{VERSION 3 0 "IBM INTEL NT" "3.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 }{CSTYLE "2D Comment" 2 18 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 } {CSTYLE "2D Input" 2 19 "" 0 1 255 0 0 1 0 0 0 0 0 0 0 0 0 }{CSTYLE "2 D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 256 " " 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 257 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 258 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 } {CSTYLE "" -1 259 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 260 "" 1 16 0 0 0 0 0 1 0 0 0 0 0 0 0 }{CSTYLE "" -1 261 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 262 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 } {CSTYLE "" -1 263 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 264 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 265 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 266 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 } {CSTYLE "" -1 267 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 268 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 269 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 270 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 } {CSTYLE "" -1 271 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 272 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 273 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 274 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 } {CSTYLE "" -1 275 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 276 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 277 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 278 "" 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 } {CSTYLE "" -1 279 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 280 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 281 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 282 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 } {CSTYLE "" -1 283 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 284 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 285 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 286 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 } {CSTYLE "" -1 287 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 288 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 289 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 290 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 } {CSTYLE "" -1 291 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 292 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 293 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 294 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 } {CSTYLE "" -1 295 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 296 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 297 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 298 "" 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 } {CSTYLE "" -1 299 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 300 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 301 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 302 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 } {CSTYLE "" -1 303 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Output" 0 11 1 {CSTYLE "" -1 -1 " " 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 3 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 11 12 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 } 1 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Plot" 0 13 1 {CSTYLE " " -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }} {SECT 0 {EXCHG {PARA 0 "" 0 "" {TEXT 260 18 "Compton scattering" }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 423 "We used \+ conservation laws for linear momentum and kinetic energy to solve one- dimensional collision problems. In more dimensions the number of degre es of freedom associated with the particle motion exceeds the number o f constraints provided conservation laws. This means that we will not \+ be able to obtain complete solutions. Nevertheless, it is interesting \+ to investigate the constraints supplied by the conservation laws." }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 32 "Suppose t hat a particle of mass " }{TEXT 259 1 "m" }{TEXT -1 28 " is impinging \+ with velocity " }{TEXT 257 1 "v" }{TEXT -1 12 "0 along the " }{TEXT 258 1 "x" }{TEXT -1 28 "-axis on a particle of mass " }{TEXT 256 1 "M " }{TEXT -1 530 " that is initially at rest. The particles interact by a central force (force acts only along the mutual separation). To att empt a solution based on conservation laws means to not take into acco unt the details of the interaction. A complete dynamical approach invo lves solving Newton's equations (or variants thereof, such as Lagrange 's, or Hamilton's forms), which takes into account the force law, and \+ which automatically obeys the conservation laws. An example of such a \+ complete solution was the problem of firing a cannonball." }}{PARA 0 " " 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 284 "1) The conservati on of angular momentum for the motion of objects subject to central fo rces implies that the motion is confined to a plane. This reduces the \+ three degrees of freedom in the position vectors of the masses to two. The number of degrees of freedom is reduced from 6 to 4." }}{PARA 0 " " 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 96 "2) The conservatio n of energy provides one scalar constraint, i.e., 3 degrees of freedom remain." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 86 "3) The conservation of linear momentum in the scattering plane pro vides 2 constraints." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 " " {TEXT -1 282 "Thus, the problem cannot be completely determined from the conservation laws. This is illustrated in this worksheet, first i n general, and then specifically for the scattering of photons off ato mic electrons resulting in an energy transfer to the electron, i.e., C ompton scattering." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 324 "We set up the equations for the constraints 2 and 3, i.e ., we begin in the scattering plane (having made use of angular moment um conservation). We assume complete elasticity for the collision, alt hough it is not difficult to incorporate in the energy balance a given amount of binding energy that has to be supplied to mass " }{TEXT 264 1 "M" }{TEXT -1 37 " in order to free it from the target." }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 29 "En:=m/2*v0^2=m/2*v^2+M/2*V^2 ;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#EnG/,$*&%\"mG\"\"\")%#v0G\"\"# \"\"\"#F)F,,&*&F(F-)%\"vGF,F-F.