KSPC will rise for less skilled
users or if more effort is invested in correcting errors.

CONCLUSION
We proposed a new metric — the MSD error rate — for
text entry error rates, based on the minimum distance
between the presented and transcribed texts. This measure
obviates the need for artificial constraints in the task, thus
improving the methodology in empirical evaluations of text
entry techniques. Additionally, keystrokes per character
(KSPC) should be used as a dependent measure to capture
the overhead in correcting errors as text is entered.

REFERENCES
[1] Kruskal, J.B. An overview of sequence comparison,
Time warps, string edits, and macromolecules: The theory
and practice of sequence comparison, ed. D. Sankoff, and
J.B. Kruskal. (Reading, MA: Addison-Wesley, 1983) 382.
[2] Levenshtein, V. I. Binary codes capable of correcting
deletions, insertions and reversals, Soviet Physics-Doklady
10 (1966), 707-710.
[3] MacKenzie, I. S., and Zhang, S. X. The design and
evaluation of a high-performance soft keyboard,
Proceedings of CHI '99, 25-31.

0 2 3 1 4

1 1 2 0 3

2 1 1 1 2

3 1 2 2 2

4 2 2 3

b c a d

a

c

b

d

A=

B

2

Lev(A,B) = 2

D

Published in Extended Abstracts of CHI 2001, pp. 319-320

