
Mobile Text Entry Using Three Keys

Scott MacKenzie
Dept. of Computer Science

York University
Toronto, Ontario, Canada N3J 1P3

+1 416-736-2100
smackenzie@acm.org

ABSTRACT
Six techniques for three-key text entry are described. The
techniques use Left- and Right-arrow keys to maneuver a
cursor over a linear sequence of characters, and a Select
key to select characters. The keystrokes per character
(KSPC) for the methods varies from 10.66 to 4.23. Two
techniques were chosen for formal evaluation. Method #2
positions characters in alphabetical order, while Method
#6 uses linguistic enhancement to reorder characters
following each entry to minimize the cursor distance to the
next character. Both methods position SPACE on the left
and use a snap-to-home cursor mode, whereby the cursor
snaps to SPACE after each entry. Entry rates were about
9-10 wpm for both techniques, as measured in an
experiment with ten participants. Interaction issues are
examined, such as the challenges in using linguistic
knowledge to accelerate input, and the opportunity for
using typamatic (viz. auto-repeat) keying strategies to
reduce the number of physical keypresses.

Keywords
Mobile text entry, linguistically enhanced text entry, text
entry performance evaluations, typamatic keying

INTRODUCTION
Current research in mobile text entry includes significant
interest in the use of small physical keyboards. This is
fueled in part by the phenomenal success of so-called SMS
messaging on mobile phones. The ability to discretely,
asynchronously, and at very low cost, send a message from
one mobile device to another has proven hugely successful,
particularly in Europe. And the statistics are staggering:
Volumes are now approaching 1 billion messages per day!
[5] Given the limited capability of the mobile phone
keypad, it is not surprising, therefore, that mobile text
entry research includes numerous efforts to develop new or
improved text entry techniques for mobile phones or other

anticipated products supporting similar services.

Keyboard Configurations for Mobile Text Entry
Among the available configurations for keyed mobile text
entry are devices with 5 keys, 8-12 keys, or 26+ keys.
Five-key text entry, although not common, is supported on
some two-way pagers, such as the AccessLink II by
Glenayre Electronics (Charlotte, NC). Fours keys move a
cursor about a two-dimensional on-screen keyboard while
a fifth key selects a character, delivering it to the message
buffer.

The traditional 12-key phone keypad – with A-Z encoded
on eight keys – is widely used for text entry, as already
noted. The most common input technique is Multitap, but
linguistically enhanced techniques also exist, such as T9
(Tegic Communications, Seattle, WA) or LetterWise
(Eatoni Ergonomics, New York, NY) [6, 9, 12, 15].

As well, some devices bear a complete but miniature
Qwerty keyboard, such as the Blackberry by Research In
Motion (Waterloo, Canada), the EL-6810B organizer by
Sharp Electronics (Mahwah, NJ), or the Communicator by
Nokia (Helsinki, Finland).

In this article, we explore a potential input technique that
requires just three keys: Left and Right arrow keys and a
Select key. Figure 1 positions this technique in a number-
of-keys continuum with the techniques just described.

3 5 8-12 26+
Number of Keys

Figure 1. Keyed mobile text entry by number of keys

The form factor for the three-key concept in Figure 1 is
just an example, and is by no means suggested as the
preferred embodiment. A variety of other configurations
are possible, such as embedding the keys in clothing on the
wrist or forearm, or using finger-activated contact
switches. The latter is one possible application of
Lehikoinen and Röykkee’s N-Fingers, a general purpose

LEAVE BLANK THE LAST 2.5 cm (1”) OF THE LEFT
COLUMN ON THE FIRST PAGE FOR THE

COPYRIGHT NOTICE.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage, and
that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
NordiCHI 9/02 Århus, Denmark
© 2002 ACM ISBN 1-1-58113-616-1/02/0009…$5.00

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage, and
that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
NordiCHI 10/02 Århus, Denmark
© 2002 ACM ISBN 1-1-58113-616-1/02/0010…$5.00

27

NordiCHI, October 19-23, 2002 Papers

input device for navigation and control [7]. With N-
Fingers, contact between the thumb and the ring, middle,
and index fingers can be mapped to the Left, Right, and
Select keys for three-key text input. However, our goal
here is to explore implementation and interaction issues
for three-key text entry, without linking these to a specific
form factor.

