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1. INTRODUCTION

A core human need is to communicate. Whether through speech, text, sound,
or even body movement, our ability to communicate by transmitting and re-
ceiving information is highly linked to our quality of life, social fabric, and
other facets of the human condition. Text, written text, is one of the most
common forms of communication. Today the Internet, mobile phones, comput-
ers, and other electronic communicating devices provide the means for hun-
dreds of millions of people to communicate daily using written text. The text
in their correspondences is typically created using a keyboard and viewed on a
screen.

While the ubiquitous Qwerty keyboard is the standard for desktop and laptop
computers, many people use other devices for text entry. People “on the move”
are bound to their mobile phones and use them frequently to transmit and
receive SMS text messages, or even email. Of the estimated three billion or
more text messages sent each day,1 most are entered using the conventional
mobile phone keypad. The mobile phone keypad is an example of an “ambiguous
keyboard” because multiple letters are grouped on each key. Nevertheless,
with the help of some sophisticated software and a built-in dictionary, entry is
possible using one keystroke per character.

People with severe disabilities are often impaired in their ability to commu-
nicate, for example, using speech. For these individuals, there is a long history
of supplanting speech communication with augmentative and alternative com-
munication (AAC) aids. Depending on the disability and the form of commu-
nication desired, the aids often involve a sophisticated combining of symbols,
phonemes, and other communication elements to form words or phrases [Bran-
denberg and Vanderheiden 1988; Hochstein and McDaniel 2004]. Computer
access for users with a motor impairment may preclude use of a physical key-
board, such as a Qwerty keyboard or a mobile phone keypad, or operation of
a computer mouse. In such cases, the user may be constrained to providing
computer input using a single button, key, or switch. To the extent there is a
keyboard, it is likely a visual representation on a display, rather than a set of
physical keys. Letters, or groups of letters, on the visual keyboard are high-
lighted sequentially (“scanned”) with entry using a series of selections—all
using just one switch—to narrow in on and select the desired letter. This is the
essence of a “scanning keyboard.”

In this article, we present SAK, a scanning ambiguous keyboard. SAK com-
bines the best of scanning keyboards and ambiguous keyboards. SAK designs
use just a single key or switch (like scanning keyboards) and allow text to be
entered using a single selection per character (like ambiguous keyboards). The
result is an efficient one-key text entry method.

The rest of this article is organized as follows. First, we summarize the op-
eration of scanning keyboards and ambiguous keyboards. Then, we detail the
SAK concept, giving the central operating details. Following this, a model is de-
veloped to explore the SAK design space. The model allows alternative designs

1According to http://gsmworld.com/, there was a worldwide total of one trillion (1012) SMS messages
sent in 2005.
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Fig. 1. Scanning keyboard concept. (a) linear scanning (b) row-column scanning.

to be quantified and compared. With this information we present the initial
SAK design chosen for “test of concept” evaluation. Our methodology is de-
scribed with results given and discussed. Following this, a full implementation
is presented along with a case study of its use with a member of the target com-
munity. Concluding remarks summarize the contribution and identify issues
for further research.

1.1 Scanning Keyboards

The idea behind scanning keyboards is to combine a visual keyboard with a
single key, button, or switch for input. The keyboard is divided into selectable
regions which are sequentially highlighted, or scanned. Scanning is typically
automatic, controlled by a software timer, but self-paced scanning is also possi-
ble. In this case, the highlighted region is advanced as triggered by an explicit
user action [Felzer et al. 2008].

When the region containing the desired character is highlighted, the user se-
lects it by activating the input switch. The general idea is shown in Figure 1(a).
Obviously, the rate of scanning is important, since the user must press and re-
lease the switch within the scanning interval for a highlighted region. Scan
step intervals in the literature range from 0.3 seconds [Miró and Bernabeu
2008] to about 5 seconds.

Regardless of the scanning interval, the linear scanning sequence in Figure
1(a) is slow. For example, it takes 26 scan steps to reach “z”. To address this,
scanning keyboards typically employ some form of multilevel, or divide-and-
conquer, scanning. Figure 1(b) shows row-column scanning. Scanning proceeds
row-to-row. When the row containing the desired letter is highlighted, it is
selected. Scanning then enters the row and proceeds left to right within the
row. When the desired letter is highlighted, it is selected. Clearly, this is an
improvement. The letter “j,” for example, is selected in 5 scan steps in
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Figure 1(b): 3 row scans + 2 column scans. Bear in mind that while row-column
scanning reduces the scan steps, it increases the number of motor responses.
The latter may be a limiting factor for some users.

When a letter is selected, scanning reverts to the home position to begin
the next scan sequence, row to row, and so on. This behavior is a necessary
by-product of row-column selection, since continuing the scan at the next letter
negates the performance advantage of two-tier selection.

Row-column scanning is also slow. To speed up entry, numerous techniques
have been investigated. These fall into several categories, including the use of
different letter or row-column arrangements, word or phrase prediction, and
adjusting the scanning interval.2

The most obvious improvement for row-column scanning is to rearrange let-
ters by placing frequent letters near the beginning of the scan sequence, such as
in the first row or in the first position in a column. There are dozens of research
papers investigating this idea, many dating to the 1970s or 1980s [Damper
1984; Doubler et al. 1978; Heckathorne and Childress 1983, June; Treviranus
and Tannock 1987; Vanderheiden et al. 1974]. Some of the more recent efforts
are hereby cited [Baljko and Tam 2006; Jones 1998; Lesher et al. 1998; Lin et
al. 2008; Steriadis and Constantinou 2003; Venkatagiri 1999]. Dynamic tech-
niques have also been tried, whereby the position of letters varies depending on
previous letters entered and the statistical properties of the language [Lesher
et al. 1998; Miró and Bernabeu 2008; Wandmacher et al. 2008].

A performance improvement may also emerge using a 3-level or higher selec-
tion scheme, also known as block, group, or quadrant scanning [Bhattacharya
et al. 2008a; Bhattacharya et al. 2008b; Felzer and Rinderknecht 2009; Lin
et al. 2007]. The general idea is to scan through a block of items (perhaps
a group of rows). The first selection enters a block. Scanning then proceeds
among smaller blocks within the selected block. The second selection enters
one of the smaller blocks and the third selection chooses an item within that
block. Much like nested menus in graphical user interfaces, there is a trade-off
between the number of levels to traverse and the number of items to traverse
in each level. Block scanning is most useful to provide access to a large number
of items [Bhattacharya et al. 2008a; Shein 1997]. Regardless of the scanning
organization, the goal is usually to reduce the total number of scan steps to
reach the desired character.

Reducing the scanning interval is another way to increase the text entry
rate, but this comes at the cost of higher error rates or missed opportunities for
selection. Furthermore, users with reduced motor facility are often simply not
able to work with a short scanning interval. One possibility is to dynamically
adjust the system’s scanning interval. Decisions to increase or decrease the
scanning interval can be based on previous user performance, including text
entry throughput, error rate, or reaction time [Lesher et al. 2000; Lesher et al.
2002; Simpson and Koester 1999].

2There are also many variations on scanning keyboards that use multiple physical keys for input.
As the essence of the research presented here is one-key text entry, these variations are not included
in the review.
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Fig. 2. Examples of ambiguous keyboards (a) phone keypad; (b) research prototype with 26 letters
on 3 keys [from Harbusch and Kühn 2003a].

Word or phrase prediction or completion is also widely used to improve text
entry throughput [Jones 1998; Miró and Bernabeu 2008; Shein et al. 1991;
Trnka et al. 2009]. As a word is entered, the current word stem is used to build
a list of matching complete words. The list is displayed in a dedicated region of
the keyboard with a mechanism provided to select the word early.

We should be clear that all the techniques just described are variations on
“divide and conquer.” For any given entry, the first selection chooses a group
of items and the next selection chooses within the group. SAK is different. Al-
though SAK designs use scanning, each letter is chosen with a single selection.
In this sense, SAK designs are more like ambiguous keyboards.

1.2 Ambiguous Keyboards

Ambiguous keyboards are arrangements of keys, whether physical or virtual,
with more than one letter per key. The most obvious example is the phone
keypad which positions the 26 letters of the English alphabet across eight keys
(see Figure 2(a)).

From as early as the 1970s it was recognized that the phone keypad could
be used to enter text with one key press per letter [Smith and Goodwin 1971].
Today, the idea is most closely associated with “T9,” the “text on 9 keys” tech-
nology developed and licensed by Tegic Communications and widely used on
mobile phones.3 Due to the inherent ambiguity of a key press, a built-in dictio-
nary is required to map key sequences to matching words. If multiple words
match the key sequence, they are offered to the user as a list, ordered by de-
creasing likelihood. Interestingly enough, for English text entry on a phone
keypad, there is very little overhead in accessing ambiguous words. One esti-
mate is that 95% of words in English can be entered unambiguously using a
phone keypad [Silfverberg et al. 2000].

