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Courseware evaluation: where's the 
intelligence ?* 

1. Scott MacKenzie Seneca College of Applied Arts and Technology 

Abstract Questions are explored that courseware evaluators may 
pose in establishing the extent to which 'intelligence' is present in 
Intelligent Computer Assisted Instruction and Intelligent Tutoring 
Systems. The focus is on key features of intelligent systems including 
a knowledge base which grows, knowledge of student progress and 
interaction style, feedback or self-reflection of activities, tolerance of 
user input errors, learner control, and resources for attaining higher 
cognitive states. Ways in which courseware evaluators may establish 
the presence of these features are examined. 

Keywords: Evaluation; Courseware; Intelligent tutoring systems; 
Artificial intelligence; Computer-assisted instruction. 

Introduction 

In a popular TV commercial a few years ago, a slight, elderly lady approached the 
counter of a fast food outlet to buy a hamburger. To her consternation the 
delivered goods were short of the advertised claims. 'Where's the beef?' 
she demanded. In this article, we will pose a similar question with respect 
to a similar marketing phenomenon. Our question, of course, is 'Where's the 
intelligence?' and the advertised claims are those accompanying the current 
genre of software that asserts intelligence. Although our focus is on educational 
software, or courseware, the issues raised reflect the general drive of the 
computer and other high-tech industries to respond to the calling of a consumer- 
driven market. That calling is for more sophisticated tools and toys, often 
sporting claims of intelligence. 

The term 'artificial intelligence' (A11 is somewhat outmoded (perhaps because 
of the gap between the goods promised and the goods delivered), but the spirit 
remains. Today, we are more likely to meet Expert Systems, User Adaptive 
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Systems, Knowledge-Based Systems, Natural-Language Interfaces, Decision 
Support Systems, Intelligent Tutoring Systems, Intelligent Computer Assisted 
Instruction, etc. To some extent they all possess 'intelligence', or so they claim. 
Our goal is to peel back a layer of the onion and expose the specific dimensions 
of a system that may support the claim of intelligence. We restrict ourselves 
to educational applications and focus on Intelligent Tutoring Systems (ITS), 
Intelligent Computer Assisted Instruction (ICAII, and various 'tools' that boast 
intelligence via a knowledge base, student model, etc. Our aim is to provide 
courseware evaluators with questions and, hopefully, answers that can be used 
to qualitatively establish the extent to which intelligence can be ascribed to 
educational software products. 

The term 'system' is adopted here in reference to both software and 
hardware, with the understanding that the software products are those used in 
schools and that typicai microcomputers constitute the host hardware. The 
software is usually, but not always, courseware; word processors, spreadsheets, 
databases, and programming languages are also examples of software commonly 
found in educational settings. 

Characteristics of intelligent systems 

To what extent can the system learn or develop autonomously? 

The most fundamental characteristic of an intelligent system is that it learns. 
This can take several interpretations, but generally the implication is, firstly, that 
there is a knowledge base which grows, and, secondly, that the system is 
adaptable andlor adaptive to its surroundings. 'Surroundings' generally refers to 
interaction with the user but may encompass a larger world where sensors and 
actuators connect to human or other information receivers and transmitters. The 
issue of learning, therefore, must be addressed along two lines with respect to 
intelligent courseware: the learning capability of the system, and the learning of 
the student through interaction with the system. 

Intelligent systems for learning generally fall under the spectre of expert 
systems, a sub-discipline within A1 where systems are designed around two 
central modules: a knowledge base and an inference engine. The former is the 
information and the latter is the set of rules for acting on the information. In a 
later section we shall develop the notion that the knowledge base is dynamic in 
nature and must include both knowledge of the subject domain and knowledge 
of the user or student. In the context of ICAI, Dede (1986) calls the knowledge of 
the user, the student model and replaces the term inference engine with 
pedagogical module. Finally, the user interface is added as  a basic component of 
ICAI systems. 

In this paper we do not distinguish between ICAI and Intelligent Tutoring 
Systems. The distinction between the two terms and the evaluation of successful 
products is still too tenuous to merit separate analysis. As Wenger (1987) points 
out. 'ITS research is still far from the ideal goal of a system capable of entirely 
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autonomous pedagogical reasoning, purely on the basis of primitive principles in 
domain knowledge as  well as  in pedagogical expertise' (p. 5). Autonomy has been 
achieved only in the limited and somewhat na'ive cases. where systems generate 
their own exercises for student practice or evaluation. Although ICAI systems 
tend to be more self-contained than ITS systems, both Dede and Wenger 
acknowledge that the features of each lie along a continuum with considerable 
overlap. 