Text Entry Using Three Keys
The method described here has been called the date stamp
method [1, 8]. It is so named because of similarity to a
teller’s date stamp, where characters are found by rotating
a wheel containing the entire character set. As a text entry
method, we assume Left and Right arrow keys maneuver a
cursor over a linear sequence of letters and a Select key
enters a letter. Arcade game players often use this
technique to add one's name to a list of high scorers.

There are numerous ways to implement three-key text
entry using Left and Right arrow keys and a Select key.
Six possibilities are examined here (see Table 1).

Table 1
Six Methods of Three-Key Text Entry

Method Character Arrangement a Cursor Mode KSPC

#1 _abcdefghijklmnopqrstufwxyz Persistent 10.66

#2 _abcdefghijklmnopqrstufwxyz Snap-to-home 10.62

#3 abcdefghijklm_nopqrstuvwxyz Persistent 9.18

#4 abcdefghijklm_nopqrstuvwxyz Snap-to-home 6.45

#5 _… … .… (FOCL Level 1) b Snap-to-home 5.05

#6 _… … .… (FOCL Level 2) b Snap-to-home 4.23
a SPACE is represented as ‘_’
b FOCL = fluctuating optimal character layout (see text)

A good start is just to arrange letters alphabetically with a
SPACE at the left:

_abcdefghijklmnopqrstuvwxyz

Interaction proceeds by moving a cursor with the Left and
Right arrow keys and entering characters with the Select
key. We call this Method #1. The cursor mode for this
method is persistent (see Table 1). This means after a
character is selected, the cursor persists at the selected
position. Movement proceeds from this position to the
next character.

The column KSPC, for keystrokes per character, in Table
1 is particularly important in characterising and
comparing text entry methods (see [8] for a detailed
discussion). KSPC is the number of keystrokes, on
average, to generate each character of text in a given
language using a given text entry technique. With the
Left, Right, and Select keys operating as just described, the
number of keystrokes required to enter a character depends
only on the preceding character; thus, we can compute

KSPC for Method #1 using a digram-frequency table for a
given language.

Our analyses here are based on the British National
Corpus [2]. We work primarily with two forms of the
corpus, a word-frequency list (64,566 words, frequencies
totaling 90,563,946) and a digram-frequency list (27 ? 27
= 729 digrams, frequencies totaling 505,863,847). Below
are the five most-frequent entries in the digram-frequency
list, appended with keystrokes for Method #1:

e_ 18403847 LLLLLS
_t 14939007 RRRRRRRRRRRRRRRRRRRRS
th 12254702 LLLLLLLLLLLLS
he 11042724 LLLS
s_ 10860471 LLLLLLLLLLLLLLLLLLLS

So, entering SPACE after e requires six keystrokes
(LLLLLS), a very frequent act in English. With a full
keystroke-appended digram table, KSPC is computed by
summing the weighted keystroke counts. For Method #1,
we obtain

KSPC = 10.66 (1)

In Method #1, the cursor is persistent: It maintains its
position after each character entered. Since SPACE occurs
with the greatest frequency in text entry tasks, it is worth
considering a snap-to-home mode, whereby the cursor
jumps to the SPACE character after each entry. Thus,
inputting a SPACE requires just one keystroke, regardless
of the preceding character. We call this Method #2. The
improvement is only slight, however:

KSPC = 10.62 (2)

In theory, Method #2 requires just two keys because all
cursor key motion is to the right. However, in practice, a
Left key is still needed to correct for the occasional
overshoot. This is examined in more detail later.

Another possibility is to position the SPACE character in
the middle of the alphabet:

abcdefghijklm_nopqrstuvwxyz

Thus, SPACE is well-situated for English text entry. This
letter arrangement combined with a persistent cursor bears
further improvement (Method #3):

KSPC = 9.18 (3)

However, a good leap forward is produced by combining a
central SPACE character with a snap-to-home cursor
(Method #4):

KSPC = 6.45 (4)

English text is produced with about 40% fewer keystrokes
per character using Method #4 than using Method #1.

Typamatic Cursor Movement
Despite the improvement with Method #4, entering text
with 6+ keystrokes per character seems onerous. However,
lurking within the apparently high overhead of cursor

28

NordiCHI, October 19-23, 2002Papers

movement is an opportunity for accelerated input.
Consider, for example, the sequence s-SPACE shown
earlier as 19 presses of Left followed by a single press of
Select. Are 20 keystrokes really required? Perhaps not.