There is a substantial body of research on ambiguous keyboards. As noted
in a recent survey [MacKenzie and Tanaka-Ishii 2007], the goal is usually to
employ fewer keys or to redistribute letters on the keys to reduce the ambiguity.
One such example is shown in Figure 2(b), where 26 letters are positioned on
just three keys [Harbusch and Kühn 2003b]. Clearly, this design yields greater

3Tegic was acquired in 1999 by America On Line (AOL) and in 2007 by Nuance Communications
(www.nuance.com).

ACM Transactions on Computer-Human Interaction, Vol. 17, No. 3, Article 11, Publication date: July 2010.



11:6 • I. S. MacKenzie and T. Felzer

ambiguity. The unusual letter groupings are an effort to reduce the ambiguity
by exploiting the statistical properties of the language.

All ambiguous keyboards in use involve either multiple physical keys or
multiple virtual buttons that are randomly accessed (“pressed”) by a finger or
stylus, or clicked on using the mouse pointer. In 1998, Tegic Communications’
Kushler noted the possibility of combining scanning with a phone-like am-
biguous keyboard [Kushler 1998]. However, the idea was not developed with
reduced-key configurations, nor was a system implemented or tested. There
are at least two examples in the literature that come close to the SAK de-
signs discussed here, but both involve more than one physical button. Har-
busch and Kühn [2003a] describe a method using two physical buttons to “step
scan” through an ambiguous keyboard. One button advances the focus point
while a separate physical button selects virtual letter keys. Venkatagiri [1999]
proposed two virtual ambiguous keyboards with scanning using either three
or four letters per key. Separate physical buttons were proposed to explicitly
choose the intended letter on a selected key. Both papers just cited present
models only. No user studies were performed, nor were the designs actually
implemented.

By adding scanning to an ambiguous keyboard with the one-switch con-
straint, we arrive at an interesting juncture in the design space. A “scanning
ambiguous keyboard” (SAK) is a keyboard with scanned but static keys that
combines the most demanding requirement of a scanning keyboard—input
using one key or switch—with the most appealing feature of an ambiguous
keyboard—one key press per letter. However, putting the pieces together to
arrive at a viable, perhaps optimal, design requires further analysis. We need
a way to characterize and quantify design alternatives to tease out strengths
and weaknesses. For this, a model is required.

2. MODEL FOR SCANNING AMBIGUOUS KEYBOARDS

A model is a simplification of reality. Just as architects build models to explore
design issues in advance of constructing a building, HCI researchers build
interaction models to explore design scenarios in advance of prototyping and
testing. In this section, we develop a model for scanning ambiguous keyboards.
The model includes the following components:

—Keyboard layout and scanning pattern
—Dictionary (words and word frequencies)
—Interaction methods
—Measures to characterize scanning keyboards

2.1 Keyboard Layout and Scanning Pattern

Figure 3 shows the general idea for a scanning ambiguous keyboard. Of
course, the keyboard is virtual in that it is displayed on a screen, rather than
implemented as physical keys. Physical input uses a single key, button, or
switch. The keyboard includes two regions: a letter-selection region (top) and a
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Fig. 3. Scanning ambiguous keyboard concept. There is a letter-selection region (top) and a word-
selection region (bottom).

word-selection region (bottom). The design is ambiguous, meaning letters are
distributed over a small number of keys, with multiple letters per key.

Scanning begins in the letter-selection region, proceeding left to right, re-
peating. Activating the physical key when the desired letter key is highlighted
makes a selection. There is only one selection per letter.

One novel feature of SAK designs is that focus does not “snap to home”
upon selecting a letter. Rather, focus proceeds in a cyclic pattern, advancing
to the next key with each selection. Since SAK designs do not use multitier
selection, there is no need to revert to a higher tier (e.g., the first row) after
a selection within a row. Arguably, the cyclic scanning pattern used in SAK
designs is intuitive and natural, since it does not involve transitions between,
for example, a top tier and a bottom tier. However, cyclic scanning is predicated
on using an alphabetic letter ordering, where there is no advantage in returning
to a home position. So there are design issues to consider in choosing a cyclic
vs. snap-to-home scanning pattern. The SAK designs considered here assume
a cyclic scanning pattern.

After a word is fully entered (or partly entered, see below), the SPACE key
is selected. Scanning switches to the word-selection region, whereupon the
desired word is selected when highlighted. A SPACE character is automatically
appended. After word selection, scanning reverts to the letter-selection region
for input of the next word.

The word-selection region contains a list of candidate words, drawn from
the system’s dictionary, and ordered by their frequency in a language cor-
pus. The list is updated with each selection in the letter-selection region
based on the current stem. The candidate list is organized in two parts. The
first presents words exactly matching the current key sequence. The second
presents extended words, where the current key sequence is treated as the word
stem.

The inherent ambiguity of letter selection means the list size is often >1,
even if the full word is entered. The words are ordered by decreasing probability
in the language; so, hopefully, the desired word is at or near the front of the
list. An example is given shortly.
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Fig. 4. Example letter-selection region with letters on four virtual keys.

2.2 Dictionary

Systems with ambiguous keyboards require a built-in dictionary to disam-
biguate key presses. The dictionary is a list of words and word frequencies
derived from a corpus. The present research used a version of the British Na-
tional Corpus4 containing about 68,000,000 total words. From this, a list of
unique words and their frequencies was compiled and from this list the top
9,022 words were used for our dictionary.

2.2.1 Nondictionary Words. The core design of SAK only works with dic-
tionary words. Of course, a mechanism must be available to enter nondictionary
words (which, presumably, are then added to the dictionary). Most scanning
keyboards operate with a basic text entry mode, but implement some form of
“escape mechanism” or “mode switch” to enter other modes. Additional modes
are necessary for a variety of purposes, such as correcting errors, adding punc-
tuation characters or special symbols, selecting predicted words or phrases,
changing the system’s configuration parameters, or switching to other applica-
tions. There are at least three commonly used mechanisms for mode switching
with scanning keyboards: (i) using an additional input switch [Baljko and Tam
2006; Shein et al. 1994], (ii) using a dedicated “mode” key on the virtual key-
board [Bhattacharya et al. 2008b; Jones 1998], or (iii) pressing and holding the
primary input switch for an extended period of time, say, 2–3 seconds [Jones
1998; Miró and Bernabeu 2008]. A desirable feature of SAK is to maintain
a short scanning sequence in the letter-selection region; so adding even one
additional virtual key is not considered a viable option, because of the impact
on text entry throughput. An example method for mode switching with SAK
designs is given in Section 5 (see “Escape Mode”).

Returning to the central idea of SAK, the system works with words and word
frequencies, but also requires a keystroke rendering of each word to determine
the candidate words for each key sequence. An example will help.

2.2.2 Example. Let’s assume—arbitrarily for the moment—that we’re in-
terested in a SAK design using four letter keys with letters distributed as in
Figure 4.

If the user wished to enter “sword,” the key selections are 34331. As each
letter is (ambiguously) selected in the letter-selection region, a candidate list is
produced in the word-selection region. Figure 5 gives the general idea of how
the list progresses as entry proceeds. (The example shows only the first five
words in the candidate list. In practice, a larger candidate list is needed for
highly ambiguous keyboards.) The desired word (underlined) appears in the

4ftp://ftp.itri.bton.ac.uk/.
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Fig. 5. Keystroke sequence and candidate list for entry of “sword” using letter-key assignment in
Figure 4.

fourth position with the 4th keystroke and in the first position with the 5th

keystroke.
One interaction strategy to consider is selecting a word early, after the 4th

keystroke in the example. There may be a performance benefit, but this will
depend on the keyboard layout and scanning pattern, which in turn deter-
mines the number of scan steps required for alternative strategies. Note that
in Figure 5, that “the” appears at the front of the candidate list after the first
keystroke. So, “the” can be entered with two selections in the letter-selection
region (3, SPACE) followed immediately by selecting the first candidate in the
word-selection region. Here, there is clearly a performance benefit.

2.3 Interaction Methods

The discussion above suggests that SAK designs offer users’ choices in the
way they enter text. To facilitate our goal of deriving a model, four interaction
methods are proposed.

2.3.1 OLPS—One-Letter-Per-Scan Method. With the OLPS method, users
select one letter per scan sequence. The example layout in Figure 4 has five keys
(4 letter keys, plus SPACE) therefore five scan steps are required for each letter
in a word. Four scan steps are passive, while one is active—a user selection on
the key bearing the desired letter.

2.3.2 MLPS—Multiple-Letter-Per-Scan Method. With the MLPS method,
users take the opportunity to select multiple letters per scan sequence, de-
pending on the word. For the layout in Figure 4, the word “city” has keystrokes
1234—no need to wait for passive scan steps between the letters. Four succes-
sive selections, followed by a fifth selection on SPACE, followed immediately by
selecting “city” in the candidate list (it will be the first entry) and the word is
entered. For other words, such as “zone” (4321), the MLPS opportunity does
not arise.

