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Abstract

An experiment is described comparing two commercial handwriting recognizers with discrete
hand-printed characters. Each recognizer was tested at two levels of constraint, one using lowercase
letters (which were the only symbols included in the input text) and the other using both uppercase
and lowercase letters. Two factors—recognizer and constraint—with two levels each, resulted in
four test conditions. A total of 32 subjects performed text-entry tasks for each condition. Recognition
accuracy differed significantly among conditions. Furthermore, the accuracy observed (87%–93%)
was below the walk-up accuracy claimed by the developers of the recognizers. Entry speed was
affected not only by recognition conditions but by users’ adaptation to the idiosyncrasies of the
recognizers. In an extensive error analysis, numerous weaknesses of the recognizers are revealed, in
that certain characters are error prone and are misrecognized in a predictable way. This analysis, and
the procedure for such, is a useful tool for designers of handwriting-recognition systems. User
satisfaction results showed that recognition accuracy greatly affects the impression of walk-up
users.q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Pen-based computers have received considerable attention recently as products such as
personal digital assistants (PDAs), personal information organizers, and digital tablets enter
the market place. They offer great advantages to people who work intensively with informa-
tion and who work away from a desk (e.g. field service personnel, couriers, doctors).
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Although several input methods appear attractive with pen-based computers, it
is usually claimed that the primary mechanism for text entry remains handwritten
characters [1]. In fact, it is the rapidly maturing handwriting recognition
technologies that have contributed to the increased availability and popularity of pen-
based systems [2].

Although claims abound as to the effectiveness of handwriting recognizers, empirical
data are lacking. Our research is motivated by the need for such data both as an informal
benchmark and to assist designers of pen-based computing systems.

This paper reports the results of an experiment testing two commercial recognizers in a
text-entry task. The input text contained lowercase letters only. We tested each recognizer
under two levels of constraint: lowercase letters only (26 symbols) and uppercase-plus-
lowercase letters (52 symbols). Recognition accuracy should decrease as the size of the
symbol set increases, as it is more difficult for the recognition software to choose the
correct symbol from a large set of possibilities. However, with the exception of Wolf et al.
[1], the extent to which performance degrades as the size of the symbol set increases has
not been tested or reported in the research literature.

2. State of the art

There is a substantial body of research on the use of a pen or stylus as a computer input
device. Most is concerned with the capabilities of the pen for gestural input. This includes
interaction techniques for creative drawing [3], editing text documents [4–6], or editing
graphic objects [7–11].

3. New entry techniques

For text entry, some researchers have attempted to re-design the Roman alphabet with
simplified strokes. Unistrokes, developed at Xerox PARC [12], assigns a single stroke to
each Roman letter. The strokes are quick to write, less prone to recognition errors, and
support ‘‘eyes-free’’ entry within the confines of a bounding box [13]. Unistrokes are
different from Roman letters and must be learned. Furthermore, the transition is not
as smooth as from ‘‘hunt-and-peck’’ typing to touch-typing since a reference chart is
needed for new users. The small number of usable symbols is another limitation with
Unistrokes.

According to the designers, Unistrokes mimic shorthand systems to achieve very high
entry speeds. However, the cost is a longer learning time. In the opposite direction, strokes
can mimic the Roman alphabet to accommodate users unwilling to invest substantial
learning time.

Graffiti [14,15] a recent handwriting recognition product from the Palm Computing
Division of US Robotics, takes the second approach. Its single-stroke alphabet is designed
to be very close to the Roman alphabet; thus, it is easy to learn. In one empirical study with
Graffiti, users achieved 97% accuracy after 5 min of practice [15].

T-Cube, developed at Apple, Inc. [16], is a single-stroke alphabet based on pie-menus
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[17]. (Pie menus differ from linear menus in that the menu is circular with entries posi-
tioned around a central starting point. Each entry occupies a ‘‘slice of the pie’’.) T-Cube
has the advantages of single-stroke alphabets such as speed of entry and low error rates.
Compared with Unistrokes or Graffiti, T-Cube has a much larger symbol set. However,
T-Cube requires visual attention and thus ‘‘eyes-free’’ text entry is not possible.