In practice, keyboards often include a typamatic, or auto-
repeat, feature. Pressing and holding a key longer a
certain delay threshold initiates a continuous fixed-rate
stream of virtual key presses. There is clearly an
opportunity to exploit this feature with the three-key text
entry methods described here. In other words, the user
may enter s-SPACE with Method #1 by pressing the Left
key, holding for an auto-repeat interval as the cursor
moves, then releasing the Left key and pressing the Select
key. We will examine this in more detail later.

Linguistic Enhancement
Another possibility to reduce KSPC is to add linguistic
knowledge to dynamically rearrange letters after each
entry. The goal is to minimize the cursor-key distance to
the next character. Bellman and MacKenzie [1] called this
technique FOCL, for fluctuating optimal character layout.
Their study focused on pager-style five-key text entry using
a Select key, Up, Down, Left, and Right arrow keys, and
an on-screen keyboard with letters arranged in three rows.
Our focus here is on a much simpler interaction with only
three keys and with letters arranged in a single row; thus
the opportunity for exploiting typamatic input is greater.

Two levels of FOCL-style interaction are considered. Both
position the SPACE character on the left and assume a
snap-to-home cursor mode. With FOCL Level 1, the
letters are rearranged after each entry considering their
likelihood of following the character just entered. The
most-likely next letter is adjacent to the SPACE, and so
on. FOCL Level 2 is the same except the order is
determined by the two preceding characters. The idea is
simply to further reduce the cursor-key distance to the next
letter by adding more linguistic knowledge to the system.

Building a FOCL table is straight-forward. Table 2 shows
the five most-common sequences for each level.

Table 2
FOCL Level 1 and Level 2 Examples

Preceding
Character(s)

Next Character
 (ordered by probability)

***** FOCL Level 1 *****
_ taisowhcbpfmdrlengyuvkjqzx
e rndsalectmvxyipfwgoqhkbujz
t hoiearsuytlwcmnfbpgdzjkvqx
a ntrlscdiybvmgpkufwhxjzeoqa
o nrufmtwlospvdcikbgayhexjzq

***** FOCL Level 2 *****
e_ taisowhcbpfmdrlengyuvkjqzx
_t horeaiwuysbcdfgjklmnpqtvxz
th eaiorsuydlwmfncphqbtgkjvxz
he rynimasdlteocfwpvqgxubkhjz
s_ taisowhcbpfmdrlengyuvkjqzx

Note that the SPACE character is the home position and is
always entered with one keystroke. Also, our
computations are based on the word-frequency reduction of
a corpus, therefore, word transitions are not considered.
Thus, FOCL Level 2 degrades to FOCL Level 1 for letter-
SPACE digrams. This occurs for 27 of the 729 digrams,
and is seen in the e_ and s_ entries in Table 2.

Given keystroke-appended digram tables for the two levels
of FOCL just described, the KSPC characteristic is easily
computed. The result for FOCL Level 1 is

KSPC = 5.05 (5)

and for FOCL Level 2,

KSPC = 4.23 (6)

These appear in Table 1 as Method #5 (FOCL Level 1) and
Method #6 (FOCL Level 2).

English text is produced with about 60% fewer keystrokes
per character using Method #6 than using Method #1.
However, it is naïve to suggest that a corresponding
increase in text entry throughput will occur. Adding
linguistic knowledge to the system changes the interaction
considerably as numerous new issues surface.

There is clearly an increased attention demand with
FOCL-style interaction, since users must react to a new
letter arrangement after each entry. Is the cost of the
added attention demand offset by the significant reduction
in keystrokes? This remains to be seen.

Among other interaction issues with FOCL-style input is
chunking. Despite the new arrangement of letters
following each entry, users may acquire motor memory for
frequent letter patterns, such as the, and, in, to, ing, tion,
for, is, and so on. These will typically require just one or
two presses of the Right-arrow key for each letter. There
is the potential for users to develop the facility to enter
such patterns without attending to the new letter
arrangement. That is, they may proceed expeditiously
using motor memory. This effect is only likely to surface
after considerable practice, however.

