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ABSTRACT 
We propose a new technique based on the Levenshtein 
minimum string distance statistic for measuring error rates 
in text entry research.  The technique obviates the need to 
artificially constrain subjects to maintain synchronization 
with the presented text, thus affording a more natural 
interaction style in the evaluation.  Methodological 
implications are discussed, including the additional need to 
use keystrokes per character (KSPC) as a dependent 
measure to capture the overhead in correcting errors.  
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INTRODUCTION 
Research in text entry is thriving, in part due to the demand 
for text messaging on mobile phones, and more generally to 
the on-going need for text entry on PDAs, pagers, and 
electronic organisers.  With each new text entry technique 
considered, however, an empirical evaluation with users is 
paramount in establishing its viability. 

Text entry evaluations usually focus on two statistics, speed 
and accuracy.  Although the calculation of entry speed is 
straightforward, accuracy is another matter.  Even, the 
intuitively simple measure “percent errors” is problematic 
unless entry is constrained by forcing the subject to 
maintain synchronization with the presented text.  In this 
paper we present a robust method for measuring character-
level accuracy that avoids the need for artificial constraints 
in the text entry task.  The accuracy measure we present is 
based on a minimum string distance statistic. 

TEXT INPUT RESEARCH 
Text input research seeks to create and evaluate novel text 
input technologies.  Empirical evaluations are conducted to 
measure speed and accuracy under controlled conditions.  
Repeated trials are necessary, yet generate great volumes of 
paired data, consisting of presented text (what subjects 
were asked to enter) and transcribed text (what they 
actually entered).  From these data, speed and accuracy are 
calculated and analysed. 

Speed 
Because of the speed-accuracy tradeoff, evaluations must 

attend to both the speed of entry and the accompanying 
errors.  Measuring speed is easy.  Software records the 
number of characters entered, the elapsed time, and 
computes the entry rate in characters per second (cps) or 
words per minute (wpm).  This contrasts sharply with the 
difficulty in measuring accuracy. 

Accuracy 
To measure accuracy, the transcribed and presented texts 
are compared and errors are identified.  Using a computer 
for this task is preferred because of the volume of data and 
the need for consistency.  However, automated error 
tabulation is tricky.  Consider the following: 

quick brown fox   (presented text) 
quixck brwn fox   (transcribed text) 

   ^^^^^^ 
How many errors are in the transcribed text?  A simple 
character-wise comparison suggests six (shown).  More 
likely, however, there are two:  an insertion error “x”, and 
an omission error “o”.  Although a human can estimate the 
number of errors, delegating the task to software is 
deceptively difficult.  In view of this, experimenters usually 
adopt a methodology that (a) artificially constrains the task 
to keep subjects in sync with the presented text, (b) 
measures only word-level errors, (c) uses an ad hoc 
categorization of errors, (d) discards trials with errors, or 
(e) ignores errors.  Space precludes an exhaustive review, 
but see [3]. 

In the next section, we present an algorithm applied in 
DNA analysis, phylogenetics, spelling correction, and 
linguistics, to measure the distance between two strings. 

MINIMUM STRING DISTANCE  
String research emerged from theoretical work on self-
correcting binary codes.  The algorithm presented is 
credited to Levenshtein [2], however it was discovered 
independently by at least nine researchers [1].  The 
algorithm yields the minimum distance between two strings 
defined in terms of editing primitives.  The primitives are 
insertion, deletion, and substitution.  Given two character 
strings, the idea is to find the smallest set of primitives that 
applied to one string produces the other.  The number of 
primitives in the set is the minimum string distance (MSD). 

As an example, consider the presented text abcd and the 
transcribed text acbd.  There are three sets each containing 
the minimum number of primitives (two) to perform the 
transformation from transcribed to presented text: 
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Set 1: delete the c, insert a c after the b 
Set 2: insert a b after the a, delete the second b 
Set 3: substitute b for the c, substitute c for the second b 

There are three sets and MSD = 2.  This simple example 
illustrates the challenge in designing a computer algorithm 
to compute the minimum set: there is often more than one 
minimum set, and the path through the possibilities is mired 
by the quantity, the type, and the location of errors. 