2.3.3 DLPK—Double-Letter-Per-Key Method. With the DLPK method,
users may make double selections in a single scan step interval if two letters
are on the same key. Using our example layout, “into” has keystrokes 2233.
Considering the five scan steps traversing the keys in Figure 4, the DLPK
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method for “into” requires just a single pass through the scanning sequence:
pause, select-select (22), select-select (33), pause, select (SPACE), select (“into”).
The utility of the DLPK method will depend on the scanning interval and on
the user’s ability to make two selections within the scanning interval.

2.3.4 OW—Optimized-Word Method. With the OW method, users seize
opportunities to optimize by making an early selection if the desired word
appears in the candidate list before all letters are entered and if there is a
performance benefit over the alternative strategy of simply continuing to select
keys until all letters are entered. An extreme example was noted above for
“the”—the most common word in English. As it turns out, the OW method
offers a performance benefit for many common words in English. Referring
again to Figure 5, “of,” “to,” “on,” and “that”—all very common words—appear
with the first key selection. Bear in mind that the cost of not performing
early selection is at least one more pass through the letter-selection scanning
sequence.

The interaction methods just described are progressive in that the first
method is easiest to use, but slow. The last method is hardest to use, but
fast. Users need not commit to any one method. The methods are simply ways
to characterize the sort of interaction behaviors users are likely to exhibit.
Most likely, users will mix the methods, but, with experience, will migrate to
behaviors producing performance benefits.

We are in a position now to consider design alternatives to the “arbitrary”
letter assignment in Figure 4. There is clearly a trade-off between having fewer
keys with more letters/key and having more keys with fewer letters/key. With
fewer keys, the number of scan steps is reduced but longer candidate lists
are produced. With more keys, the number of scan steps is increased while
shortening the candidate lists.

However, one component in our model is still missing. We need a way to
characterize and quantify scanning ambiguous keyboards of the sort described
here. We need a measure that can be calculated for a variety of design and
interaction scenarios and that can be used to make informed comparisons and
choices between alternative designs.

2.4 Characteristic and Performance Measures

Measures for text entry are of two types: characteristic measures and perfor-
mance measures. Characteristic measures describe a text entry method with-
out measuring users’ actual use of the method. They tend to be theoretical—
describing and characterizing a method under circumstances defined a pri-
ori. Performance measures capture and quantify users’ proficiency in using a
method. Often, a measure can be both. For example, text entry speed, in words
per minute, may be calculated based on a defined model of interaction and then
measured later with users. In this section we present three new measures for
text entry with scanning keyboards. Two are characteristic measures, but can
be measured as well; one is a performance measure.

First we mention KSPC, for “keystrokes per character,” as a characteristic
measure applicable to numerous text entry methods. KSPC is the number of
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keystrokes required, on average, to generate a character of text for a given
text entry technique in a given language [MacKenzie 2002a; Rau and Skiena
1994]. For conventional text entry using a Qwerty keyboard, KSPC = 1 since
each keystroke generates a character. However, other keyboards and methods
yield KSPC < 1 or KSPC > 1. Word completion or word prediction techniques
tend to push KSPC down, because they allow entry of words or phrases using
fewer keystrokes than characters. On the other hand, ambiguous keyboards,
such as a mobile phone keypad, tend to push KSPC up. For example, a phone
keypad used for English text entry has KSPC ≈ 2.03 when using the multitap
input method or KSPC ≈ 1.01 when using dictionary-based disambiguation
[MacKenzie 2002a].

2.4.1 Scan Steps per Character (SPC). “Scan steps per character” (SPC)
is proposed here as a characteristic measure for scanning keyboards. SPC is
similar to KSPC. SPC is the number of scan steps, on average, to enter a
character of text using a given scanning keyboard in a given language. SPC
includes both passive scan steps (no user action) and active scan steps (user
selection).

A feature of SPC is that it directly maps to text entry throughput, T, in
words per minute, given a scanning interval, SI, in milliseconds:

T =
(

1
SPC

)
×

(
1000

SI

)
×

(
60
5

)
. (1)

The first term converts “scan steps per character” into “characters per scan
step”. Multiplying by the second term yields “characters per second” and by the
third term “words per minute.”5 For example, if the scanning interval is, say,
800 ms, and SPC = 4.0, then

T =
(

1
4.0

)
×

(
1000
800

)
×

(
60
5

)
= 3.75 wpm. (2)

Of course, this assumes the user “keeps up”—performs selections according to
the interaction method used in the SPC calculation.

Figure 6 demonstrates the scan step sequences for entering “computer”
(13233313) using each of the four interaction methods described above. Again,
Figure 4 serves as the example design. The scan step sequence (2nd column)
shows a lowercase letter for selecting a key bearing the indicated letter (or
sometimes a double selection for the DLPK and OW methods). A period (“.”) is
a passive scan step, or a scan step interval without a selection. “S” is a selec-
tion on the SPACE key and “W” is a word-selection. The scan count is simply the
number of scan steps. SPC is the scan count divided by nine, the number of
characters in “computer” +1 for a terminating SPACE. (SPS is discussed in the
next section.)

The figure demonstrates a progressive reduction in SPC as the interaction
method becomes more sophisticated. With the OLPS method, only one letter is
selected per scan step. Since “computer” has eight letters, 8 × 5 = 40 scan steps

5It is a long-standing convention to define “word” in “words per minute” as five characters [Yamada
1980, p. 182]. This includes letters, spaces, punctuation, and so on.
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Fig. 6. Example calculation of SPC (scan steps per character) and SPS (selection per scan step)
for entry of “computer” using the scanning keyboard in Figure 4. See text for discussion.

are required, plus a final active scan step to select the word in the candidate
list. As word selection (“W”) immediately follows SPACE (“S”), evidently the word
was at the front of the candidate list. For the MLPS method, “o,” “p,” and “r” are
entered in the same scan sequence as the preceding letter, thus saving 3 × 5 =
15 scan steps. The DLPK method improves on this by combining “p” and “u” in
a double-selection, since they are on the same key. (Only the first letter, “p,” is
shown in the figure.) Five scan steps are saved.

A further improvement is afforded by the OW method. After double se-
lecting “pu,” “computer” appears in the candidate list in the fourth position.
The opportunity is taken, producing a further savings of 7 scan steps. As an
aside, the words preceding “computer” in the candidate list at this point were
“bonus,” “donor,” and “control” (not shown). Because “bonus” and “donor” are
exact matches with the key sequence 13233, they are at the front of the list.
“control,” “computer,” and a few other words, follow as possible extended words
matching the current numeric word stem. They are ordered by their frequencies
in the dictionary.

2.4.2 Selections per Scan Step (SPS). Although reducing scan steps per
character (SPC) is an admirable pursuit, there is a downside. To capture this,
we introduce SPS, for “selections per scan step”. SPS is the number of selections
divided by the total number of scan steps. It can be computed for individual
words or phrases, or as an overall weighted average for a given scanning key-
board, interaction method, and language.

As seen in the two right-hand columns of Figure 6, as SPC decreases, SPS
increases. SPS captures, to some extent, the cognitive or motor demand on
users. While passive scan steps may seem like a waste, they offer users valu-
able time to rest or to think through the spelling and interactions necessary
to convey their message. Although this is a moot point for highly inefficient
scanning methods, as depicted in Figure 1, it becomes relevant as more am-
bitious designs are considered—designs that push SPC down. With the OW
method in Figure 6, SPS = 0.500. One selection for every two scan steps may
not seem like much; however, if taking opportunities to quicken interaction
involves, for example, viewing a list of candidate words, then cognitive demand
may be substantial.
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Fig. 7. Modeling tool for scanning ambiguous keyboards.

2.4.3 Scanning Efficiency (SE). The OW scan sequence for “computer” in
Figure 6 represents the absolute minimum number of scan steps for which this
word can be entered. This is true according to the embedded dictionary and
the defined layout and behavior of the example SAK. The other scan sequences
represent less efficient entry. The distinction is important when considering
overall performance or when analyzing user behavior and learning patterns.
For example, the phrase “the quick brown fox jumps over the lazy dog” requires
only 92 scan steps if all opportunities to optimize are taken. Will users actually
demonstrate this behaviour? Probably not. Will they eventually, or occasionally,
demonstrate this behavior as expertise evolves? Perhaps.

To capture user performance while using scanning keyboards, we introduce
Scanning Efficiency (SE) as a human performance measure:

SE = scanMIN

scanUSER
× 100%. (3)

For example, if a user was observed to enter the quick-brown-fox phrase in, say,
108 scan steps, then

SE = (92/108) × 100 = 85.2% (4)

As expertise develops and performance improves toward optimal behavior, SE
will increase toward 100%. SE can be computed for the entry of single words,
entire phrases, or as an overall human performance measure of user efficiency
while using a scanning keyboard for text entry.