Unistrokes, T-Cube and Graffiti are all single-stroke alphabets, thus dramatically
improving recognition accuracy. However, to some extent the alphabets are new and
must be learned—a serious drawback for systems that target naive users. Most researchers
acknowledge that the most pervasive form of text entry is that which draws on existing
handwriting skills [18,1,19].

4. Discrete printing

Discrete printed characters typically have higher recognition accuracy than run-on
printed characters and cursive handwriting, because overlapped or disconnected strokes
pose a segmentation problem to the recognizer. All else equal, discrete printing has
significantly higher recognition rates than run-on printing [1]. Gibbs [20], who surveyed
13 handwriting recognizers, cited a recognition rate around 95% for most recognizers.
Furthermore, Santos et al. [6] found that the highest recognition rate of printed characters
on a grid display (96.8%) is the same as for human observers identifying isolated hand-
printed characters. This suggests that current recognition engines for discrete hand-printed
characters are almost as good as human interpreters.

Recent work on user acceptance of handwriting recognition accuracy found a threshold
around 97% [21]. That is, users are willing to accept error rates up to about 3%, before
deeming the technology as too encumbering. Furthermore, when performing different
tasks that require handwriting recognition, Frankish et al. [22] found users more willing
to accept lower recognition rates on some tasks (e.g. diary entry) than on others (e.g.
sending a fax).

Several experiments have investigated how interface characteristics affect recognition
performance. Santos et al. [6] found that display grids help users separate characters and
therefore improve recognition accuracy. Although it could be distracting, the instant feed-
back afforded by discrete character entry serves as a reminder to the user to print neatly. A
surface texture that feels like paper is also desirable, despite the fact that it has no
significant effect on recognition performance. Additionally, Wolf et al. [1] found that
recognizers make significantly more mistakes with unrestricted alphabets than with
restricted ones. Yet few researchers have attempted to test empirically the performance
of available recognizers.

The experiment described in the next section evaluates two commercial recognizers.
The input text consisted of lowercase words. Recognition constraint—lowercase letters
(26 symbols) vs uppercase-plus-lowercase letters (52 symbols)—was included as an
additional factor. Constraint is felt to impact recognition performance in general, yet its
impact on various recognizers may be different. Recognizer and constraint were two
independent variables in the experiment. Three dependent variables were measured:
entry speed, recognition accuracy and user satisfaction.
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5. Method

5.1. Subjects

Thirty-two volunteer subjects participated in the experiment. They included 11 females
and 21 males. Twenty-six subjects were right-handed, six were left-handed. Ages ranged
from 19 to 55. Twenty-five subjects were university students and 16 indicated they used
computers on a daily basis.

5.2. Apparatus

Hardware for the experiment consisted of a 50 MHz 486 IBM-compatible PC with a
9.5-in. Wacom PL-100V tablet for pen entry. The PL-100V is both a digitizer for user
entry and a 6403 480 LCD gray-scale screen. Character entry was also displayed on a
VGA monitor, which was tilted to prevent users from seeing it.

Software to run the experiment was developed in C using Microsoft Pen for Windows.
The recognizers tested were the Microsoft character recognizer included with Pen for

Windows and CIC’s Handwriter 3.3 from Communications Intelligence Corp. (CIC).
These products were selected because they both recognized block printed characters
and they are well-known products in the industry.

5.3. Procedure

The task consisted of entering characters provided by the software. Subjects printed in
grids below the displayed characters (Fig. 1).

Phrases containing 19 characters (4 words plus 3 blanks) were randomly presented in
blocks of three. The phrase set was created such that each letter in the input text occurred
with the same relative frequency as common English. The correlation between our single-
letter frequencies and those from [23] wasr ¼ 0.96. Our single-letter frequencies are
illustrated in Fig. 2.

In a 1-h session, subjects performed all four conditions, which were created by crossing
the two factors. There was a 10-min break in the middle of the session.

Execution of a condition consisted of a brief practice session of 3 phrases and then
9 blocks (3 phrases each) of recorded entry.

Fig. 1. A typical experimental screen.
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The analysed data consisted of

32 subjects
3 9 blocks
3 3 phrases
3 19 characters per phrase
¼ 16 416 characters per condition

Auditory feedback was provided in the form of a ‘‘click’’ if the character was correctly
recognized or a ‘‘beep’’ if the character was misrecognized. To help motivate subjects,
summary data for accuracy and speed were displayed after each block.