Finally, it is important to remember that users attention is
focused only on the display for three-key text entry. This
is not the case for typical text entry on mobile phones,
where users attend both to the keys (Which key contains
the desired letter?) and to the display (Was the correct
letter generated?). This also mitigates the impact of the
attention demand with FOCL-style interaction.

In summary, we have described six possible
implementations for three-key text entry on mobile
systems. We have also discussed several important
interaction issues that may impact performance, including
the number of keystrokes required for each character
entered, the possibility of using typamatic keying, and the
increased attention demand in adding linguistic knowledge

29

NordiCHI, October 19-23, 2002 Papers

to the system. Our next step is to conduct an empirical
evaluation to measure text entry performance and other
aspects of the interaction, and to solicit feedback from
potential users of these techniques.

We implemented each of the six techniques described
above and tested them informally with pilot subjects. On
balance, we considered Method #2 and Method #6 the
most promising and choose these for formal evaluation.
They are similar in that both techniques position SPACE
on the left with a snap-to-home cursor, different in that
Method #6 works with FOCL-style interaction. The
methodology and results are described in the following
sections.

METHODOLOGY
Participants
Ten paid volunteer participants (8 male, 2 female) were
recruited from the local university campus. Participants
ranged in age from 20 years to 49 years (mean = 30.1, sd =
8.5). All were daily users of computers, reporting 3 to
12.5 hours of usage per day (mean = 7.9, sd = 3.3). Self-
assessed typing speeds ranged from 35 to 105 words per
minute (mean = 62.7, sd = 22.5). Six users described
themselves are “regular users of computer games”.

Apparatus
The experiment was conducted in a quiet office using a
400 MHz Pentium-class desktop computer running under
Microsoft Windows 98. The system included a 19” colour
monitor and a standard mouse and keyboard. The default
keyboard mapping for the input keys was Left-arrow = Z,
Right-arrow = X, Select = Enter. During entry, the middle
finger and index finger on the left hand pressed the Left
and Right arrow keys, respectively, while the index finger
on the right hand pressed the Select key. These mappings
could be changed, if requested by participants. All other
keystrokes were ignored.

The typamatic behaviour of the keyboard was configured
via the system’s control panel. We used the shortest auto-
repeat delay and the shortest repeat interval (i.e., fastest
repeat rate). These were considered reasonable based on
pilot tests with the experimental software, and previous
research citing a user preference for the fastest available
cursor speed [4]. A simple experiment was conducted to
measure the actual repeat delay and repeat interval on the
experimental system. They were measured as follows:

tDELAY = 176 ms (7)

and

tTYPAMATIC_REPEAT = 32.1 ms (8)

The repeat interval of 32.1 ms corresponds to an auto-
repeat rate of 31.2 characters per second. Auto repeat
begins following the 176 ms delay interval.

The experimental software was an in-house Java
application for text entry evaluation. Upon launch, the
program reads a file containing a series of text phrases.
During execution, phrases are selected randomly and
presented to the participant for input.

The phrase set contained 500 phrases ranging from 16 to
43 characters (mean = 28.6). There were 2712 total
words, including 1163 unique words. Words ranged from
1 to 13 characters (mean = 4.46). The correlation between
the letter frequencies in the phrase set and those in our
reference corpus was r = .9541.

Screen snaps of the software in use are shown in Figure 2a
for Method #2 and Figure 2b for Method #6. The top line
shows the presented text phrase, while the middle line
shows the progress of input. The bottom line shows the
letter sequence according to the input method. The cursor
position appeared as a blue box around a white character.
Errors could not be corrected.

Figure 2. Screen snaps of the text-entry evaluation

software (a) Method #2 (b) Method #6.

Procedure
Participants completed a pre-test questionnaire soliciting
demographic and computer usage information (results
cited above) and a post-test questionnaire on their
subjective impressions of the methods (discussed later).

Prior to collecting data, the experimenter briefly explained
the task and demonstrated the software. The instructions
were to enter a series of text phrases “as quickly and
accurately as possible” using the specified input technique.
Participants were instructed to ignore mistakes and to
continue with the rest of a phrase in the event of an error.

The operation of the Left, Right, and Select keys was
explained, as was the general idea of linguistic
enhancement for Method #6.