2.5 Searching for an Optimal Scanning Ambiguous Keyboard

Given the components of the model described above, software tools were built
to search for an optimal scanning ambiguous keyboard. We define Optimal as
a design that minimizes scan steps per character (SPC). Whether the scanning
interval is 1 second or 5 seconds, a design with a lower SPC will produce a
higher text entry throughput than a design with a higher SPC, all else being
equal.

Figure 7 illustrates the general operation of the model. Three inputs are
required: a dictionary in the form of a word-frequency list, a letter-key as-
signment (e.g., as per Figure 4), and a specification of the interaction method.
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The interaction method is OLPS (one letter per scan), MLPS (multiple letters
per scan), DLPK (double letters per key), or OW (optimized word), as discussed
earlier. For the dictionary, the 9,022-word list noted earlier was used. The letter-
key assignment is used, among other things, to develop numeric keycodes for
words in the dictionary. These are added to the word-frequency list to form a
word-frequency-keycode list.

Given the word-frequency-keycode list, a scan step sequence is built for
every word in the dictionary for the specified input method. The result is a
word-frequency-keycode-scan list. The scan steps for “computer” were given
earlier for all four methods (see Figure 6). Generating the candidate list for
the OW method is somewhat involved, due to ambiguity in the keycodes. The
list must be built after every key selection. If the word appears in the list, a
decision is required on whether to choose early selection, if there is a perfor-
mance benefit, or to continue with the next selection. From the word-frequency-
keycode-scan list, SPC and SPS are then computed as a weighted average
over the entire dictionary. The process is then repeated for other letter-key
assignments.

The calculations we have described are but one part of a complex design
space. Although the model is highly flexible, the search was constrained to
designs placing letters on 2, 3, 4, 5, or 6 keys. These designs span a range that
avoids absurdly long candidate lists (e.g., a 1-key design) while maintaining a
reasonably small number of scan steps across the letter-selection region.

The search was further constrained to alphabetic letter arrangements only.
Relaxing this constraint not only causes an explosion in the number of alter-
native designs, it also produces designs that increase the cognitive demand
on users who must confront an unfamiliar letter arrangement. While designs
with optimized letter arrangements often yield good predictions “on paper,”
they typically fail to yield performance benefits for users [Baljko and Tam
2006; Bellman and MacKenzie 1998; MacKenzie 2002b; Miró and Bernabeu
2008; Pavlovych and Stuerzlinger 2003; Ryu and Cruz 2005].

Even with the constraints described above, the search space is substantial
because of the number of ways letters may be assigned across keys. In partic-
ular, if n letters are assigned in alphabetic order across m keys, the number of
assignments (N) is

N = (n − 1) !
(m− 1) ! × (n − m) !

. (5)

For 26 letters assigned across 2, 3, 4, 5, or 6 keys, the number of letter-key
assignments is 25, 300, 2300, 12650, and 53130, respectively.

An exhaustive search was undertaken to find the letter-key assignment
generating the lowest SPC for each interaction method (OLPS, MLPS, DLPK,
OW) for alphabetic assignments over 2, 3, 4, 5, and 6 keys. The results are
shown in Figure 8. The range is from SPC = 5.91, using the OLPS method with
six letter keys, down to SPC = 1.834, using the OW method with three letter
keys.

Note that for each column in Figure 8, the letter-key assignment yielding
the lowest SPC was slightly different among the input methods. Nevertheless,
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Fig. 8. Minimized scan steps per character (SPC) for the OLPS, MLPS, DLPK, and OW interaction
methods for designs with 2 through 6 letter keys.

Fig. 9. Letter-key assignments producing the optimal scan steps per character (SPC) for the
optimized-word (OW) input method. The SPS (selections per scan step) statistics are given as well.

there was a coalescing of results: Designs generating the lowest, or near low-
est, SPC for one interaction method faired similarly for the other methods.
Figure 9 gives the chosen optimal design for each size. The assignment chosen
in each case was based on the OW method. The SPC and SPS statistics are
also provided.

SPC decreases reading down the table, but experiences an increase at two
letter keys. This is due to the increased ambiguity of placing 26 letters on
two keys. The result is longer candidate lists with more passive scan steps
required to reach the desired words. The similarity in the designs is interesting.
For designs with 3 through 6 letter keys, the first break is after “h,” and for
designs 4 and 5 the next two breaks are after “m” and “r.” This is likely due
to the performance benefits in selecting or double selecting letters early in the
scanning sequence, to avoid an additional pass if possible.

2.5.1 Ambiguity Analysis. The specter of highly ambiguous words and
long candidate lists is unavoidable with ambiguous keyboards, particularly
if letters are positioned on just a few keys. The SPC calculation described
above accounts for this, but does so only as an overall average for text
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Fig. 10. Percentage of dictionary words at each position in the candidate list. The analysis is for
the design in Figure 9 with three letter keys using a 9022-word dictionary.

entry using a particular letter-key assignment and the built-in dictionary.
While SPC < 2 is remarkably low, we are still left wondering: How long are
the candidate lists? What is the typical length? What is the worst case? Figure
10 offers some insight for the design in Figure 9 using three letter keys (SPC =
1.834). The analysis uses the 9,022 unique words from the corpus noted earlier.
Evidently, 55.7% of the words are at the front of the candidate list when word
selection begins. This figure includes both unambiguous words (41.5%) and
those ambiguous words that are the most frequent of the alternatives (14.2%).
The pattern follows a well known relationship in linguistics known as Zipf ’s
law, where a small number of frequently used language elements cover a high
percentage of all elements in use [Wobbrock et al. 2006; Zhai and Kristensson
2003].

Considering that the three-letter-key design requires four scan steps for
a single pass through the letter-selection region, the cost of having words in
positions 1 through 4 in the candidate list is minor. As a cumulative figure,
82.2% of the words appear in the candidate list at position 4 or better. The
same figures are 94.8% at position 10 and 99.6% at position 20. So, very long
candidate lists are rare. But, still, they will occasionally occur. As an example
of position 20, if a user wished to enter “Alas, I am dying beyond my means,”6

after entering 1213 for “alas,” the candidate list would be quite tedious: {does,
body, goes, boat, dogs, diet, flat, coat, andy, gift, flew, ends, aids, alex, clay,
bias, blew, gods, dies, alas}. This is an extreme example. In this case, the
poor position of “alas” is compensated for, at least in part, by the good posi-
tion of the other words: “I” (1), “am” (4), “dying” (6), “beyond” (2), “my” (4),
“means” (1). The worst case for the test dictionary is “dine” (1221) at position
30. Matching moreprobable candidates include “file,” “gold,” “cope,” “golf,” and
so on.

6Allegedly uttered by Oscar Wilde, as he sipped champagne on his deathbed.
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Fig. 11. Scan steps per character (SPC) calculated for the BNC-1, BNC-2, and Brown corpora for
letter keys 2 through 6 using the designs in Figure 9.

2.5.2 Corpus Effect. It is worth considering the effect of the dictionary
on the SPC calculation. If the dictionary had substantially more words or if it
were derived from a different corpus, what is the impact on SPC? To investigate
this, the SPC values in Figure 9 were re-calculated using two additional word-
frequency lists. One was a much larger version of the British National Corpus
containing 64,588 unique words (BNC-2). Another was the well-known Brown
corpus of American English [Kucera and Francis 1967] containing about 41,000
unique words from a sample of about one million words. The results are shown
in Figure 11. For comparison, the top row (BNC-1) gives the SPC values from
Figure 9.

The most reassuring observation in Figure 11 is that substantially larger
dictionaries do not cause an untoward degradation in performance. For the
three-letter-key design, increasing the dictionary from 9,022 words (BNC-1) to
64,588 words (BNC-2) produced only a 3.9% increase in SPC, from SPC = 1.834
to SPC = 1.905. That the increase is small is likely because the additional
words are, for the most part, larger and more obscure than the core 9,022
words. Ambiguity tends to arise with shorter words. Even though the Brown
corpus has fewer words than BNC-2, there is evidently more ambiguity. For
the three-letter-key design, the degradation compared to BNC-1 is 10.5%, from
SPC = 1.834 to SPC = 2.027. The explanation here is simple. The letter-key
assignment used in the calculation (see Figure 9) was based on optimization for
the BNC-1 dictionary. If one wished to design a scanning ambiguous keyboard
using a dictionary of words from the Brown corpus, or any other corpus or
source, then the modeling process should use that dictionary.

Overall, the results above are promising. The optimal design for three letter
keys (SPC < 2) suggests that English text can be entered in less than two
scan steps per character on average. Of course, with SPS > 0.5, the cognitive
or motor demand may pose a barrier to attaining the maximum possible text
entry throughput. “Maximum possible” is the correct term here. Assuming
users take all opportunities to optimize, they will indeed attain the maximum
text entry rate. Of course, the actual rate depends on the scanning interval,
which must be tailored to the abilities of the user. Just as an example, if the
scanning interval was, say, 700 ms, the maximum text entry throughput (T)
for the design in Figure 9 with three letter keys is given by Equation (1) as

T =
(

1
1.834

)
×

(
1000
700

)
×

(
60
5

)
= 9.35 wpm. (6)
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This is an average rate for English, assuming the use of the BNC-1 dictio-
nary. The rate for individual words or phrases may differ depending on their
linguistic structure.