The tutor, tool, tutee partitions of the use of computers in education 
introduced by Taylor (1980) has been helpful in distinguishing the diverse roles 
that the computer may take in the school. The tutee model (the student 
programming the computer) is of little interest in the present discussion, but the 
tutor and tool models are quite convenient. Traditional CAI generally follows the 
tutor model, providing the student with a highly self-contained environment that 
delivers.instruction, whereas open or passive systems, such as  LOGO, provide 
microworlds for exploration. After reviewing the literature on educational 
computing it is apparent that the tool model is gaining ground over the tutor 
model. There is a trend for ICAI and Intelligent Tutoring Systems to move away 
from self-contained instruction delivery and to provide environments for students 
to explore a problem space. In a review covering several dozen ICAI packages, 
Kurland & Kurland (1987) note a trend for this genre of courseware to act as  a 
problem solving monitor rather than to provide complete courses of instruction. 
Sometimes specific problems are provided, but the concept of delivering 
instruction and following it with test items (accompanied by appropriate 
branching heuristics for repeating, reviewing, or skipping frames) is de- 
emphasized in recent products. The intelligence lies in the nature of support for 
the exploration of the problem space. 

The argument that computers have failed to replicate student-teacher inter- 
action with any degree of success perhaps follows from this trend toward open 
environments. Surely it is easier to design passive (albeit sophisticated or 
intelligent) tools than to design highly interactive systems which balance the role 
of the student and teacher (i.e. system) in the efficient delivery of instruction. The 
migration of ICAI applications toward the tool model may suggest that traditional 
student-teacher roles are best left as  is, and that new products should serve as  
adjuncts to the educational process, not as  replacements for traditional methods. 

We now examine several dimensions of intelligent systems, focusing on 
issues that must be addressed in establishing real increments of performance. 
These include learner control, knowledge acquisition, fault tolerance, and 
feedback. 

Learner control 

To what extent can the learner control and guide the activities engaged in with 
the system? 

Drill and practice, the first form of computer-assisted instruction and the easiest 
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to implement, affords the learner minimal control over his or her activities. Such 
applications are cited as  especially pertinent to the learning of mathematics; 
however, there is also evidence that mathematics, particularly geometry, can be 
effectively taught in 'open' environments or microworlds. Turtle geometry using 
LOGO provides the student with the tools for interaction without explicitly 
setting the mode or goals of activities (Papert, 1980). Such environments afford 
the maximum control possible for learners. In a large study on the use of 
computers by elementary school students, Carmichael et al., (1985) report the 
following: 

The fact that most students saw a real purpose for and had control over 
their activities was a powerful motivator. This was particularly true 
when students were involved in problems of their own choosing. In an  
environment that gave a student some autonomy and where the teacher 
created an atmosphere in which mistakes were seen as  a natural and 
healthy part of the learning process, many students retained or developed 
confidence in their ability to learn from their mistakes and to 'get it right 
eventually' (p. 2851. 

I t  follows from the above comment that perhaps intelligence should not be 
put into the system at all. LOGO is not the only environment that is open and 
goal-free. CSILE (Computer Supported Intentional Learning Environments) is an 
educational hypermedia application that supports learners' activities without 
determining actions. The designers have suggested that putting intelligence into 
the computer, in an educational context, is not only unrealistic, i t  is heading in 
the wrong direction (Scardamalia et el., 19891: 

It is not the computer that should be doing the diagnosing, the goal- 
setting, and the planning, it is the student. The computer environment 
should not be providing the knowledge and intelligence to guide learning, 
it should be providing the facilitating structure and tools that enable 
students to make maximum use of their own intelligence and knowledge 
(p. 54). 

This 'facilitating structure' comes by way of procedural facilitation, an  
instructional approach that fosters higher-order processes by turning normally 
covert processes into overt processes, reducing potentially infinite sets of choices 
to limited, developmentally appropriate sets, providing aids to memory, and 
structuring procedures so as  to make it easier to escape from habitual patterns. 