Participants were then allowed to enter a few warm-up
phrases and ask questions about the procedure. They were
also given an opportunity to choose a different mapping
for the Left, Right, and Select keys. All but one
participant felt comfortable with the default mappings.
For the other participant, a slight change was introduced
through the software’s configuration file.

Data collection began with the first keystroke for each
phrase and ended with the last keystroke. Participants

30

NordiCHI, October 19-23, 2002Papers

were allowed to rest at their discretion between phrases.
Each participant was scheduled for a one-hour
appointment, resulting in about 25 minutes of data
collection for each entry method.

The experiment was a within-subjects design with two
conditions: Method #2 vs. Method #6. The order of
conditions was counterbalanced. Half the participants
entered text first using Method #2, then using Method #6.
For the other half, the order was reversed.

The software recorded a timestamp and key code for each
keystroke, saving these in files for follow-up analyses.

RESULTS AND DISCUSSION
In all, participants entered 1354 phrases of text, including
673 phrases for Method #2, and 681 phrases for
Method #6. Our analyses begin with measures for speed
and accuracy.

Speed and Accuracy
The overall results for text entry speed are shown in Figure
3. At 9.61 wpm, the entry rate for Method #6 was 5.6%
faster than the 9.10 wpm rate observed for Method #2.
The difference was not statistically significant, however
(F1,9 = 2.843, p > .05).

9.619.10

0

2

4

6

8

10

12

Method #2 Method #6

Entry Method

E
nt

ry
 S

pe
ed

 (w
pm

)

Figure 3. Entry speed (wpm) by method (Note:

Error bars span one standard deviation)

Overall, the results for entry speed seem low and
somewhat disappointing. Neither method exceeded
10 wpm and FOCL-style linguistic enhancement failed to
yield a significantly higher text entry throughput.
Importantly, the techniques tested were unfamiliar to all
participants and the measurements reported are the mean
over just 25 minutes of practice. By comparison, Bellman
and MacKenzie [1] reported text entry rates of 10-11 wpm
for two pager-style five-key techniques, but these were
achieved on the tenth session of testing. Rates were only
5-6 wpm on the first session. Similarly, MacKenzie et al.
[9] tested two text entry techniques for mobile phones and
measured rates of 15-20 wpm after 20 sessions of practice.
However, on the first session, the rates were just over
7 wpm. James and Reischel [6] also tested two text entry
techniques for mobile phones. For the novice group

(tested in one session only), they reported rates of 8-
9 wpm.

Other mobile text entry techniques include handwriting
with automatic recognition and stylus tapping on a
graphical qwerty keyboard. First-session rates are
typically in the range 15-28 wpm [10, 13], but participants
import substantial prior skill, due to life-long experience
with handwriting and qwerty-style keyboards. The
situation is quite different when users confront a graphical
keyboard with an unfamiliar layout, however. MacKenzie
and Zhang [14] measured stylus tapping rates on a
graphical keyboard with a randomized letter arrangement.
Participants’ text entry rates were 5-6 wpm.

Considering the above examples in the research literature
and that the techniques tested here are at the low end of
the number-of-keys continuum for keyed text entry (see
Figure 1), the results in Figure 3 seem quite reasonable.

Error rates were computed using the minimum-string-
distance method [11, 16]. The results are shown in Figure
4. Both methods demonstrated an error rate a little over
2%. As evident by the wide error bars, there was
substantial variation in the error rates across subjects. For
Method #2, subjects’ error rates varied from 0.78% to
4.21% (sd = 0.63), and for Method #6 from 0.57% to
4.58% (sd = 0.63). Not surprisingly, the difference in
error rates was not statistically significant (F1,9 = 0.241,
ns).

2.242.11

0
1
1
2
2
3

3
4

Method #2 Method #6

Entry Method

E
rr

or
 R

at
e

(%
)

Figure 4. Error rate (%) by method (Note:
Error bars span one standard deviation)

Despite the lack of significant differences between the two
entry methods on the dependent measures for speed and
accuracy, there are substantial differences between the two
methods. These are borne out in more detailed analyses on
other dependent measures.