*&%\"MGF))%\"VGF,F-F." }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 99 "To specify the momentum components after the co llision we introduce two angles with respect to the " }{TEXT 261 1 "x " }{TEXT -1 42 " axis: theta for the scattering particle (" }{TEXT 262 1 "m" }{TEXT -1 46 ") and phi for the particle initially at rest ( " }{TEXT 263 1 "M" }{TEXT -1 2 "):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 39 "Momx:=m*v0=m*v*cos(theta)+M*V*cos(phi);" }}{PARA 11 " " 1 "" {XPPMATH 20 "6#>%%MomxG/*&%\"mG\"\"\"%#v0GF(,&*(F'\"\"\"%\"vGF( -%$cosG6#%&thetaGF(F(*(%\"MGF(%\"VGF(-F/6#%$phiGF(F(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 36 "Momy:=0=m*v*sin(theta)+M*V*sin(phi);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%%MomyG/\"\"!,&*(%\"mG\"\"\"%\"vGF*-% $sinG6#%&thetaGF*F**(%\"MGF*%\"VGF*-F-6#%$phiGF*F*" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 26 "What are we interested in?" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 50 "The masses of the particl es and the initial speed " }{TEXT 265 1 "v" }{TEXT -1 20 "0 are usuall y known." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 29 "Unknown are four quantities: " }{TEXT 266 1 "v" }{TEXT -1 2 ", " } {TEXT 267 1 "V" }{TEXT -1 105 ", and theta and phi. How can we use the three constraints to learn as much as possible about the problem?" }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 85 "Before we jump into the general situation, let us first consider the equal-mass case:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "En1:=subs(M=m,En) ;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$En1G/,$*&%\"mG\"\"\")%#v0G\"\" #\"\"\"#F)F,,&*&F(F-)%\"vGF,F-F.*&F(F-)%\"VGF,F-F." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "Momx1:=subs(M=m,Momx);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%&Momx1G/*&%\"mG\"\"\"%#v0GF(,&*(F'\"\"\"%\"vGF(-%$cos G6#%&thetaGF(F(*(F'F,%\"VGF(-F/6#%$phiGF(F(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "Momy1:=subs(M=m,Momy);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%&Momy1G/\"\"!,&*(%\"mG\"\"\"%\"vGF*-%$sinG6#%&thetaGF *F**(F)\"\"\"%\"VGF*-F-6#%$phiGF*F*" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 81 "Given that we have three equations we can ask for a solution fo r three variables:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 42 "sol:= solve(\{En1,Momx1,Momy1\},\{v,V,theta\});" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$solG6&<%/%\"vG%#v0G/%\"VG\"\"!/%&thetaGF,<%/F(,$F)! \"\"F*/F.%#PiG<%/F(*&F)\"\"\"-%$sinG6#%$phiGF8/F.,&F " 0 "" {MPLTEXT 1 0 15 "assign(sol[4]);" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 11 "print(v,V);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6$,$*&%#v0G\"\"\"-%$sinG6#%$phiGF&!\"\"*&-%$cosGF)F& F%\"\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "KEm:=m*v^2/2;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$KEmG,$*(%\"mG\"\"\")%#v0G\"\"#\" \"\")-%$sinG6#%$phiGF+F,#F(F+" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "KEM:=m*V^2/2;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$KEMG,$*(%\"m G\"\"\")-%$cosG6#%$phiG\"\"#\"\"\")%#v0GF.F/#F(F." }}}{EXCHG {PARA 0 " > " 0 "" {MPLTEXT 1 0 13 "m:=1; v0:=10;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"mG\"\"\"" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#v0G\"#5" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 59 "plot([KEm,KEM],phi=-Pi/2..0, color=[blue,green],axes=BOXED);" }}{PARA 13 "" 1 "" {GLPLOT2D 303 303 303 {PLOTDATA 2 "6'-%'CURVESG6$7S7$$!1++lBjzq:!