Subjects were instructed to aim for both accuracy and speed. If a mistake was made,
subjects were told to ignore it and continue with the rest of the sequence. The tablet was
propped slightly at an angle as preferred by each subject.

5.4. Design

The experiment was a two-factor repeated measures design. The two factors with two-
levels each resulted in the following four test conditions:

• Microsoft/Lowercase
• Microsoft/Upperþ lower
• CIC/Lowercase
• CIC/Upperþ lower

Conditions were counterbalanced using a Latin Square to minimize transfer effects
related to the factors.

For each entry, the time from the completion of the previous character to the completion
of the current character was captured by the experimental software. The timing value for

Fig. 2. Single-letter frequencies of the input text in the experiment.
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the first character in a sequence was meaningless as there was no previous character to
reference (and thus the first character was not used in the statistical analysis).

Subjects completed a pre-test questionnaire for demographic information and a post-test
questionnaire for user satisfaction.

Owing to limitations in the experiment software, approximately 5% of the user input
was out-of-sync and generated erroneous timing values (e.g. negative values or very large
values). We deemed these entries as outliers and eliminated them from our data sets.

Text entry speed was expressed in words per minute (wpm) using the typist’s definition
of a word: 1 word¼ 5 keystrokes or keytaps [24].

6. Results and discussion

6.1. Condition effects

The four conditions ranged in entry speed from 16.7 wpm to 17.6 wpm and in accuracy
from 87% to 94% (see Fig. 3). The main effect on entry speed was not significant for
constraint (F1,31¼ 1.93,p . 0.05), but it was significant for recognizer (F1,31¼ 10.9,p ,
0.01). Both recognizer and constraint had a significant effect on recognition accuracy (for
recognizer,F1,31¼ 66.1,p , 0.0001; for constraint,F1,31¼ 18.5,p , 0.0005). Regarding
recognition accuracy, the Microsoft recognizer was significantly more sensitive to con-
straint (F1,31 ¼ 4.75,p , 0.05). This is evident in Fig. 4, showing a clear reduction in
accuracy for the Microsoft recognizer using the upperþ lower symbol set.

We expected no effect on entry speed, since this is controlled more by the subject than
by the interface. As long as the recognition latency is low enough, the actual entry speed
should be user’s writing speed. In Gibbs’ [20] summary of 13 recognizers, the recognition

Fig. 3. Comparison of the four conditions for entry speed and recognition accuracy (MS¼ Microsoft, CC¼ CIC,
LC ¼ Lowercase, UL¼ Upperþ lower).
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speed of the systems was at least 4 characters per second, which translates into 48 wpm.
This is well above typical human hand-printing speeds of 15 wpm [25–27]. Our mean of
17.4 wpm suggests that subjects were entering text at a rate they felt comfortable with. Our
explanation for the marginal effect of recognizer is that the beeps caused by misrecogni-
tion distracted subjects and slowed them down. Constraint did not affect entry speed as
much because it did not degrade the CIC recognizer very much.

The accuracy observations are disappointing. None of our conditions yielded rates of
97%, the minimum rate for user acceptance found by LaLomia [21]. Certainly, the rates
with the upperþ lower constraint, at 87–90%, are unacceptable. These rates would get
worse if a larger symbol set were used, one that included punctuation and editing gestures.

6.2. Learning

Although our experiment did not test subjects for repeated sessions over a prolonged
period of time, we did examine the learning effects over the four sessions administered.
The four sessions had mean entry speeds of 16.1, 17.0, 17.4 and 17.9 wpm, and mean
recognition accuracy of 90%, 91%, 91% and 91%, respectively (Fig. 5). An ANOVA
indicated that learning had a significant effect on entry speed (F1,15 ¼ 20.0,p , 0.0001)
but not on recognition accuracy (F1,15 ¼ 0.261).

Apparently subjects did not improve their accuracy with practice, but they did
get faster. This is consistent with Bailey’s [28] observation that ‘‘in activities for which
performance is primarily automatic, the proportion of errors will remain fairly constant,

Fig. 4. Interaction plot of recognizer vs constraint for recognition accuracy.
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but the speed with which the activity is performed will increase with practice’’
(p. 106).