Keystrokes Per Character (KSPC)
Earlier we reported the KSPC values for each of the
proposed methods for three-key text entry. The values in
Table 1 are computed, however, and may differ from the
observed number of keystrokes per character. Figure 5
shows both the computed and observed values. The
observed values are presented in two forms: including and

31

NordiCHI, October 19-23, 2002 Papers

excluding typamatic keystrokes. Including typamatic
keystrokes means all keystrokes – including virtual
keypresses during auto-repeat – are counted. Excluding
typamatic keypresses means the virtual keypresses – those
occurring automatically after the auto-repeat delay – are
not counted.

4.23

10.62

5.40

12.08

2.972.79

0

2

4

6

8

10

12

14

Method #2 Method #6

Entry Method

K
ey

st
ro

ke
s

P
er

 C
ha

ra
ct

er

Computed KSPC
Observed KSPC (Including typamatic keystrokes)
Observed KSPC (Excluding typamatic keystrokes)

Figure 5. Keystrokes per character (KSPC), computed and

observed, by entry method

For both entry methods, the observed KSPC (including
typamatic keypresses) was higher than the computed
KSPC. There are at least three reasons for the differences.
The first is due to minor linguistic differences between the
particular set of phrases entered and the language model.
The effect of this difference on KSPC might be plus or
minus, depending on the statistical structure of each
phrase. The effect should be minor, however, due to the
high correlation between the letter frequencies in the
phrase set and those in the reference corpus.

The second is due to errors. An undershoot error tends to
decrease KSPC, while an overshoot error increases KSPC.
Assuming undershoot errors and overshoot errors occur
with approximately the same frequency, the expected effect
on KSPC is neutral.

The third is due to non-optimal entry. If the participant
overshoots the intended character, then backs up and
correctly enters the character, extra keystrokes are
incurred. The effect is always to increase KSPC. Since
the first two effects are small or neutral, this effect is likely
the dominant reason KSPC-observed (middle bar in Figure
5) differs from, and is higher than, KSPC-computed.

The difference shows inefficiency in the interaction.
Comparing the left two bars in Figure 5 for each method,
we see that users entered more keystrokes than necessary:
13.7% more for Method #2 and 27.7% more for
Method #6. That the percent difference is higher for

Method #6 means participants did not "cash in" on the
benefits of FOCL as much as they could have. The most
likely reason is that participants tended to overshoot and
adjust more often with Method #6 than with Method #2.

The observed KSPC figures, excluding typamatic
keystrokes, are also shown in Figure 5. Evidently,
exploiting typamatic input has considerable impact on the
work required to enter text using the three-key methods
under investigation. Comparing the first and third bars in
Figure 5 for each method, typamatic input substantially
reduced the number of physical keypresses for each
method: by 73.7% for Method #2 and by 29.8% for
Method #6. The reduction is not as pronounced with
Method #6, perhaps due to a floor effect; that is, KSPC-
computed is low to begin with. In fact, the KSPC-observed
value, excluding typamatic keystrokes, was slightly higher
for Method #6 than for Method #2. This suggests
participants were “doing more work” with Method #6.

Typamatic Events
Even though Method #6 requires less than half the
keystrokes per character than Method #2, a corresponding
increase in text entry throughput did not materialize.
There are at least two explanations. The first is the added
attention demand in finding the correct letter in a
fluctuating layout, as noted earlier. The second is that the
average distance of typamatic movement is greater with
Method #2; thus, typamatic movement tends to benefit
Method #2 more than Method #6. The latter effect is
shown in Figure 6.

5.85

10.92

0

2

4

6

8

10

12

14

Method #2 Method #6

Entry Method

Le
ng

th
 o

f T
yp

am
at

ic
 E

ve
nt

s

Figure 6. Length of typamatic events by entry method

(Note: Error bars span one standard deviation)

A typamatic event is defined as any key sequence that
begins with a physical keypress and extends to one or more
virtual keypresses through auto-repeat. The length of the
event is the sum of the physical and virtual keypresses.
With Method #2, the average length of a typamatic event
was 10.92 keystrokes. This is almost twice the same figure
for Method #6 (5.85 keystrokes). The lower value for
Method #6 is likely due to FOCL-style interaction. That

32

NordiCHI, October 19-23, 2002Papers

is, the inherently lower KSPC with FOCL-style interaction
also reduces the opportunity for typamatic keying.

If typamatic keying was not available, greater differences
in throughput might occur, with Method #6 faster than
Method #2 simply due the reduced keystrokes to enter each
character. However, this is a moot point since the
difference would yield an even slower throughput for
Method #2, rather than a higher throughput for
Method #6.