The goals of procedural facilitation are obviously narrower than those of 
systems with general intelligence, however the potential for success may be 
proportionally greater. The system need only do the kinds of things that 
computer systems are already well equipped to do, such as providing formats 
and reminders, storing and retrieving information, facilitating the making of 
choices, and monitoring event sequences. 

Learner control and intelligence may mesh well in open environments where 
facilitators are provided as reminders and guides without determining learner 
activity. 
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Knowledge acquisition 

Although intelligent systems all possess knowledge of some form, it is the 
acquisition of knowledge (the learning) that is the real issue, not the representa- 
tion of knowledge. Acquiring knowledge includes a tacit assumption that the 
enabling mechanism can distinguish the trivial from the critical, a messy task for 
humans, particularly learners, and therefore a formidable challenge for machines. 
In this section we offer questions for determining the extent to which a system 
can acquire knowledge of the learner, mode of interaction, and subject matter or 
domain. 

To what extent does the system acquire knowledge of  the learner? 

When a teacher stands in front of a new class of students at  the beginning of a 
school year, there is little knowledge of the abilities and attitudes of the new 
learners. Several months later the situation is quite different. The day-to-day and 
minute-by-minute interaction of a teacher with students is probably guided to a 
great extent by a teacher's knowledge of the learner that is acquired as  a school 
year progresses. 

It seems reasonable that any system possessing intelligence should, similarly, 
acquire knowledge of the progress of the learner and make constructive use of 
this in guiding interaction. (Knowledge of 'abilities' and 'attitudes' maybe equally 
as important as knowledge of 'progress', but are considerably more difficuit to 
acquire and accommodate). Probably, open-ended systems such as  LOGO and 
CSILE are least likely to build up such a knowledge base while tight drill-and- 
practice systems are most likely to meet this need. 

Of course, the key component that permits the emergence of such knowledge 
is learner evaluation. Open-ended microworlds are essentially goal-free, and 
therefore evaluation-free as  well. Evaluation exists, but it is not in the system; it 
lies at  the interface between the teacher and the student who uses the system for 
teacher-assigned projects. Drill-and-practice systems, on the other hand, are 
constantly evaluating students on test items and can easily build profiles of each 
student that can aid in guiding or sequencing computer-initiated activities. A 
simple answer to the question at  the beginning of this section is that a system is 
intelligent if knowledge is acquired of student performance (usually based on 
test items) and guides subsequent activities through branching strategies. This is 
certainly true of a large body of traditional CAI, so the extent that ICAI goes 
beyond this needs to be established. 

More sophisticated systems, however, may build a knowledge base of the 
learner without using test items. Human factors engineers have long recognized 
the need to monitor user actions in order to anticipate their intentions. Simple 
approaches involve the monitoring of actions, choices, and hesitations in users' 
sensorimotor actions: however, building a model of the user at this level can 
involve tremendous online computation (Rouse. 1988). Certainly a static or 
time-invariant view of the user is not sufficient-a model must be based on 
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recent activities, expected goals, and associated probabilities. As Rouse points 
out, appropriate models are very complex and must be developed from several 
disciplines, including signal detection theory, information theory, manual control 
theory, and utility theory. 

A simple example of an adaptive interface would be one in which on-screen 
objects (perhaps icons) are large for novices and gradually get smaller as 
expertise develops. Criteria for scaling could be time spending in making a 
selection and the number of selection errors. Measurements and predictions can 
be made using Fitts’ law, a model which predicts the time to complete a 
point-and-select task as  a function of target distance, target size, and error 
probability (Card et al., 1978; Fitts, 19541. As objects get smaller, more room is 
available on the display screen for other objects or information. 

The underlying theories for adaptation are complicated. Regardless, they are 
quite irrelevant from the standpoint of courseware evaluation. Rouse has 
provided several Principles of Interaction (1988, p. 440) which raise some very 
basic issues that can help evaluators in establishing the extent to which a system 
is adaptive (i.e. intelligent). Adaptation should be appropriately supported to the 
extent that users always feel they are in control. Are users aware that adaptation 
is taking place? Do they feel in control? Confusion should be avoided a s  to the 
extent that adaptation is in effect; if a process is taking place automatically a s  a 
result of the adaptation, users should be able to pre-empt the aid and regain 
control. Can users easily override default settings or dynamically changing 
settings? 