This suggests that our initial, somewhat low, observations on accuracy are not likely to
improve with practice. Of course, the limitation is primarily with the recognition software; so,
improvements in the recognition algorithms will, no doubt, yield improvements in accuracy.

Fig. 5. Comparison of the four sessions for entry speed and recognition accuracy.

Fig. 6. Recognition accuracy for individual characters.
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6.3. Misrecognition of characters

A detailed analysis for errors was undertaken by examining the misrecognition rate of
each character for each condition (see Fig. 6). These results show how well a particular
character was recognized. Those characters with high misrecognition rates may indicate
certain defects in the recognition engine, such as letter ‘‘l’’ (lowercase ‘‘el’’) in the
Microsoft/Upperþ lower condition, which had a misrecognition rate over 95% (compared
to 15% in the CIC/Upperþ lower condition). This, of course, is due to the misinterpreta-
tion of lowercase ‘‘l’’ for uppercase ‘‘I’’. In addition, the results also demonstrate some
common difficulties that character recognizers are facing. For example, letters ‘‘f’’, ‘‘j’’,
‘‘k’’, ‘‘q’’, and ‘‘v’’ had relatively higher misrecognition rates with both Microsoft and
CIC recognizers.

6.4. Misrecognition distribution

To investigate our results further, we constructed confusion matrices illustrating dis-
played characters vs recognized characters. The maps in Fig. 7 show how often a printed
character (along the left side) was misrecognized and interpreted as another character
(along the bottom). Each dot represents three occurrences. The right-hand column (labeled
‘‘?’’) indicates characters not recognized.

For instance, in Microsoft/Upperþ lower condition (see Fig. 7b), the letter ‘‘l’’
was frequently misrecognized as capital ‘‘I’’ (illustrated by an intruding solid box in
the map). This error pattern did not occur with the CIC recognizer. With some trial-
and-error, we found that the Microsoft recognizer takes a straight vertical line, which is
how most people print the lowercase ‘‘l’’, as capital ‘‘I’’. One solution to this is to impose
upon the user, the requirement that uppercase ‘‘I’’ be constructed with small horizontal
rules on the top and bottom. An alternate solution is to include context in the recognition
algorithms.

Several other high-frequency misrecognition pairs were caused by natural similarities
between Roman letters. Both recognizers regularly misrecognized ‘‘l’’s with little curly
tails as capital ‘‘L’’ when capital letters were included in the character set, and cursively
written ‘‘l’’s as letter ‘‘e’’s when they were sloppily written. They also regularly took a
sloppy ‘‘n’’ as ‘‘h’’ (when the stoke started too high), ‘‘g’’ as ‘‘s’’ (when the top circle was
not closed), ‘‘r’’ as ‘‘v’’, and lowercase ‘‘k’’ as uppercase ‘‘K’’. The Microsoft recognizer
also took ‘‘l’’s with curly tails as ‘‘c’’s with the lowercase-only constraint. The CIC
recognizer often took unclosed ‘‘o’’s and wide ‘‘v’’s as ‘‘u’’s.

The misrecognition between two lowercase letters (such as ‘‘l’’ as ‘‘e’’ or ‘‘c’’, ‘‘n’’ as
‘‘h’’, ‘‘g’’ as ‘‘s’’, and ‘‘r’’ as ‘‘v’’) did not go the other way, which indicates the
thresholds between those letter pairs is biased toward one letter over the other. A small
adjustment in those thresholds might improve the overall performance; although it is not
clear how or whether such an adjustment might be carried out, given the proprietary nature
of the algorithms.

Another set of misrecognitions was caused by user mistakes. When subjects forgot to
dot the ‘‘i’’s, they were recognized as ‘‘l’’ (or capital ‘‘I’’ in the Microsoft/Upperþ
lowercase condition). Uncrossed ‘‘t’’s were taken as ‘‘l’’s.
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The maps also show that more characters were left unrecognized by Microsoft recog-
nizer than by CIC recognizer (right-hand column).

The misrecognition occurrences in these maps are influenced by the relative frequencies
of Roman letters in English text. For example, Fig. 6 shows that the letter ‘‘q’’ was prone
to a rather high misrecognition rate; but it is not obvious in the maps (Fig. 7) since ‘‘q’’s
are rarely used in English.