Keystroke Categories
One final analysis is presented to demonstrate the
significant impact of typamatic keying on the entry
methods under investigation. Figure 7 shows a
categorization of keystrokes by method.

(a)
77%

3%

12%

8%

Typamatic

Left

Right

Select

(b)

42%

4%
35%

19%
Typamatic

Left

Right

Select

Figure 7. Keystroke categories by method

 (a) Method #2 (b) Method #6

Left, Right, and Select keystrokes are physical keypresses,
while Typamatic keystrokes are virtual keypresses. For
Method #2, about 77% of all keypresses are of the latter
type. The same figure for Method #6 is considerably less –
just 42%, for reasons noted earlier. Right-arrow
keystrokes are correspondingly higher for Method #6, and
this is likely related to the preceding comment. In other
words, the inherently lower KSPC with Method #6 is
coincident with a higher tendency to use short bursts of
Right-arrow keystrokes instead of typamatic keying.

Motor-Sensory Issues
The last point above is worthy of separate discussion, as it
carries an interesting mix of motor-sensory issues. These
are briefly examined here. Consider the following two
keying situations: (R = Right-arrow key, S = Select key)

RRRRRRRRRRRRRRRRRRRRS
RRRRS

The first example clearly presents an opportunity for
typamatic keying, but which keying strategy is best for the
second example? A keystroke-level analysis can help
answer this question. We can ignore the final Select
keypress because it is the same for both strategies. The
time for n physical presses on the Right-arrow key is
estimated as

tPHYSICAL = n ? tREPEAT (9)

where tREPEAT is the time for each press where a key is
pressed repeatedly.

The formula is slightly different for typamatic keying,
because the first keypress is physical and the rest are
virtual and follow a delay interval. The estimated time for
n cursor key presses using typamatic keying is

tTYPAMATIC = tDELAY + (n – 1) ? tTYPAMATIC_REPEAT (10)

The experimental settings for tDELAY and tTYPAMATIC-REPEAT
were given earlier in equations 7 and 8. A reasonable
value for tREPEAT is 140 ms [3, p. 60]. The crossover point
– the number of keystrokes above which typamatic keying
is faster – is found simply by equating the right-side of
equations 9 and 10 and solving for n. The result is
n = 1.33. This figure is remarkably low. The implication
is that for two or more presses of the same key, the result is
more quickly achieved using a typamatic keying strategy.

The crossover point varies with tREPEAT, tDELAY, and
tTYPAMATIC-REPEAT. While tREPEAT is constrained by the
human motor system, tDELAY and tTYPAMATIC-REPEAT are
system-dependent, and, therefore, tunable. For example,
doubling then trebling these parameters increases the
crossover point to n = 3.80 and n = 9.88, respectively.

However, there are other, arguably more important, issues,
such as the user’s ability to sense and respond to the
advancing motion of the cursor. To effectively use
typamatic keying the user must monitor the movement of
the cursor and release the arrow key within a window of
time equal to tTYPAMATIC-REPEAT. This window was
extremely narrow in our experiment: just 32.1 ms! (See
equation 8.) Most likely, participants used typamatic
keying as a strategy to “get to the vicinity of” the desired
character, with a final adjustment if necessary. The
presence of Left-arrow keypresses (see Figure 7) is an
indication of the occasional need to correct for an
overshoot in typamatic keying.

An interesting research topic, therefore, is examining the
interaction between users’ ability to employ typamatic
keying and the parameters that affect performance, such as
tDELAY, tTYPAMATIC-REPEAT, and keying distance.

Participant Questionnaire
The post-test questionnaire solicited general comments
and a response to three statements. The statements and
response means are shown in Figure 8.

33

NordiCHI, October 19-23, 2002 Papers

1. I found Method #2…

 1 2 3 4 5
 very moderately neutral moderately very
 easy easy frustrating frustrating

2. I found Method #6…

 1 2 3 4 5
 very moderately neutral moderately very
 easy easy frustrating frustrating

3. Of the two methods, I prefer…

 1 2 3 4 5
Method #2 Method #2 neutral Method #6 Method #6
 stong moderate moderate strong

Figure 8. Post-test questionnaire results (Note:
Error bars show +/-1 standard deviation)

Overall, Method #2 was preferred. Among the general
comments, some participants felt Method #6 required more
concentration. The added keying for Method #2 received a
few comments. One participant noted the high cost of
mistakes with Method #6, referring presumably to the
unpredictable letter arrangement following a mistake.
Another participant expressed extreme frustration with
Method #6, feeling that the computer was trying to “trip
you up” by shuffling the letters after each entry.