Adaptive systems with sophisticated sensing and decision mechanisms are 
likely to be more common in future products, some of which will find their way 
into classrooms. Since they will be correspondingly more difficult to evaluate, a 
more rigorous set of questions and criteria will have to be developed to meet this 
new breed of intelligent system. 

To what extent does the system acquire knowledge of  the learner’s mode or style 
o f  interaction? 

A second dimension of knowledge acquisition lies in a system’s ability to mould 
itself to a learner’s style of interaction. When a product is delivered, is its form 
permanent? Can the system accommodate different modes of interaction? 
Essentially, we are asking if the system is ‘adaptable’, rather than ‘adaptive’. At a 
simplistic level, the assigning of multiple keystrokes to function keys is an  
example of an  adaptable system. There is, of course, a whole spectrum of 
techniques employed to make systems adaptable or ‘extensible’ so that they 
match our demands. 

Nickerson (1986) reports on an automated history-taking medical system 
based on a question-answer format. Doctors were highly reluctant to use the 
system until they had a chance to modify the questions. Even though the changes 
for the most part were slight, they were deemed necessary before physicians 
would use the system regularly (p. 243). It was not stated whether the changes 
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were implemented by the system's designers (as part of a pilot study) or by the 
physicians, however it is fitting that such power be in the hands of the users of 
the system. 

Wixon et al. (1983) report on an interesting experiment with an electronic 
mail system. Subjects were not given any training on the system but were given 
specific instructions on what to do. They typed in commands that they thought 
might work to achieve the goals. Unknown to the subjects, expert human 
operators intercepted their commands, interpreted them according to their own 
knowledge of the system, and translated them into commands with the correct 
syntax. The subjects had the illusion they were interacting directly with the 
system. Over a 6-month period, changes were gradually introduced into the 
system's command language to accommodate the user-defined commands. The 
proportion of commands that could be interpreted by the system rose from 7% to 
76% over this period of time. It is interesting to speculate on the possibility of a 
system that could demonstrate such adaptability in the absence of the human 
intermediaries. Such adaptability could only develop slowly and would have 
probabilities associated with responses which would be poor at  the best 
of times (compared with an expert's delivery of commands in a conventional 
environment). 

Both of the examples above demonstrate adaptability a t  the person-machine 
interface. The content may be deeper within the system, however the first link in 
the chain-the interface-must be strong (that is, powerful and flexible) lest 
users quickly distance themselves from the system, regardless of the rewards 
that lie within. 

To what extent does the system acquire knowledge of the subject-matter? 

Expert systems adopt the term 'knowledge base' with reference to domain 
knowledge, rather than to learner or interaction knowledge. In educational 
settings, there is a tremendous need for adaptability. Authoring systems boast 
that they 'bring control of the authoring process back to the content expert' 
(MacKnight & Balagopalan, 1989, p. 12311, but can they bring it into the 
classroom and into the hands of the teacher or student? This may be more 
important in the long run. Sysiems that can do this are those for which there is 
no content per se. The microworlds of LOGO. and CSILE, are examples. Content 
only exists in these systems to the extent that it is added by students or teachers. 

Hypercard (by Apple Computer, Inc.) is another example. Nicol reports on 
the Open SchooUVivarium Project in Los Angeles where students create the 
content of their courses by authoring Hypercard stacks: 

In contrast with written or video materials, and even with more typical 
computer software, Hypercard stacks are 'malleable'. The appearance of 
cards can be dramatically changed by a few editing strokes; cards can be 
easily added and deleted at  any point in a stack. A single stack can seem 
to be organized in very different ways depending on the route the user 
chooses through the stack, and a particular bit of information can be 
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portrayed in very different ways depending on the designer’s choices 
[Nicol, in press). 

In a sense, these systems can acquire content knowledge, but it comes 
through the system’s passivity and its ability to be ‘filled up’, so to speak, by the 
users, students, or teachers. 

Knowledge acquisition is a tricky business for intelligent systems and a great 
deal more research effort is needed before systems can claim to grow along 
with their users. Nevertheless, ICAI packages should support knowledge base 
ascension, be it of the subject matter or of the learner. 

Fault tolerance 

To what extent is the system tolerant of  human error? 