The text entry rate just cited (9.35 wpm) is quite good for one-key input with
a scanning keyboard. Miró and Bernabeu [2008] cite a predicted text entry
rate of 10.1 wpm with a one-key scanning keyboard using two-tier selection.
However, their rate was computed using a scanning interval of 500 ms. Using a
scanning interval of 500 ms in Equation (6) yields a predicted text entry rate of
13.1 wpm. Predictions are one thing; tests with users are quite another. Rates
reported in the literature that were measured with users are lower (although
they are difficult to assess and compare due to variation in the methodologies).
Baljko and Tam [2006] researched text entry with a scanning keyboard with
letter positions optimized using a Huffman coding tree. They reported entry
rates ranging from 1.4 wpm to 3.1 wpm in a study with twelve able-bodied
participants. The faster rate was achieved with a scanning interval of 750 ms.
In Simpson and Koester’s [1999] study with eight able-bodied participants,
entry rates ranged from 3.0 wpm to 4.6 wpm using a scanning keyboard with
an adaptive scanning interval. The faster rate was achieved with a scanning
interval just under 600 ms.

It remains to be seen whether users can actually achieve the respectable en-
try rates conjectured for a scanning ambiguous keyboard of the type described
here. In the next section, a “test of concept” evaluation is presented. For this,
the three-letter-key design yielding the lowest SPC (see Figure 9) was chosen
for evaluation.

3. EXPERIMENT 1: TEST OF CONCEPT

3.1 Participants

Twelve able-bodied participants were recruited from the local university cam-
pus. The mean age was 25.3 years (SD = 3.2). Five were female, seven male.
All participants were regular users of computers, reporting an average daily
usage of 7.6 hours. Testing took approximately one hour, for which participants
were paid ten dollars.

3.2 Apparatus

A prototype scanning ambiguous keyboard (SAK) was created in Java. The ap-
plication included a letter-selection region and a word-selection region, as de-
scribed earlier. For experimental testing, regions were also included to present
text phrases for input and to show the transcribed text and keycodes during
entry. Input was performed using any key on the system’s keyboard.

Several parameters configured the application upon launching, including
the scanning interval, the letter-key assignment, a dictionary in the form of a
word-frequency list, and the name of a file containing test phrases. A screen
snap of the application, called OneKey, is shown in Figure 12.

In the screen snap, focus is on the first letter key. Focus advances in the
expected manner, according to the scanning interval. As selections are made,
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Fig. 12. Screen snap of the OneKey application. See text for discussion.

focus advances to the next key, rather than reverting to the first key (as noted
earlier). In the image, the user has entered the first two words in the phrase
“the minimum amount of time.” The first four keys (1223) of the next word
(“amount”) have been entered. The candidate list shows words exactly matching
the key sequence followed by extended matching words. The desired word is at
position 18 in the list. The correct strategy here is to continue selecting letter
keys to further spell out the word. When the user finishes selecting letter keys,
a selection on space (“[space]”) transfers focus to the word selection region.
Words are highlighted in sequence by displaying them in blue with a focus
border. When the desired word is highlighted, it is selected and added to the
transcribed text.

Timing begins on the first key press for a phrase and ends when the last
word in a phrase is selected. At the end of a phrase, a popup window shows
summary statistics such as entry speed (wpm), error rate (%), and scanning
efficiency (%). Pressing a key closes the popup window and brings up the next
phrase for input.

3.2.1 Phrase Set. The outcome of text entry experiments may be affected
by the text users enter. Depending on the entry method, text may be chosen
specifically to elicit a favorable outcome. In the present experiment, for exam-
ple, phrases could be concocted from words with low SPC values, thus creating
an artificially inflated text entry throughput. This was not done. Instead, a
generic set of 500 phrases was used [MacKenzie and Soukoreff 2003]. Some ex-
amples are given in Figure 13. For each trial, a phrase was selected at random
and presented to the user for input.

The phrase set was designed to be representative of English. Phrase lengths
ranged from 16 to 43 characters (mean = 28.6). In analyzing the phrases, it was
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Fig. 13. Example phrases used in the experiment (from MacKenzie and Soukoreff [2003].

determined that about 10% of the 1164 unique words were not in the dictionary.
These words were added to the dictionary (with frequency = 1); thus, insuring
that all phrases could be entered using the SAK under test.

To gain a sense of the linguistic structure of the phrases, a small utility
program was written to compute SPC for every phrase. For the phrase set
overall, SPC = 1.980, with a best case of SPC = 1.226 (“great disturbance in
the force”) and a worst case of SPC = 3.833 (“my bike has a flat tire”). Given
that SPC = 1.834 for the SAK used in the experiment, the test phrases were, on
average, slightly more difficult than English as represented in the embedded
dictionary.

3.2.2 Error Correction. Error correction was implemented using a “long
press”—pressing and holding the input key for two or more scan step intervals.
While the input key was held, scanning was suspended. Scanning resumed
when the key was released. If a long press occurred during entry of a word, the
effect was to clear the current key sequence. If a long press occurred between
words, the effect was to delete the last word in the transcribed text region.

3.3 Procedure

After signing an informed consent form, participants were told the general
idea of text entry using scanning keyboards, ambiguous keyboards, and a scan-
ning ambiguous keyboard. The text entry method was demonstrated using an
initial scanning interval of 1100 ms. The operation of the letter-selection and
word-selection regions was explained. Participants were allowed to enter a few
practice phrases and ask questions while further instructions were given on
the different ways to select letters and words (as per the OLPK, MLPK, DLPK,
and OW methods discussed earlier) and the way to correct errors. They were
told to position their hand comfortably in front of the keyboard and to make se-
lections with any key. Selection using the index finger on the home row (F-key
using the right hand) was recommended.

Participants were asked to study each phrase carefully—including the
spelling of each word—before beginning entry of a phrase. They were reminded
that timing did not begin until the first key press. Entry was to proceed as
quickly and accurately as possible. They were encouraged to correct errors,
if noticed, but were also told that perfect entry of each phrase was not a
requirement.

At the end of the experiment, participants completed a brief questionnaire.
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Fig. 14. Observed entry speed (wpm) by block and scanning interval. For each block, the maximum
possible entry speed and the scanning interval are also shown. Error bars show ±1 SD.

3.4 Design

The experiment included “block” as a within-subjects factor with five levels
(1, 2, 3, 4, 5). Each block of input consisted of five phrases of text entry. The
total amount of input was 12 participants × 5 blocks × 5 phrases/block = 300
phrases.

The scanning interval was set to 1100 ms for the first block of testing. It was
decreased by 100 ms per block, with a final setting of 700 ms in block 5.

The dependent variables were text entry speed (wpm), scanning efficiency
(%; Equation (3)), error rate (%), and word corrections (the number of “long
presses” per phrase).

4. RESULTS AND DISCUSSION

4.1 Text Entry Speed and Efficiency

The grand mean for text entry speed was 4.73 wpm. There was a 28.3% im-
provement over the five blocks of input with observed rates of 3.98 wpm for the
1st block and 5.11 wpm for the 5th block. The trend is shown in Figure 14.

While the trend was statistically significant (F4,44 = 7.58, p < .0001), this
must be considered in light of the confounding influence of scanning interval,
which inherently increases the text entry rate, all else being equal. So an
increase in text entry speed was fully expected. In fact, the experiment, as
a test of concept, was designed to ease participants into the operation of the
SAK, and to gradually elicit an increase in text entry throughput by gradually
decreasing the scanning interval.

Figure 14 also shows the maximum possible entry speed for each block. The
value for each block was computed according to Equation (1) using the scan-
ning interval and the average SPC for the 60 phrases randomly selected for
that block (12 participants × 5 phrases/block). Each SPC used in the calcu-
lation was computed using the optimized word (OW) entry method. As noted
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Fig. 15. Per-participant text entry speed by block and scanning interval. The line at the top shows
the maximum possible text entry speed.

earlier, this value is the minimum scan steps for which a phrase can be en-
tered, assuming users take all opportunities to optimize. For the 5th block, the
maximum possible speed was 8.60 wpm.

The pattern in Figure 14 suggests that participants were not able to im-
prove their text entry throughput after the 3rd block. This is particularly true if
comparing the observed speed to the maximum possible speed. Admittedly, de-
creasing the scanning interval from block to block was a bit of a gamble: Would
participants’ emerging expertise, combined with a decreasing scanning inter-
val, yield an increase in their text entry speed, proportional to the maximum
possible rate? Clearly, the answer was “no.” There are a number of possible
reasons for this. One is simply that the experiment afforded too little time for
participants to learn and develop entry strategies before reducing the scanning
interval. Each block involved only about 8–10 minutes of text entry. Another
possible reason is that the cognitive or motor demand was simply too high,
when considering the need to make frequent selections with the three letter-
key design under test.