Fig. 7. Misrecognition distribution map. Each dot represents three occurrences. Vertical axis is character dis-
played, horizontal axis is character recognized. (a) Microsoft, lowercase; (b) Microsoft, upperþ lower; (c) CIC,
lowercase; (d) CIC, upperþ lower.
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6.5. Error rates by character

We took another approach to analyzing errors. For each condition, error rates were
distributed as shown in Fig. 8. The values show each character’s contribution to the total
error rate, which effectively normalizes the data by the relative occurrence of each letter.
All 26 values in one chart add to the mean error rate of that condition in Fig. 3.

A clear observation is that the letter ‘‘l’’ in the Microsoft/Upperþ lower condition is
represented by a special ‘‘back bar’’ because the value is far higher than others and does
not fit in the chart. The full value (4.2%) is shown beside the bar. The cause was explained
earlier.

Fig. 7. Continued.
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The error distribution results are useful for designers concerned with the overall per-
formance rather than particular defects of the program. For example, Table 1 shows letters
that contributed over 0.7% errors in each condition.

Comparing Fig. 8 with Fig. 2, we see that the letter ‘‘e’’ is the most frequent letter in
English, but its error contribution is moderate in both Microsoft conditions and low in both
CIC conditions. This means the letter ‘‘e’’ has been recognized fairly well. On the other
hand, although the letter ‘‘q’’ had fairly high misrecognition rates, it did not impact overall
performance because of its low occurrence.

6.6. User satisfaction

Our analysis of the recognizer performance data against the demographic information

Fig. 8. Error rates distributed across the alphabet.

Table 1
Letters with high misrecognition impact

Conditiona Letters

MS/LC g i l n r t
CC/LC i r
MS/UL i l r t
CC/UL l r

aMS ¼ Microsoft, CC¼ Communications Intelligence Corp., LC¼ lowercase, UC¼ uppercaseþ lowercase.
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collected by subjects’ pre-test questionnaires did not show any statistical significance.
However, subjects’ evaluations of the recognizers in the post-test questionnaires matched
very well the overall accuracy of four conditions. In the post-test questionnaire, we asked
subjects to rank the recognizer performance in each session using numbers 4 through 1,
with 4 being the best and 1 the worst. Two subjects did not enter a ranking. The mean
values are shown in Table 2.

These results suggest that recognition performance is quite noticeable by users. Bad
experiences, such as the ‘‘l–I’’ misrecognition pair in Microsoft/Upperþ lower condition,
were reflected in many subjects’ comments in the questionnaires.

Subjects’ answers to other questions strongly expressed their confidence in using hand-
printing recognition in simple text-entry input tasks such as form filling as opposed to
input-intensive tasks such as creating a document from scratch.

The questionnaire also concluded that subjects liked the feel of the Wacom tablet
about as much as paper, but called for an improvement in its surface texture. The
nylon-tipped stylus slips about the LCD panel with very little friction, unlike a pencil
or pen on paper.

7. Conclusion

With current hand-printing recognition technologies, text-entry speed depends mainly
on the user’s printing speed, although users may be distracted by character misrecognition.
Recognition constraint has significant effect on recognition accuracy. The CIC Handwriter
has a significantly lower error rate than the Microsoft character recognizer. The latter is
also significantly more sensitive to recognition constraint.

To attract walk-up users, recognition systems need to provide accurate handwriting
recognition. Our analyses of errors using confusion matrices highlight salient problems
in representative commercial products. These matrices also reveal opportunities for
designers of handwriting products to adjust the algorithms to correct specific deficiencies
in their recognizers. The charts presented are only a first step, however, as changes
introduced to improve the recognition rate of problem characters may impact on the
recognition rates of other characters. Changes must be interactive and closely linked
with, and driven by, user testing.

Handwriting recognition technology can and will benefit from adaptive and context-
sensitive algorithms; however, improving the novice experience with the technology may
be the single most important factor in overall user acceptance.

Table 2

Subjects’ ranking of four conditions for recognition performance

Recognizer Lowercase Upperþ lowercase

Microsoft 2.7 1.9
CIC 2.9 2.3
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