#:$\"#]\"\"!7$$!1o*=SVd l`\"F*$\"1r^B\"yST*\\!#97$$!1b`Afjw1:F*$\"1R8R:)G&z\\F37$$!1*oo)zJEt9F *$\"15$fY0(e_\\F37$$!1R:p>z`R9F*$\"1i[EN(\\V\"\\F37$$!1!**)y\\H(fS\"F* $\"1)G-&y=Rl[F37$$!13T2ER&[P\"F*$\"1XeP%4x/\"[F37$$!1Z:]z>jU8F*$\"1eAh 53>WZF37$$!1MAE'*zI48F*$\"1)p3OtSem%F37$$!1(zfM)34w7F*$\"1IGYO2C\"F*$\"1j$QNZH%yWF37$$!1&\\E(4z#=@\"F*$\"1I^3q8\"HQ%F37$$!1 te.mz%z<\"F*$\"1'R3I4RsE%F37$$!1Q8/3*GR9\"F*$\"1\\\\!yfJH9%F37$$!1Ya3U _966F*$\"1\"oz0,Qf,%F37$$!1phmKXP\"3\"F*$\"1XW`Fk&\\*QF37$$!1&)>ozU(f/ \"F*$\"1]hEV$*pWPF37$$!1`b%>i&)f,\"F*$\"1X_Dp9]7OF37$$!1bYAQo,6)*!#;$ \"1g[&zbBPX$F37$$!19pFx[B-&*Faq$\"1o(o'o7G4LF37$$!1L\"4o7_M;*Faq$\"1xa z=jFZJF37$$!1q@AL3&3%))Faq$\"1$G)>#4P-*HF37$$!1?AYE-D/&)Faq$\"1f%>\">& =U#GF37$$!1.#>TzX^>)Faq$\"1Ed;Z(\\/n#F37$$!1>*y_!\\thyFaq$\"1Q')4Mm(Q] #F37$$!1*3(>&p9a^(Faq$\"1fWkke%3L#F37$$!1C,DM>%R@(Faq$\"1$o?.T`3=#F37$ $!1K7J$4V$))oFaq$\"1.*)*y_w,-#F37$$!1Z=vIw'>b'Faq$\"11%ph^Dj&=F37$$!1f EQl)*)GA'Faq$\"1-x2%>U))p\"F37$$!1NX_1-\\/fFaq$\"1rzyeTw\\:F37$$!1P$=5 nh4b&Faq$\"1k!QC\"px)Q\"F37$$!1%>\\!e0IL_Faq$\"1)*Ru*eO)[7F37$$!1$oZl^ HT*[Faq$\"1q1$H)o+06F37$$!1g'=A9!z'e%Faq$\"1=2n\"3+?!)*F*7$$!19.6Fqy]U Faq$\"1O`\\ZzP.&)F*7$$!1N%G6GMY$RFaq$\"14b#>%[P\\tF*7$$!1dVImN;/OFaq$ \"1ZIGX-f=iF*7$$!1>m,Q!o5G$Faq$\"1\"4'f+%)H#>&F*7$$!1([MG'p\"G%HFaq$\" 1tuXcE_1UF*7$$!1&>S`(4//$)pM$F*7$$!1Q)e_(z)QG#Faq$\"1/Rm :%RIc#F*7$$!1vMA]O\\`>Faq$\"1*3lUP?R)=F*7$$!1mJ%*yb*)\\;Faq$\"1A1PKAx[ 8F*7$$!1j6BGz$>I\"Faq$\"1>MT&zLuU)Faq7$$!1(z5Sd/s!**!#<$\"1bB!Q`*f\"*[ Faq7$$!1@#Q=Ax*)e'Fiy$\"1Cs=x9fn@Faq7$$!1]\"R&\\-,8MFiy$\"1vgy>$e?#eFi y7$F-F--%'COLOURG6&%$RGBGF-F-$\"*++++\"!\")-F$6$7S7$F($\"1$*Q1'R(=X\\! #J7$F/$\"1S+$[w=#feFiy7$F5$\"1Oh'3Y=r/#Faq7$F:$\"1W!pS`%HTZFaq7$F?$\"1 gQ^tk-l&)Faq7$FD$\"1Cr(\\@\"3Y8F*7$FI$\"1Z:Cc!H_*=F*7$FN$\"19u(Q*=4eDF *7$FS$\"1BI\"Rm#fTLF*7$FX$\"12-%oq&)F*7$F[p$\"1$=.U*) >1%)*F*7$F`p$\"1cbYsN/06F37$Fep$\"1]Qtc1Ib7F37$Fjp$\"1bZuI&)\\(Q\"F37$ F_q$\"1S^/UkFY:F37$Feq$\"1L7LJ(=2p\"F37$Fjq$\"1BX?\"oBF&=F37$F_r$\"1<< !y!Hw4?F37$Fdr$\"1T0)3[\"yv@F37$Fir$\"1uU$GD]&HBF37$F^s$\"1i8!fOBh\\#F 37$Fcs$\"1TbNNT:pEF37$Fhs$\"1;$z'*eY\">GF37$F]t$\"1'4,@ZB)zHF37$Fbt$\" 1$fIQ[uO9$F37$Fgt$\"1)HAf!y:,LF37$F\\u$\"1H?@TeB]MF37$Fau$\"1N>c(3B7h$ F37$Ffu$\"1-gD5M;^PF37$F[v$\"1I$pq6$*\\*QF37$F`v$\"1HH$=***z>SF37$Fev$ \"1m/D0Am\\TF37$Fjv$\"1\\u!e^i]E%F37$F_w$\"1&pra(49yVF37$Fdw$\"1\"RS*f ,x![%F37$Fiw$\"1_UNMxMzXF37$F^x$\"15R!ep,`m%F37$Fcx$\"15OVegpVZF37$Fhx $\"1\"\\tD'zg6[F37$F]y$\"1PHwwF7l[F37$Fby$\"1me/ics:\\F37$Fgy$\"1w>m/S 3^\\F37$F]z$\"1G\"G_3C$y\\F37$Fbz$\"19-oTz<%*\\F37$F-F+-Fhz6&FjzF-F[[l F--%+AXESLABELSG6$Q$phi6\"%!G-%*AXESSTYLEG6#%$BOXG-%%VIEWG6$;$!+Fjzq:! \"*F-%(DEFAULTG" 1 2 0 1 0 2 9 1 2 2 1.000000 45.000000 45.000000 0 }} }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 66 "Obviously the sum of the kinetic energies of the two masses (note " }{TEXT 274 1 "M" }{TEXT -1 1 "=" } {TEXT 275 1 "m" }{TEXT -1 44 ") is independent of phi, as it has to eq ual " }{TEXT 276 1 "m" }{TEXT -1 3 "/2*" }{TEXT 277 1 "v" }{TEXT -1 4 "0^2." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT 278 57 "The extreme cases correspond to the following situations :" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT 19 17 "phi= 0, theta=Pi/2" }{TEXT -1 37 ": the incident mass remains at rest (" } {TEXT 19 5 "KEm=0" }{TEXT -1 56 "), and the angle theta is irrelevant. The hit particle (" }{TEXT 273 1 "M" }{TEXT -1 151 ") moves in the fo rward direction with maximum kinetic energy. This represents a head-on collision that can be calculated in a one-dimensional geometry." }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT 19 18 "phi=-Pi/2 , theta=0" }{TEXT -1 57 ": the incident mass transfers no energy to th e hit mass (" }{TEXT 19 5 "KEM=0" }{TEXT -1 338 "), phi is irrelevant. This corresponds to the limit of a grazing collision when the particl es interact only very weakly. More interesting is the observation that before the limit is reached (small-angle projectile scattering) the h it particle recoils with an angle of almost 90 degrees, and picks up a small amount of kinetic energy only." }}{PARA 0 "" 0 "" {TEXT -1 0 " " }}{PARA 0 "" 0 "" {TEXT 19 21 "phi=-Pi/4, theta=Pi/4" }{TEXT -1 46 " : equal sharing of energy after the collision." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 46 "We are now ready to consi der the general case." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "res tart;" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 29 "En:=m/2*v0^2=m/2*v ^2+M/2*V^2;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#EnG/,$*&%\"mG\"\"\") %#v0G\"\"#\"\"\"#F)F,,&*&F(F-)%\"vGF,F-F.*&%\"MGF))%\"VGF,F-F." }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 39 "Momx:=m*v0=m*v*cos(theta)+M* V*cos(phi);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%%MomxG/*&%\"mG\"\"\"% #v0GF(,&*(F'\"\"\"%\"vGF(-%$cosG6#%&thetaGF(F(*(%\"MGF(%\"VGF(-F/6#%$p hiGF(F(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 36 "Momy:=0=m*v*sin( theta)+M*V*sin(phi);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%%MomyG/\"\"! ,&*(%\"mG\"\"\"%\"vGF*-%$sinG6#%&thetaGF*F**(%\"MGF*%\"VGF*-F-6#%$phiG F*F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 39 "sol:=solve(\{En,Mom x,Momy\},\{v,V,theta\});" }}{PARA 12 "" 1 "" {XPPMATH 20 "6#>%$solG6%< %/%\"VG\"\"!/%&thetaGF)/%\"vG%#v0G<%F'/F-,$F.!\"\"/F+%#PiG<%/F(,$*&*(% \"mG\"\"\"F.F;-%$cosG6#%$phiGF;\"\"\",&%\"MGF;F:F;!\"\"\"\"#/F-*&*&-%' RootOfG6#,,*$)%#_ZGFDF@F;*()-%$sinGF>FDF@F:F@FBF;!\"%*&FBF@F:F@FD*$)F: FDF@F2*$)FBFDF@F2F;F.F@F@FAFC/F+-%'arctanG6$,$*&*(FQF;FBF@F " 0 "" {MPLTEXT 1 0 15 "assign(sol[3]);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 2 "v; " }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*&*&-%'RootOfG6#,,*$)%#_ZG\"\"#\" \"\"\"\"\"*()-%$sinG6#%$phiGF,F-%\"mGF.%\"MGF.!\"%*&F6F-F5F-F,*$)F5F,F -!\"\"*$)F6F,F-F;F.%#v0GF.F-,&F6F.F5F.!\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 2 "V;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,$*&*(%\"mG\" \"\"%#v0GF'-%$cosG6#%$phiGF'\"\"\",&%\"MGF'F&F'!\"\"\"\"#" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 6 "theta;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#-%'arctanG6$,$*&*(-%$sinG6#%$phiG\"\"\"%\"MG\"\"\"-%$cosGF+F-F/- %'RootOfG6#,,*$)%#_ZG\"\"#F/F-*()F)F9F/%\"mGF-F.F-!