Fault tolerance has long been an  engineering goal for computer systems: but the 
focus is usually on hardware failures accompanied by backup and recovery. 
Since interface faults ‘are also of paramount importance to overall success, 
systems that boast intelligence should not facilitate destructive operations. 
Although courseware may be designed to deliver content with follow-up 
evaluation based on correct and incorrect responses to test items, errors of 
another sort will occur. These errors, of course, occur at the interface, through 
slips of syntax or a mistaken understanding of how the system works. Norman 
(19831, in an analysis of common errors. suggests the following guidelines for 
designing systems amenable to human fallibility: 

provide feedback so that the state of the system is always clearly available to 
the user; 
include dissimilarities in response sequences which cause different actions to 
take place; 
make commands revocable by making those with high consequences difficult 
to do: 
make the interface consistent to minimize memory problems in retrieving 
system commands. 

On the first point above, Fischer (1988) has pointed out that students are 
often expected to attain goal states that are too distant from their current state, 
with the result that they often get dumped into unfamiliar territory. A paradigm 
of ‘increasingly complex microworlds’ is proposed (p. 139) where each state 
carries with it protective shields for the novice. Precise representation of the 
knowledge contained in the microworld and knowledge of navigation rules are 
required before proceeding to the next microworld. For example, a student may 
be required to demonstrate the technique for returning to the current microworld 
before moving on. 

The notion of ‘consistency’, Norman’s last point, has been attacked recently 
by Grudin (1989) as  a fallacy. He asked design professionals to choose the best 
layout from several possibilities for numeric keypads, cursor keys, alphabetic 
keys, and menus. The experts consistently failed to identify the demonstrably 
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superior design. Grudin’s point is simply that the criterion for consistency 
should be content of use; that is, objects should be grouped together and 
organized based on ‘how they are used’ not on what they are. 

ICAI packages should be expected to provide a simple interface that is 
functionally consistent and flexible enough to minimize errors and permit a high 
degree of latitude for acceptable user responses. An intelligent interface is one 
which is malleable to variations which are likely to arise when different learners 
use the same interface. 

Feedback 

To what extent does the system support self evaluation? 

Although any system with a screen display provides feedback to the learner, 
educational systems can benefit by providing feedback that supports ‘reflection’ 
of learner activities, progress, and results. Learners should be able to see what 
they have just done in a graphic rendering of the approach used in solving a 
particular problem. Collins & Brown (1988) call this spatial reification noting that 
multiple representations may serve an  important role for learners who are 
attempting to solve a problem through exploration (p. 4). They demonstrate this 
using an intelligent tutoring package called ALGEBRALAND, where students 
are provided with an algebraic expression and are asked to solve for a particular 
variable. Access to multiple windows is provided allowing review of different 
aspects of the problem. The windows show basic operations (add, multiply, 
distribute, expand, etc.). planning possibilities (isolate, collect, group, etc.), 
recording operations, and graphs of the sequence of operations. The search space 
window shows the sequence of operations a s  connected nodes with the original 
question in a box at  the top and the various steps shown within boxes connected 
to previous boxes. By examining the various paths (including dead ends), 
students can determine which strategy is the most effective. 

A similar approach to self evaluation is present in GEOMETRY TUTOR 
(Anderson et al., 19851, a learning environment for geometric proofs. The 
developers note that ‘floundering’ is always possible in such environments, since 
students can blindly proceed following a trial-and-error strategy. Obviously, a 
balance must be struck. Herein lies an opportunity for an  adaptive systems 
approach. Students can be expected to demonstrate their knowledge of basic 
operators in prerequisite activities before they are allowed to use them later 
in more sophisticated domains. This is consistent with Fischer’s notion of 
increasingly complex microworlds mentioned earlier. 

GEOMETRY TUTOR supports multiple modes of self-evaluation by a graphic 
display of the problem in the same window in which the solution is worked out, 
Students may solve the problem piecemeal. Separate parts of the solution may be 
displayed simultaneously, such as the final solution along with several preceding 
steps, as  well as  the initial problem statement along with the first several steps. 
The goal, of course, is to use geometric rules in building a valid path from the 
initial problem to the solution. 
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It seems reasonable that ICAI courseware should support self-evaluation 
allowing the learner to investigate the problem space in a format that exploits the 
graphic capabilities of today‘s high-resolution bit-mapped displays. Multiple 
representations permit problems to be approached from different perspectives 
depending on the nature of the problem and the learner style or preference. 