However, further insight lies in the large standard deviation bars for the 4th

and 5th blocks in Figure 14. These suggest substantial individual differences in
the responses across participants. Figure 15 shows this by plotting the trend for
each participant over the five blocks. Evidently, some participants continued
to improve in the 4th and 5th blocks. Three participants achieved mean text
entry speeds above 6 wpm in the 5th block, with one achieving a mean of 8.05
wpm—very close to the maximum possible speed.

While the inability of participants—overall or individually—to attain the
maximum possible entry rate is worthy of analysis and speculation, the mean
entry speed of 5.11 wpm in the 5th block is still quite good for one-key text
entry. Of the studies noted earlier, the closest is Simpson and Koester’s [1999]
system with an adaptive scanning interval. Their maximum reported entry
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Fig. 16. Scanning efficiency by block and scanning interval. Scanning efficiency is the ratio of the
minimum number of scan steps to the observed number of scan steps. The error bars show ±1 SD.

speed was 22.4 characters per minute, or 4.6 wpm. However, they excluded
trials where participants missed selection opportunities. Furthermore, their
methodology excluded error correction. By contrast, the figure reported here
of 5.11 wpm includes all trials in the 5th block (12 participants × 5 phrases
each). The measurements include the time lost through missed selections as
well as the time in correcting errors. So, overall, the results reported here for a
scanning ambiguous keyboard are very promising.

Participants with lower text entry speeds made more selection errors and
had more difficulty seizing opportunities to optimize their entry, particularly
with shorter scanning intervals. Figure 16 shows the overall trend of partic-
ipants in terms of scanning efficiency—the ratio of the minimum number of
scan steps to the observed number of scan steps (Equation (3)).

Scanning efficiency (SE), as a human performance measure, is intended to
reflect participants’ ability to make selections at the earliest opportunity. SE
improved after the 1st block, reaching about 75% in the 2nd and 3rd blocks.
After that, SE dropped—to 64.8% in the 4th block and to 58.8% in the 5th block.
Although the most germane explanation is that participants missed opportu-
nities to optimize (and this is certainly true), another explanation seems more
likely. In perusing the raw data, evidently many additional scan steps were
present due to selection errors and corrections.

The large standard deviation bars in Figure 16 suggest that some partic-
ipants fared better than others. It is felt that the predominant underlying
cause for the drop in SE is insufficient practice. Participants were by no means
experts at the end of the experiment. With sufficient practice and a more grad-
ual shortening of the scanning interval, scanning efficiency would likely edge
upward, as would text entry speed.

4.2 Accuracy

Accuracy was represented in the experiment in two ways: uncorrected errors
and corrected errors. Errors remained in the transcribed text if a participant
selected a wrong word and did not correct it (perhaps because it was not
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Fig. 17. Corrected words per phrase by block and scanning interval. Error bars show ±1 SD.

noticed). These are uncorrected errors. Such errors were measured by com-
puting the minimum string distance between the presented and transcribed
text [MacKenzie and Soukoreff 2002; Soukoreff and MacKenzie 2001]. The re-
sult is the character-level error rate as a percent. As it turns out, the error rate
in the experiment was very low. The overall mean error rate was just 0.96%,
equivalent to 99.04% accuracy. In fact, of the 300 total phrases, 280 were error
free. Evidently, participants tended to notice when they committed errors and
chose to correct them.

The second form of accuracy is corrected errors, or, more precisely, “corrected
words.” If a participant committed an error and noticed it, he or she could
correct the error using a “long press,” defined earlier. The effect was to erase
either the current word (i.e., current key selection sequence) or the last word
entered. The participant would then reenter the word. The results for corrected
words are shown in Figure 17.

Clearly, the 4th and 5th blocks were problematic. Approximately two word
corrections per phrase may not seem like much; however, a substantial number
of scan steps are often involved because corrections tended to occur with longer
words. There are two reasons. One is simply that there are more chances to
make a selection error if there are many selections. Another is due to the
inherent characteristic of ambiguous keyboards that the display is unstable
during entry of a word [Silfverberg et al. 2000]. Because of this, it is hard to
detect a selection error until the end of a word, wherein one discovers that the
desired word is not among the candidates.

The large error bars in the 4th and 5th blocks in Figure 17 signal that some-
thing is amiss. A closer look as the data revealed that some participants oc-
casionally had difficulty. In all, there were 32 phrases with 5 or more word
corrections. Of these, 8 phrases had 10 or more word corrections. The major-
ity of these were during the 4th or 5th block where the scanning interval was
shortest. While a criterion could have been developed to classify some trials as
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Fig. 18. Participant responses to two questions along with text entry speed (wpm) in the 5th block.

outliers, this was not done, given that this is the first evaluation of a scanning
ambiguous keyboard. All behaviors were considered reasonable, at least for
this initial test.

4.3 Participant Questionnaire

As well as soliciting comments in general, participants were asked two ques-
tions at the end of the experiment. The questions and responses are shown
in Figure 18, along with each participant’s text entry speed (wpm) in the 5th

block.
Seven participants considered the scanning interval in the 5th block either

FAST or VERY FAST; five indicated it was OK. Eight participants felt they
could use the interface with an even shorter scanning interval; four felt they
could not. Of the four who felt they could not, two (P11, P12) had text entry
rates under 4 wpm in the 5th block. The three participants (P03, P05, P10)
with text entry speeds above 6 wpm all answered OK/YES, evidently feeling
confident they could achieve even better performance.

Participants also shared a variety of observations and comments. Frustra-
tion was expressed on waiting for words when they were situated near the end
of the candidate list. Evidently, selections that crossed the boundary of a scan-
ning interval were lost and caused a word reset (key selections erased). One
participant expressed a desire to allow triple selections in a scanning interval.
Others commented on feeling rushed trying to make selections within a brief
interval and also in switching attention from the letter-selection region to the
word-selection region.

4.4 Timer Restart on Selection

Two participants commented that additional time can be added to the scan step
interval by restarting the timer when a selection is made. The effect is to extend
the current scan step interval. This gives the user additional time to consider
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Fig. 19. Extended trials for one participant using the “timer restart on selection” mode. This mode
facilitates making multiple selections per scan step. The data are for five blocks with five phrases
per block.

the need for a possible selection in the next scan step interval. Importantly,
this provides extra time when SPACE is selected to consider the first entry in the
candidate list. One participant suggested doubling the scanning interval for
the first entry in the candidate list. This seems reasonable considering there is
always a selection in the preceding scan step interval (“[space]”) and that the
cost of missing a word in the candidate list is high.

Restarting the timer also facilitates making a second selection in a scan
step interval, because the effect is to make the full scan step duration avail-
able again for the second selection. Furthermore, if a second selection is made,
the timer is again reset, facilitating a third selection, and so on. As it turns
out, with the three letter-key arrangement evaluated here, there are numer-
ous opportunities for more than two selections on a key. Some examples are
“had” (111), “each” (1111), “try” (333), “feeling” (1112221), “fact” (1113), “ideal”
(21112), “been” (1112), and so on. This modification suggests a new “inter-
action method” for the model. The DLPK (double letter per key) interaction
method extends to an MLPK (multiple letters per key) interaction method.
With this possibility included in the model, the letter-key assignments used in
the SAK prototype yield SPC = 1.713. This is a 6.6% reduction in scan steps
per character from the minimum value reported earlier (SPC = 1.834; see
Figure 9).

This idea was considered so provocative that the SAK application was mod-
ified to implement a “timer restart on selection” mode. One participant agreed
to do an extra five blocks (five phrases each) to test the mode. For these “ex-
tended” trials, the scanning interval started at 700 ms and was reduced by 50
ms per block, finishing at 500 ms. The results are shown in Figure 19.

The entry speeds ranged from 7.38 wpm in the 6th block to 9.28 wpm in
the 10th block. The overall error rate for the extended trails was very low, at
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Fig. 20. Application window of the full implementation. See text for discussion.

0.81%. A look at the raw data revealed some use of multiple selections. Of 558
total letter selections, there were 98 (17.5%) double selections, 17 (3.0%) triple
selections, and 3 (0.5%) quadruple selections.

5. EXPERIMENT 2: CASE STUDY

The experiment previously detailed confirms the viability of a scanning am-
biguous keyboard (SAK). The question remains whether the SAK approach
can indeed help the target population in everyday life. To investigate the prac-
tical usefulness of SAK, a case study with one 39-year-old male participant was
conducted. The participant experiences considerable motor problems and has
used a wheelchair for more than 20 years due to Friedreich’s Ataxia (FA). Al-
though he normally (still) uses a standard (manual) keyboard when interacting
with a computer, the progressive nature of his disease makes use of a manual
keyboard more difficult with time. His manual typing speed has progressively
slowed. Previously measured speeds were 12 wpm at age 18, diminishing to 6
wpm at age 35.