\"%*&F.F/F " 0 "" {MPLTEXT 1 0 13 "KEM:=M/2*V^2;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$K EMG,$*&**%\"MG\"\"\")%\"mG\"\"#\"\"\")%#v0GF,F-)-%$cosG6#%$phiGF,F-F-* $),&F(F)F+F)\"\"#F-!\"\"F," }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 102 "Fo r fixed scattering angle phi we can explore the dependence of this kin etic energy on the mass ratio." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 33 "phi:=-Pi/4; v0:=10; m:=1; M:=r*m;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$phiG,$%#PiG#!\"\"\"\"%" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#v0G\"#5" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"mG\"\"\"" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"MG%\"rG" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 4 "KEM;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,$*&%\"rG\" \"\"*$),&F%\"\"\"F*F*\"\"#F&!\"\"\"$+\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "KEtot:=m/2*v0^2;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#> %&KEtotG\"#]" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 106 "We perform a sem ilog-plot 'by hand' and cover the range of mass ratios from 0.001 to 1 000 on the abscissa." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 37 "plo t(subs(r=10^s,KEM)/KEtot,s=-3..3);" }}{PARA 13 "" 1 "" {GLPLOT2D 641 236 236 {PLOTDATA 2 "6%-%'CURVESG6$7eo7$$!\"$\"\"!$\"1*)*4?*f+'*>!#=7$ $!1+++vq@pG!#:$\"1b'4$GN]&p#F-7$$!1++D^NUbFF1$\"1?!RQN:,]$F-7$$!1++]K3 XFEF1$\"1W>e$\\&*Qp%F-7$$!1++]F)H')\\#F1$\"13fTbzZ/jF-7$$!1++D'3@/P#F1 $\"1d2x9q8^%)F-7$$!1++Dr^b^AF1$\"1P8p!R3#36!#<7$$!1++D,kZG@F1$\"1!f\"Q Y\"RfY\"FM7$$!1++Dh\")=,?F1$\"1&3CJMT`&>FM7$$!1++DO\"3V(=F1$\"1=^kw9M, EFM7$$!1+++NkzViU C\"F1$\"1G'[p2&FM$\"1hPpD-*H)\\F`p7$$!1***\\(=K**zMFM$\"1h c'*)f#)>*\\F`p7$$!1-]P%[t!))=FM$\"1*GyR?Qw*\\F`p7$$!1b+++v`hHF-$\"1uVs t=%***\\F`p7$$\"1&*\\7`MSd8FM$\"1XI8w!z()*\\F`p7$$\"1&**\\ilg4,$FM$\"1 @v!3^'*R*\\F`p7$$\"1&*\\Pfy^kYFM$\"1vr#>-3c)\\F`p7$$\"1&***\\i]2=jFM$ \"1]>\"Q%yjt\\F`p7$$\"1&**\\(o%*=D'*FM$\"1#4H\\N+\"R\\F`p7$$\"1++](QIK H\"F`p$\"1ezH\\&y2*[F`p7$$\"1******\\4+p=F`p$\"1Z![Q%yXvZF`p7$$\"1**** \\7:xWCF`p$\"1/\\V\"z1Ri%F`p7$$\"1++v$\\>m1$F`p$\"1`(=F%)3^U%F`p7$$\"1 ,++vuY)o$F`p$\"1.-M+Dj'>%F`p7$$\"1++](G(*3L%F`p$\"1Y2B5oFPRF`p7$$\"1)* *****4FL(\\F`p$\"1i(\\:erAm$F`p7$$\"1)***\\P$>=g&F`p$\"1HJ.*=kaQ$F`p7$ $\"1)****\\d6.B'F`p$\"15Y'**3pu5$F`p7$$\"1***\\785%QoF`p$\"1$e]ccgD%GF `p7$$\"1++](o3lW(F`p$\"1wG!*e4y&e#F`p7$$\"1***\\iX)p@\")F`p$\"1J>tnO,9 BF`p7$$\"1*****\\A))oz)F`p$\"1baZ-CDf?F`p7$$\"1(***\\iid.%*F`p$\"1u-E1 4YY=F`p7$$\"1+++Ik-,5F1$\"1Qgb[')p\\;F`p7$$\"1+++D-eI6F1$\"1=zL!QdNG\" F`p7$$\"1++v=_(zC\"F1$\"1RK6Q6K75F`p7$$\"1+++b*=jP\"F1$\"1\"=?7,iNu(FM 7$$\"1++v3/3(\\\"F1$\"1)z$4d:P!)fFM7$$\"1++vB4JB;F1$\"16J#o^\"QUXFM7$$ \"1+++DVsYf#FM7$$\"1+++ !)RO+?F1$\"11`HA@)*e>FM7$$\"1++]_!>w7#F1$\"1Oj\\xIzo9FM7$$\"1++v)Q?QD# F1$\"1(4=152D5\"FM7$$\"1+++5jypBF1$\"1R(y\\Q$Rj%)F-7$$\"1++]Ujp-DF1$\" 1mE:l'*3YiF-7$$\"1+++gEd@EF1$\"1b[t(>avv%F-7$$\"1++v3'>$[FF1$\"1crY[Lj dNF-7$$\"1++D6EjpGF1$\"1%>-\\jKHp#F-7$$\"\"$F*$\"1))*4?*f+'*>F--%'COLO URG6&%$RGBG$\"#5!