General issues in machine intelligence 

In reviewing the above comments several statements can be constructed of the 
form, ‘A system is intelligent i f . .  . I ,  where the statements are filled out using any 
of the dimensions of system utility discussed. However, it is easy to replace 
‘intelligent’ with ‘sophisticated’. Perhaps we should reserve claims of ‘intelligence’ 
for some future time when advances are truly impressive, when systems 
effortlessly display traits such as  intuition and common sense in interactions 
with humans. One problem with reserving judgement can be put as  follows: 
whether or not something strikes us as intelligent depends on our own 
understanding, and once we understand, the intelligence-the mystique- 
is gone. One of the first attempts at natural language interaction was 
Weizenbaum’s (1967) ELIZA, which played the role of a psychotherapist. At first 
glance, a transcript of patient-system dialogue is impressive, however, as  
Weizenbaum pointed out over 20 years ago: 

Once a particular program is unmasked, once its inner workings are 
explained in language sufficiently plain to induce understanding, its 
magic crumbles away: it stands revealed as a mere collection of 
procedures, each quite comprehensible. The observer says to himself, ‘I 
could have written that’. With that thought he moves the program in 
question from the shelf marked ‘intelligent’, to that reserved for curios, f i t  
to be discussed only with people less enlightened than he fp. 36). 

Similarly, Nickerson (1986) offers definitions provided by three A1 specialists, 
preferring Kay’s idea that ‘(artificial intelligence) is stuff that is interesting that 
we do not know how to do yet’ (p. 276). Elaborating on this point, Nickerson 
describes the situation as  follows: 

A1 researchers have observed on several occasions that the criterion for 
what constitutes thinking or intelligent behavior has changed along with 
the accomplishments of the A1 community: x may be among the set of 
activities considered to be examples of intelligent behavior, until 
someone manages to program a computer to do x, at which time it is 
removed from the set . . . (AN has been a gradual clipping away at the set 
of things that people can do and computers cannot. That set is not likely 
to become empty any time soon, if indeed it ever will; but progress has 
been steady (pp. 276-277). 

A problem germane to education is that we do not actually know what the 
cognitive processes are that contribute to the attainment of higher levels of 
learning. Designing systems that bring learners to advanced levels of knowing is 
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therefore attacking a problem before it is properly understood. The so-called 
‘learning paradox’ occurs when learners are expected to draw upon concepts or 
procedures more complex than those presently available in order to attain a 
higher state. Bereiter (1985) offers 10 resources for ‘bootstrapping’ cognitive 
growth, each offered with cautious reservation that the problem is poorly 
understood. Techniques such as  affective boosting, use of spare mental capacity, 
construction of a self-concept. etc., are offered, but only as ‘resources’. The 
paradox remains. We may add to our set of questions, the following: 

Using what resources can the system advance a learner from one cognitive level 
to a higher cognitive level without being explicitly programmed to do so? 

The proviso ‘without being explicitly programmed to do so! is needed lest the 
answer becomes trivial. Programmed instruction may easily lead students from 
lower to higher cognitive levels, say from an understanding of integer numbers to 
an understanding of real numbers, but an intelligent system must be able to do 
the same without the presence of explicit instructional sequences. Once the 
process is made explicit, a system’s utility is focused and finite, not, we would 
say, intelligent. The question posed above is not likely to be asked by courseware 
evaluators concerned with outcomes, implementation, training, etc. Nevertheless 
it focuses on one of the most important issues for intelligent systems. 

One of the resources offered by Bereiter may be particularly important-that 
learning may advance by a process of ‘chance plus selection’. The idea is that 
advanced states may follow from random processes, and that ‘if the organism 
can capitalize on the fortuitous successes by preserving a trace of the behavior 
that led up to them, it then has the possibility of acquiring new competence’ 
(p. 208). This echoes Darwin’s theory, and the connection is  acknowledged. The 
ability to incorporate random variables with probabilities linked to outcomes 
may be a central, perhaps essential (Sen, 19891, ingredient of future intelligent 
systems. Certainly though, models must be developed in general settings before 
migrating into specific domains such as  courseware. 