The minimum string distance, denoted MSD(A, B), where A 
and B are character strings, is a well-behaved statistic with 
several properties making it a suitable metric. 

• Well-defined zero: MSD(A, B) = 0, if and only if A ≡ B 
• It is bounded: 0 ≤ MSD(A, B) ≤ max(|A|, |B|), where |A| 

denotes the length of A 
• It is commutative: MSD(A, B) = MSD(B, A) 

One final feature of the MSD statistic is the ease with 
which it may be calculated. 

Calculating the Minimum String Distance 
The algorithm we present is from [1]. 
 

function r(x, y) 
 if x = y return 0 
 otherwise return 1 
 
function MSD(A, B)  
 

 for i = 0 to |A| 
  D[i, 0] = i 
 

 for j = 0 to |B| 
  D[0, j] = j 
 

 for i = 1 to |A| 
  for j = 1 to |B| 

    D[i, j] = min
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 return D[|A|, |B|] 
 

Computing the entries in the matrix D starts in the top-left 
cell and proceeds to the bottom-right.  The value in the 
bottom-right cell is the minimum string distance. 

TEXT ENTRY ERROR RATE 
Using the MSD statistic we propose the following 
definition of text entry error rate, given a presented text 
string (A) and a transcribed text string (B): 
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Calculated using Eq. 1, the error rate represents the 
smallest proportion of characters considered errors given 
the two strings.  It is important to use the larger of the two 
string sizes in the denominator to ensure (a) the measure 
does not exceed 100%, (b) undue credit is not given if the 
user enters less text than presented, and (c) an appropriate 

penalty is attributed if the user enters more text than 
presented.  Some examples follow: 
 

Presented/Transcribed Text Length MSD Error Rate 
the quick brown fox a 19 - - 
thiquick brown fox b 18 2 10.5% 
the quicj beown fix b 19 3 15.8% 
the quick brown foxxx b 21 2 9.5% 
a  presented text, b transcribed text 
 

METHODOLOGICAL IMPLICATIONS 
Using the MSD error rate removes the need to artificially 
constrain the task during text entry evaluations.  Subjects 
may be directed to proceed “quickly and accurately”; 
however, there is no need for strict use of procedures such 
as “ignore errors”, “correct all errors”, or “maintain 
synchronization with the presented text”.  As demonstrated, 
Eq. 1 produces a meaningful error metric even in the 
presence of various degradations in the transcribed text.    

If some, but not necessarily all, errors are corrected, the 
task is indeed more natural.  However, a new twist is added 
that must be accounted for, lest we replace one problem 
with another.  Now, there are two kinds of errors: those 
corrected and those remaining.  The MSD error rate (Eq. 1) 
is appropriate for the latter, but what about the former?  For 
this, we propose "keystrokes per character" (KSPC).  
Although KSPC has been used as a characteristic of 
interaction techniques, we suggest using KSPC as a 
dependent measure.  Here is a simple example: 

the quick brx<own fox → the quick brown fox 
            ^^ 

The user committed one error, entering 'x' instead of 'o', but 
correcting took two keystrokes, BACKSPACE (<) followed 
by 'o'.  Twenty-one keystrokes produced 19 characters, so 
KSPC = 21 / 19 = 1.11.  KSPC will rise for less skilled 
users or if more effort is invested in correcting errors. 

CONCLUSION 
We proposed a new metric — the MSD error rate — for 
text entry error rates, based on the minimum distance 
between the presented and transcribed texts.  This measure 
obviates the need for artificial constraints in the task, thus 
improving the methodology in empirical evaluations of text 
entry techniques.  Additionally, keystrokes per character 
(KSPC) should be used as a dependent measure to capture 
the overhead in correcting errors as text is entered. 
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