\"\"F*F*-%+AXESLABELSG6$Q\"s6\"%!G-%%VIEWG6$;F(F_bl%( DEFAULTG" 1 2 0 1 0 2 9 1 4 2 1.000000 45.000000 45.000000 0 }}}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 110 "We learn from the graph that the \+ equal-mass case is the most effective for energy transfer. If the mass ratio " }{TEXT 279 2 "r " }{TEXT -1 2 "= " }{TEXT 280 1 "M" }{TEXT -1 1 "/" }{TEXT 281 1 "m" }{TEXT -1 91 " is either small or large, the n the fraction of the kinetic energy transferred to the mass " }{TEXT 282 1 "M" }{TEXT -1 57 " in collisions with phi = -45 degrees becomes \+ very small." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 153 "The other variables that were determined looked somewhat clums y. A square root was not carried out to avoid case distinctions. With \+ the specification of " }{TEXT 283 1 "m" }{TEXT -1 5 " and " }{TEXT 284 1 "v" }{TEXT -1 43 "0 they are, of course, somewhat simplified:" } }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 2 "v;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,$*&-%'RootOfG6#,(*$)%#_ZG\"\"#\"\"\"\"\"\"!\"\"F.*$)% \"rGF,F-F/F-,&F2F.F.F.!\"\"\"#5" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "simplify(v);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,$*&-%'RootOfG 6#,(*$)%#_ZG\"\"#\"\"\"\"\"\"!\"\"F.*$)%\"rGF,F-F/F-,&F2F.F.F.!\"\"\"# 5" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "evalf(subs(r=1,%));" } }{PARA 11 "" 1 "" {XPPMATH 20 "6#$!+5y1rq!\"*" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 77 "Maple picks one of the roots, unfortunately the one wi th the negative sign..." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 90 "Given that a simple square root is at issue we conve rt the RootOf to a radical expression:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "v:=convert(v,radical);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"vG,$*&*$-%%sqrtG6#,&\"\"\"F,*$)%\"rG\"\"#\"\"\"F,F1F1,&F/F,F ,F,!\"\"\"#5" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 72 "To display the fr action of the total kinetic energy remaining with mass " }{TEXT 302 1 "m" }{TEXT -1 108 " after the collision for the special case of phi = \+ -45 degrees as a function of the mass ratio we calculate:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 36 "plot(subs(r=10^s,v)^2/v0^2,s=-3..3) ;" }}{PARA 13 "" 1 "" {GLPLOT2D 643 239 239 {PLOTDATA 2 "6%-%'CURVESG6 $7eo7$$!\"$\"\"!$\"1-*z+%*R+)**!#;7$$!1+++vq@pG!#:$\"1/prk\\/t**F-7$$! 1++D^NUbFF1$\"13;YY))*\\'**F-7$$!1++]K3XFEF1$\"1#=k]/hI&**F-7$$!1++]F) H')\\#F1$\"1TeW?_&p$**F-7$$!1++D'3@/P#F1$\"1$H_)H')[:**F-7$$!1++Dr^b^A F1$\"1o3$4;z\"*))*F-7$$!1++D,kZG@F1$\"1T=O&31M&)*F-7$$!1++Dh\")=,?F1$ \"1$f(oleY/)*F-7$$!1++DO\"3V(=F1$\"1)[NB&e')R(*F-7$$!1+++NkzVs52P9#*F-7$$!1+++&>iUC\"F1$\"1t80BQ#*z *)F-7$$!1++DhkaI6F1$\"1;z?&ecjr)F-7$$!1+++]XF`**F-$\"1RV9(=4DL)F-7$$!1 +++vL`!Q*F-$\"1mox;quX\")F-7$$!1++++Az2))F-$\"1\"H'H9-rWzF-7$$!1++Dc!e :9)F-$\"1vsm(eMPp(F-7$$!1++]7RKvuF-$\"1BR!*zx7EuF-7$$!1,+D1Qf&)oF-$\"1 Cdm!p+x<(F-7$$!1-+++P'eH'F-$\"1*fzGii8#pF-7$$!1++D1j$)[cF-$\"1\"e'3FbO NmF-7$$!1****\\7*3=+&F-$\"1;4Ol#f,N'F-7$$!1*****\\#eo&Q%F-$\"11SO_'yc3 'F-7$$!1)***\\PFcpPF-$\"1Q%)p$Rl\\$eF-7$$!1)**\\7$HqEJF-$\"1+\"pJc(y&f &F-7$$!1)****\\7VQ[#F-$\"1x.s2&Fbu$\"1PiIu(4q,&F- 7$$!1***\\(=K**zMFbu$\"1QV.,u,3]F-7$$!1-]P%[t!))=Fbu$\"16<-'zhB+&F-7$$ !1b+++v`hH!#=$\"1EcFE\"e++&F-7$$\"1&*\\7`MSd8Fbu$\"1ep'Q#4A,]F-7$$\"1& **\\ilg4,$Fbu$\"1![#>*[.g+&F-7$$\"1&*\\Pfy^kYFbu$\"1CG2y>R9]F-7$$\"1&* **\\i]2=jFbu$\"1[!)