Conclusion 

Intelligent courseware has arrived, but where’s the intelligence? The answer may 
be that intelligence lies wherever one wishes to place it, a s  long as  the featured 
activity is new or more sophisticated than that of a previous product with the 
same activity. Finally, we caution that marketing moguls will attach any tag to 
any product that raises it a cut above the competition. We have only begun to 
witness products cast as  ‘intelligent’. Education, as  a bureaucracy taxed by the 
demands of politicians and parents, is particularly sensitive to such ploys. As 
Clark (1983) points out, ‘(rational choice) must compete with the advertising 
budgets of the multimillion dollar industry which has a vested interest in selling 
these machines for instruction’ (p, 456). 

It seems most reasonable-following the ideas of Weizenbaum, Kay, 
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Nickerson, and others-to reserve the tag 'intelligence' for human qualities, and 
to adopt a view that intelligence is a temporary state of knowing without 
knowing why. Once we understand why, we have uncovered one small piece of 
the puzzle, and machine implementation of the new piece brings sophistication, 
but not intelligence. Nevertheless, courseware evaluators will be confronted with 
intelligent products that may bewilder and even intimidate. It is hoped that the 
questions and discussions presented in this paper can provide a starting point 
for evaluating the extent to which 'intelligence' is present in these products. 
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Editor% comments 
It is a pleasure to find such clear perspectives on the possible existence of 
intelligence in software from Scott MacKenzie. His approach from the direction of 
software development complements that of Jim Greeno’s (1991) educational 
standpoints when the latter refers to a didactic and exploratory dichotomy for 
the role of computers in education. 

Both writers reflect views of a simple model for the role Bf computers about 
which I spoke some time ago to the British Association for the Advancement of 
Science and the British Educational Research Association: 

’. . . two of the problems of CAI remain, namely the maintenance of a 
suitable model of the learner and a hierarchical framework for the 
subject matter being taught.’ 

‘It is possible to draw a distinction between the roles by asking the 
simple question “Is the computer (program) assessing the student? ” to 
which one can answer ‘yes’ or ‘no’ at least in terms of the computer’s 
predominant role. The answer ‘yes’ gives rise to concern since the 
available models of learner and subject matter content are very crude, 
even non-existent, at present. Yet the essence of good teaching includes 
some appreciation of what the learner does and doesn’t know, why he 
can and can’t do: a thorough understanding of the subject and skill in 
communicating it to the learner. One way around these shortcomings 
would be to make the program ‘learn’: in other words to be self-adaptive 
as experience in use indicates the most successful pathways and 
feedback loops. This, however, is beyond the state of the art. The more 
familiar ways of using the computer as  a resource in the classroom . . . . do 
not depend on the models which play such a critical role when the 
machine is used as a surrogate teacher. Here the computer acts as a 
resource on an equal footing to, say, laboratory apparatus, to be used as 

(Lewis, 1979, p. 54) 
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and when it has a part to play in providing or supporting student 
enquiry.’ 

(Lewis, 1981, p. 421 

I was able to stress this model again recently when reacting to Jim Greeno’s 
paper in which I went on to question how educationalists become convinced that 
software was behaving in an ‘intelligent’ fashion: 

‘A specific criticism of reports on so-called ITS systems arises over the 
lack of any explicit description of the learner model. All reports should 
enable the reader to find the answer to a series of quite simple, yet 
fundamental questions: 

how is the learner model represented in the software? 
how is a particular response by the learner assessed? 
in what terms is the learner informed of the assessment? 
how is this assessment incorporated into the learner model? 
how does this up-dated learner model influence the way in which the 
software continues to run? 

The answers to these questions should be provided in a general form, 
supplemented by one or more quite specific examples. The answers are 
bound to include statements of the way in which domain knowledge is 
being represented and the pedagogic strategy being employed as well as  
providing detail of the control mechanisms of the software. 
It is only when provided with such evidence that a reader can judge the 
“reasonableness” of the system being presented.. . . .’ 

(Lewis, 1991, p. 358) 

The difficulties of discovering where (if at all1 the intelligence lies in so-called 
AI-based products was met when we tried to analyse data from a world-wide 
survey of A1 in learning projects, the DISTIL Survey. Readers may like to 
investigate the same problem for themselves by further analysis of the database 
which is outlined in Twidale & Mace (1990). More generally, readers’ comments to 
JCAL on the claims for ITS will be welcomed. 
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