As this study was intended to assume real-life conditions, it first required
a full implementation of the SAK idea, including, for example, the entry of
nondictionary words.

5.1 Software—Qanti

“Qanti”—a software tool for “Quick, Ambiguous, Non-standard Text Input”
is a full implementation of the scanning ambiguous keyboard (SAK) concept
described above. The interface is shown in Figure 20. The tool was developed in
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C++ under Windows. R© The Qanti interface divides the screen into four regions:
a letter-selection region (top-left), an output region (top-right), an information
region (bottom-left), and a multi-purpose, two-dimensional scanning board with
4 × 4 virtual keys (bottom-right).

5.1.1 Letter-Selection Region. Qanti’s letter-selection region operates sim-
ilar to that of OneKey, the Java prototype SAK discussed earlier (see Figure
12). Initially, the focus is on the letter-selection region, with the four virtual
keys linearly scanned as described earlier. The user composes text through key-
code sequences by selecting the three leftmost letter keys (with timer restart
on selection). The current keycode sequence is displayed under the four virtual
keys. The fourth key allows switching focus to the two-dimensional scanning
board or switching to an escape mode.

5.1.2 Two-Dimensional Scanning Board. In the default case, the two-
dimensional scanning board receives focus when the user selects the fourth
key in the letter-selection region having selected at least one letter key in the
current scan cycle. The board presents up to 16 candidate words. In Figure 20,
the user is entering “agree.” The keycode sequence 11311 has been entered, fol-
lowed by a selection on the fourth key, labeled “2d-board.” A list of 16 candidates
is presented and scanned.

The candidate words are drawn from two lists: first, a list containing words
exactly matching the current keycode sequence, and second, words extending
(completing) the keycode sequence. The order of the candidates is determined
by the frequency of words in a dictionary (e.g., the 9022-word dictionary men-
tioned earlier). The distribution of the frequency-ordered list over the 16 keys
takes the row-column scanning pattern into account (note the key indices in
Figure 20).

The 4 × 4 board is scanned using traditional row-column scanning. The
problem is that there are often more than 16 candidates matching or completing
the current keycode sequence (59 for “11311” in Figure 20). To account for this,
the scan cycle for the four rows is complemented by a fifth step (not shown)
allowing the user to go down in the candidate list and display the words ranked
17–32, and so on.

After the selection of a candidate, the keys of the 2d-board are relabeled with
various modifiers, which are again scanned in a row-column fashion, as shown
in Figure 21. The modifiers allow, for example, appending a space character,
a comma, or a period at the end, or capitalizing the first character of the
candidate before the word is copied to the output region (with focus reverting
to the letter-selection region for the entry of the next word).

5.1.3 Escape Mode. To “escape” the default way of entering a word, the
user may select the fourth key in the letter-selection region without selecting
any of the three letter keys in the same scan cycle (which unfortunately means
a temporal overhead of at least four scan steps). In this case, the 2d-board
presents an auxiliary menu, giving access to various services, for example,
to delete the last character or word, to clear the current keycode sequence,
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Fig. 21. After selecting a word, the two-dimensional scanning board changes to show modifier
and word-ending options.

Fig. 22. Escape mode shows a menu providing access to a range of editing and system functions.

to configure the scanning interval, or to update the dictionary, as shown in
Figure 22.

One menu function (bottom-left option in Figure 22) is responsible for launch-
ing a standard scanning keyboard for entering arbitrary character sequences
as non-dictionary words which can subsequently be added to the dictionary. The
implementation of the full keyboard (not shown) resembles the 3-level scanning
text entry routine described by Felzer and Rinderknecht [2009] which features
a 64-key on-screen keyboard. The full keyboard was accessed during the Qanti
sessions when words containing punctuation were entered (e.g., “I’m,” “don’t,”
further explained below).
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5.1.4 Information Region. The information region in Qanti contains all
sorts of (sometimes redundant) context-dependent information to help the user
in assessing the current program status. For example, in addition to displaying
the total number of candidates, it lists the currently selectable ones in alpha-
betical order (also showing their row-column coordinates among the keys of
the 2d-board). The aforementioned auxiliary menu also allows activating a test
mode (used in the sessions described below). In the test mode, which is acti-
vated in Figure 20, the information region displays a timer with one-second
resolution.

5.1.5 Output Region. The output region is where Qanti accumulates the
entered text. Furthermore, any messages concerning user interaction in the
test mode, such as the phrase to transcribe or the achieved statistical data, are
displayed here.

5.2 Hardware

As Qanti is intended for users with severe physical disabilities, a specialized
hardware configuration is required.

5.2.1 Input Signals. An important difference between OneKey and Qanti
is the type of input signals required for issuing selections. OneKey is operated
by pressing any key on the standard keyboard. This is sufficient for test-of-
concept evaluations with able-bodied subjects, yet it still requires use of the
hands.

On the contrary, while also reacting to pressing the SPACE key or mouse
button clicks, Qanti is configured to operate through intentional muscle con-
tractions [Felzer and Nordmann 2008; Felzer et al. 2009]. These input signals
only require a tiny contraction of a single muscle of choice (which requires a
minimum of physical effort) and are more suitable for members of the target
population (i.e., persons with severe physical disabilities).

5.2.2 Setup. Figure 23 depicts the experimental setup used in the two
Qanti sessions.

The subject was positioned a comfortable distance from a laptop screen and
produced selections in a hands-free manner using a headband sensor. The
sensor is based on a piezo element, which actively generates a voltage when
deformed by the participant contracting the brow muscle intentionally. This is
similar to the common act of frowning. The voltage signal is filtered, amplified,
converted from analog to digital in an interface circuit, and sent to the computer
via the USB port. Additional processing software “listens” to the USB and
notifies Qanti when it detects a contraction event.

5.3 Test Sessions

To quantify the usefulness of the SAK approach in general and the usability
of the Qanti software in particular, the FA patient mentioned above performed
several sessions of text entry. The tests were distributed over three consecutive
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Fig. 23. Case study setup. (a) Participant and apparatus. (b) Headband sensor. See text for dis-
cussion.

days, with sessions lasting between ten minutes (four on the third day) and one
hour (one on each of the first and second days).

5.3.1 Day One. Testing on the first day was fashioned after that with the
able-bodied participants in Experiment 1. Using Qanti, the participant per-
formed blocks of text entry with five phrases per block. The scanning interval
was initially 1100 ms, and decreased by 100 ms per block.

Although the time to enter a phrase—starting with the first selection, ending
when the phrase was finalized by entering a newline character—was recorded,
a high entry rate was not overly important in the initial session. The main
objective was to familiarize the participant with Qanti (as well as the expected
task) and to identify a favorable scanning interval. A favorable scanning inter-
val is one deemed comfortable (not too slow, not too fast) that would facilitate
the production of optimal entry rates for the second day.

5.3.2 Day Two. Qanti was also used on the second day. The test involved
five blocks with five phrases each, all with the preferred scanning interval,
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as identified in the initial session. This time, the participant was asked to
transcribe the phrases as quickly and accurately as possible, and also to correct
any errors noticed. Note that the method of correcting errors was quite different
with Qanti than with OneKey. OneKey used a “long press” for error correction
(described in Section 3.2.2). While this may work well for able-bodied users,
the motor control required to issue long vs. short selection signals may not be
possible for many disabled users. Error correction with Qanti was implemented
with dedicated commands accessible through the escape mode. Examples are
seen in Figure 21.

There were sufficient rest intervals between the phrases and between the
blocks, and the participant was always free in deciding when to move on.

5.3.3 Day Three. The sessions on the third day served comparison pur-
poses. One session was devoted to OneKey and was performed using the same
software and setup as with Experiment 1. Using manual input (the SPACE

key of the physical keyboard), the participant performed one block of five
phrases with his preferred scanning interval. This was followed by three ses-
sions, five phrases each, with his usual method: manual, with the standard
keyboard. The sessions were over the entire day (allowing for the observa-
tion that the participant’s typing speed varied considerably depending on the
time of day): one in the morning, one at noon (before lunch), and one in the
evening.

In all, there were 13 blocks (five phrases each) distributed over three days
as follows:

—Day 1—Four familiarization blocks with Qanti (plus a fifth attempted but
unfinished block; see below)

—Day 2—Five blocks with Qanti
—Day 3—One block with OneKey, three blocks with a manual keyboard

5.3.4 Phrase Set and Dictionary. The phrases used in the test sessions
were similar to those in the OneKey experiment, albeit modified to reflect “real-
life” conditions. The modifications included capitalizing the first character of
the first word, inserting grammatically correct commas, etc., and appending the
logically intended terminating punctuation (period, exclamation mark, or ques-
tion mark). In addition, only complete sentences were used, and expressions
like “do not” were converted into “don’t.” The implication of this for Qanti is that
the participant had to occasionally escape from the default mode of input using
the scanning ambiguous keyboard and use the conventional full (row-column
scanning) keyboard to build-up non-dictionary words that included letters and
punctuation characters.