CONCLUSION
Six techniques for three-key text entry on mobile systems
were presented. The techniques use Left- and Right-arrow
keys to maneuver a cursor over a linear sequence of
characters, and a Select key to enter characters. The
keystrokes per character (KSPC) for the methods varies
from 10.66 to 4.23. Method #2 and Method #6 were
formally evaluated in an experiment with ten participants
who entered text for about 25 minutes with each technique.
Text entry throughputs were 9.10 wpm and 9.61 wpm for
Method #2 and Method #6, respectively. The
opportunities for typamatic keying are particularly
interesting for the techniques described here because
cursor distances are substantial and characters are
arranged in a single row.

Adding linguistic knowledge with Method #6 did not
increase text entry throughput. This is attributed to the
added attention demand and to increased typamatic keying
for Method #2. At KSPC = 10.62, Method #2 requires
more cursor movement than Method #6, and, therefore,
benefits more from typamatic keying. Further research is
warranted to establish the optimal delay time and repeat
interval for text entry systems using typamatic keying.

Acknowledgement
Thanks to Chris Klochek for contributing to the software
development and for testing the experimental protocol.

References
1. Bellman, T., and MacKenzie, I. S. A probabilistic

character layout strategy for mobile text entry, Proc GI
'98, 1998, 168-176.

2. BNC: ftp://ftp.itri.bton.ac.uk/bnc/ (file repository for
British National Corpus), (2002).

3. Card, S. K., Moran, T. P., and Newell, A. The
psychology of human-computer interaction, Hillsdale,
NJ: Lawrence Erlbaum, 1983.

4. Gould, J. D., Lewis, C., and Barnes, V. Cursor
movement during text editing, ACM Trans Office
Information Systems 3 (1985), 22-34.

5. http://gsmworld.com/technology/sms.html (includes
various SMS statistics), (2002).

6. James, C. L., and Reischel, K. M. Text input for
mobile devices: Comparing model predictions to
actual performance, Proc CHI 2001, 2001, 365-371.

7. Lehikoinen, J., and Röykkee, M. N-Fingers: A finger-
based interaction technique for wearable computers,
Interacting with Computers 13 (2001), 601-625.

8. MacKenzie, I. S. KSPC (keystrokes per character) as a
characteristic of text entry techniques, Proc HCI
Mobile 2002, 2002, (to appear).

9. MacKenzie, I. S., Kober, H., Smith, D., Jones, T., and
Skepner, E. LetterWise: Prefix-based disambiguation
for mobile text input, Proc UIST 2001, 2001, 111-
120.

10. MacKenzie, I. S., Nonnecke, R. B., Riddersma, S.,
McQueen, C., and Meltz, M. Alphanumeric entry on
pen-based computers, International Journal of
Human-Computer Studies 41 (1994), 775-792.

11. MacKenzie, I. S., and Soukoreff, R. W. Character-
level Error Analyses for Evaluating Text Entry
Methods, 2002, [submitted for publication].

12. MacKenzie, I. S., and Soukoreff, R. W. Text entry for
mobile computing: Models and methods, theory and
practice, Human-Computer Interaction (2002), [to
appear].

13. MacKenzie, I. S., and Zhang, S. X. The design and
evaluation of a high-performance soft keyboard, Proc
CHI '99, 1999, 25-31.

14. MacKenzie, I. S., and Zhang, S. X. An empirical
investigation of the novice experience with soft
keyboards, Behaviour & Information Technology 20
(2001), 411-418.

15. Silfverberg, M., MacKenzie, I. S., and Korhonen, P.
Predicting text entry speed on mobile phones, Proc
CHI 2000, 2000, 9-16.

16. Soukoreff, R. W., and MacKenzie, I. S. Measuring
errors in text entry tasks: An application of the
Levenshtein string distance statistic, Ext Abstracts
CHI 2001, 2001, 319-320.

34

NordiCHI, October 19-23, 2002Papers