In all, 100 phrases were selected and modified as described above. For Day 1
and Day 2, phrases were drawn at random from the set. The last five phrases
from Day 2 were selected for use on Day 3. Since the OneKey prototype software
was not designed to handle punctuation or contractions (e.g., “don’t”), the five
phrases were used in their unmodified form. For example, “I’m allergic to bees
and honey!” was reduced to “I am allergic to bees and honey.” These same five
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Fig. 24. Required corrections in the Qanti familiarization phase. See text for discussion.

phrases, but in their modified form, were used in the three sessions with the
manual keyboard.

The same dictionary was used with Qanti as was used with OneKey in Ex-
periment 1.

5.4 Results and Discussion

Unlike the former OneKey experiment, the familiarization session comprised
only four complete blocks. This was due to the delayed reaction time of the
participant. He was not able to enter more than two consecutive words correctly
with a scanning interval of 700 ms, and, consequently, gave up completing the
700 ms block after eight unsuccessful trials (meaning that this block—and only
this block—was restarted again and again).

The described problem is also seen when looking at the total number of
corrections per block. A correction in this sense was defined as any operation
taking back words or characters either within the entered text or in the current
keycode sequence. A correction was only utilized if there had been a preceding
mistake (i.e., an erroneous selection). As seen in Figure 24, the total number of
required corrections gradually increases with decreasing scanning interval and
“explodes” in the block with the 700 ms scanning interval where the participant
was unable to complete any phrases.

The participant finally decided on 1000 ms as the most comfortable scan-
ning interval. This speed configuration was used throughout all subsequent
scanning sessions.

5.4.1 Achieved Entry Speed. When looking at the achieved entry speed in
the 9 blocks of testing with Qanti (Figure 25), it is immediately apparent that
the rate in the familiarization blocks—even in the second one with the same
scanning interval (i.e., 1000 ms)—is generally lower than in the main test
blocks. This occurred because the participant was told in the familiarization
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Fig. 25. Achieved entry speed during the case study. See text for discussion.

blocks not to concentrate on being fast, but on becoming acquainted with the
software and with the setup.

An interesting result is that the participant was about as fast with OneKey as
with Qanti—a little over 2 wpm. Given that the phrases in the OneKey session
were simpler (and never required a full row-column scanning keyboard), one
would probably expect OneKey to elicit significantly superior entry rates. The
mentioned advantages were leveled out by the more convenient input method
in the Qanti test (i.e., use of the headband sensor). Especially, the DLPK/MLPK
interaction methods caused problems for the participant while using OneKey,
as these methods involve pressing and releasing a physical key multiple times
in quick succession.

When comparing the entry rates achieved with Qanti to those achieved with
OneKey in Experiment 1, one might think the Qanti rates were “slow.” How-
ever, the less favorable results are hardly attributable to Qanti. Rather, the
main reason is related to the test participant’s health condition: Experiment 1
involved able-bodied participants, while the case study results were achieved
by a member of the target population (i.e., someone severely disabled). See
also the result in block 10, where Qanti was not used at all. In addition, the
practical “real-life” assumptions mentioned above (e.g., grammatically correct
punctuation characters or newline characters between sentences) make the
two experiments hard to compare, especially in view of the request to cor-
rect any noticed errors. Notably, all transcribed phrases in the case study
were, in the end, 100% correct, and this naturally reduced the achieved entry
rate.

5.4.2 Subjective Assessment. Looking at the entry speed in the manual
sessions raises the question of whether the participant was interested in using
Qanti as an alternative, given that he was faster with the keyboard in all three
manual sessions. The answer was a definite “yes” for two reasons: the expected
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exercising effect and his personal evolution. What he meant is explained as
follows.

First, Qanti poses a high cognitive load on the user, but this is expected to
diminish with practice. For example, after entering “11311,” the word “educa-
tion” appears in the candidate list in the second row and the fourth column
(see Figure 20). When entering “education” for the first time, it is almost im-
possible to take all optimization opportunities; i.e., to observe the appearance
of the candidate at the earliest opportunity and to consciously issue a selection
at the right time. The test participant indicated that, with practice, it would
be possible to know and anticipate the coordinates of most candidate words.
Although this would take extended training, in the end Qanti is expected to
beat the manual morning-session (block 11).

Second, because of the participant’s diminishing manual typing speed with
age (noted earlier), he is likely to become slower than 2 wpm in a few years.
Besides, people with other disabilities, who cannot use a manual keyboard at
all are likely to benefit by the overall efficiency of the SAK concept, provided a
single-switch input signal can be generated.

One additional note: the same participant that participated in the case study
has participated in about a dozen evaluations with alternative text entry ap-
plications, ranging from a simple on-screen keyboard to a multi-tier scanning
application with frequency-based character ordering [Felzer and Nordmann
2006a; Felzer and Nordmann 2006b; Felzer et al. 2008], Most of the eval-
uations involved the hands-free mouse emulator of Felzer and Nordmann
[2008], and all relied on intentional muscle contractions as input signals.
Therefore, one could safely say that the participant was quite experienced
with a range of alternative and competing text entry methods. However, all
“prior-SAK” tests hardly exceeded an entry rate of 1 wpm. Doubling that value
“off the top of one’s head” (i.e., without extensive training) is a tremendous
improvement.

6. CONCLUSIONS

This article introduced SAK, a scanning ambiguous keyboard supporting text
entry using a single key, button, or switch for input. SAK involves scanning
virtual keys on a display with multiple letters assigned to each key. The design
combines the most demanding requirement of a scanning keyboard—input
using a single key or switch—with the most appealing feature of an ambiguous
keyboard—one switch activation per character. A model was built and run to
search for designs that minimize SPC—the number of scan steps per character
required on average for English text entry. To avoid high cognitive demands,
only designs using an alphabetic arrangement of letters were considered. The
design yielding the lowest scan steps per character, SPC = 1.713, placed letters
on three keys arranged as abcdefgh-ijklmnop-qrstuvwxyz. A fourth “SPACE” key
is used to terminate letter selection and transfer scanning to a word-selection
region.

As well as combining scanning with ambiguous virtual keys, as just de-
scribed, SAK is novel in at least two other ways. First, the scanning pattern in
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the letter-selection region continues is a cyclic pattern, even after character se-
lection. Existing scanning keyboards restart scanning at a home position after
a character is selected. This is a necessary by-product of multi-tier selection,
which is not used in SAK designs. Second, SAK designs allow two or more key
activations in a single scanning interval if multiple consecutive letters are on
the same key.

An evaluation of the optimal three-letter-key design was conducted using 12
participants who entered text phrases drawn at random from a set. Entry was
organized as five blocks with five phrases per block, and lasted about one hour
for each participant. The scanning interval was 1100 ms initially, decreasing
by 100 ms per block, finishing at 700 ms. The average text entry rate in the 5th

block was 5.11 wpm. Three participants reached average rates above 6 wpm,
with one reaching 8.05 wpm. Furthermore, the accuracy in the transcribed
text was very high at 99% overall. This was largely because the methodology
allowed and encouraged participants to correct selection errors.

Participants’ scanning efficiency—the ratio of the minimum number of scan
steps possible to the observed number of scan steps—was only 59% in the 5th

block. Although this was partly due to missed opportunities to optimize (i.e.,
failing to make selections at the earliest opportunity), the main cause was the
additional scan steps accompanying selection errors (which were subsequently
corrected). For the SAK tested, the model predicts an upper bound text entry
rate of 9.35 wpm with a 700 ms scanning interval.

After the experiment, the design was modified to use “timer restart on se-
lection,” thus facilitating > 2 selections per scan step. With this modification,
one participant performed an additional five blocks of input and reached an
average entry rate of 9.28 wpm in the last block (SI = 500 ms).

A case study with a disabled user provided further verification of the viability
of the SAK concept. The user wore a headband keeping a piezo element in
contact with his forehead. Input “keystrokes” were generated using an eyebrow
motion similar to a frown. The case study involved text entry using Qanti, an
implementation of a SAK that included a full range of editing and application
commands. Despite the user’s substantial motor problems, entry rates a little
over 2 wpm were attained. Qualitative results were also promising. The user
felt that considerable further improvement in entry speed was likely since,
with continued practice, opportunities to optimize would become apparent.

The SAK concept represents a novel and effective means for text entry using
a single key or switch. While target applications include mobile computing,
ubiquitous or wearable computers, or gaming, the most likely application is
accessible interfaces for disabled users who are constrained to single-switch
input to computers. Such users can benefit from the efficient text entry possible
with a scanning ambiguous keyboard.
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