=c@OE]F-7$$\"1&**\\(o%*=D'*Fbu$\"1042X'**31&F-7$$\" 1++](QIKH\"F-$\"1W?q]9A4^F-7$$\"1******\\4+p=F-$\"1`>:c@aC_F-7$$\"1*** *\\7:xWCF-$\"1'4l&3K4w`F-7$$\"1++v$\\>m1$F-$\"1Z7Gd6*[d&F-7$$\"1,++vuY )o$F-$\"1'zf'*\\nL!eF-7$$\"1++](G(*3L%F-$\"1b#p(*=BF1'F-7$$\"1)******4 FL(\\F-$\"1Q-X=%GxL'F-7$$\"1)***\\P$>=g&F-$\"1po'4\"e`9mF-7$$\"1)**** \\d6.B'F-$\"1!RN+\"4`#*oF-7$$\"1***\\785%QoF-$\"1;%\\VVRu:(F-7$$\"1++] (o3lW(F-$\"1Br4T!>UT(F-7$$\"1***\\iX)p@\")F-$\"1q!oAL')fo(F-7$$\"1**** *\\A))oz)F-$\"1YX_(fZ2%zF-7$$\"1(***\\iid.%*F-$\"1E(RP4RN:)F-7$$\"1+++ Ik-,5F1$\"1jRW^8I]$)F-7$$\"1+++D-eI6F1$\"1$3i'>EW;()F-7$$\"1++v=_(zC\" F1$\"1hn)=')yw)*)F-7$$\"1+++b*=jP\"F1$\"1#)z())zVcA*F-7$$\"1++v3/3(\\ \"F1$\"1=1HWG'>S*F-7$$\"1++vB4JB;F1$\"1)o<$[=wX&*F-7$$\"1+++DVsY'=833u*F-7$$\"1+++!)RO+?F1$\"1p/x( y,T!)*F-7$$\"1++]_!>w7#F1$\"1m.D#p?J&)*F-7$$\"1++v)Q?QD#F1$\"1!>Q**G\\ (*))*F-7$$\"1+++5jypBF1$\"18-:mgO:**F-7$$\"1++]Ujp-DF1$\"1t%[L5Rv$**F- 7$$\"1+++gEd@EF1$\"1_E-eWU_**F-7$$\"1++v3'>$[FF1$\"1F`^mOUk**F-7$$\"1+ +D6EjpGF1$\"1!)4lt12t**F-7$$\"\"$F*$\"1+*z+%*R+)**F--%'COLOURG6&%$RGBG $\"#5!\"\"F*F*-%+AXESLABELSG6$Q\"s6\"%!G-%%VIEWG6$;F(F_bl%(DEFAULTG" 1 2 0 1 0 2 9 1 4 2 1.000000 45.000000 45.000000 0 }}}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 141 "Obviously, this is the complement to the previou s graph. Let us observe the corresponding scattering angle for the inc ident particle of mass " }{TEXT 285 1 "m" }{TEXT -1 1 ":" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 30 "theta:=convert(theta,radical);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%&thetaG-%'arctanG6$*&%\"rG\"\"\"*$-% %sqrtG6#,&\"\"\"F0*$)F)\"\"#F*F0F*!\"\"*&F*F**$-F-6#F/F*F4" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 33 "plot(subs(r=10^s,theta),s=-3..3);" }}{PARA 13 "" 1 "" {GLPLOT2D 644 260 260 {PLOTDATA 2 "6%-%'CURVESG6$7S 7$$!\"$\"\"!$\"0nomm'******!#=7$$!1+++vq@pG!#:$\"1yN,)4'R^8F-7$$!1++D^ NUbFF1$\"1vPm1#3iv\"F-7$$!1++]K3XFEF1$\"1D-WoZ-eBF-7$$!1++]F)H')\\#F1$ \"1*=;hcfA<$F-7$$!1++D'3@/P#F1$\"1zv!QLN;E%F-7$$!1++Dr^b^AF1$\"1VwvhOD .cF-7$$!1++D,kZG@F1$\"1f;EAw,RuF-7$$!1++Dh\")=,?F1$\"1a#ysP[B(**F-7$$! 1++DO\"3V(=F1$\"1U*>\"4\"obL\"!#<7$$!1+++NkzViUC\"F1$\"1qP[ei/#p&Ffn7$$!1++DhkaI6F1$ \"1S8$*3nH!R(Ffn7$$!1+++]XF`**!#;$\"1SHj#H&R25Fhp7$$!1++++Az2))Fhp$\"1 O*z1Lw$38Fhp7$$!1++]7RKvuFhp$\"1C=!3#Hqpi%>#))fQ^Fhp7$$!1)***\\i6:.8Fhp$\"1PQ^ /MpvjFhp7$$!1b+++v`hHF-$\"1OPsPf))>yFhp7$$\"1++](QIKH\"Fhp$\"15:q+,M@$ *Fhp7$$\"1****\\7:xWCFhp$\"1$Q#pJk2`5F17$$\"1,++vuY)o$Fhp$\"1GeHA$Hm; \"F17$$\"1)******4FL(\\Fhp$\"13519*[FE\"F17$$\"1)****\\d6.B'Fhp$\"1bcA [*RpL\"F17$$\"1++](o3lW(Fhp$\"1ZZ$QisER\"F17$$\"1*****\\A))oz)Fhp$\"1l JOPNjR9F17$$\"1+++Ik-,5F1$\"1!=_wSh8Z\"F17$$\"1+++D-eI6F1$\"11Q4%3**o \\\"F17$$\"1++v=_(zC\"F1$\"17)f;SfV^\"F17$$\"1+++b*=jP\"F1$\"1g.>&Hz(G :F17$$\"1++v3/3(\\\"F1$\"1(zWc*4(*Q:F17$$\"1++vB4JB;F1$\"1T$4un%*pa\"F 17$$\"1+++DVsYw7#F1$\"14'4(4EMj:F17$$\"1++v) Q?QD#F1$\"1;f?AAAl:F17$$\"1+++5jypBF1$\"1=R1e%Glc\"F17$$\"1++]Ujp-DF1$ \"1UX%=j`wc\"F17$$\"1+++gEd@EF1$\"1-ELphSo:F17$$\"1++v3'>$[FF1$\"19gNb 6,p:F17$$\"1++D6EjpGF1$\"1WH5BiWp:F17$$\"\"$F*$\"1I#GrK'zp:F1-%'COLOUR G6&%$RGBG$\"#5!\"\"F*F*-%+AXESLABELSG6$Q\"s6\"%!G-%%VIEWG6$;F(Fgz%(DEF AULTG" 1 2 0 1 0 2 9 1 4 2 1.000000 45.000000 45.000000 0 }}}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 21 "The equal-mass case (" }{TEXT 286 1 "s" } {TEXT -1 4 "=0, " }{TEXT 287 1 "r" }{TEXT -1 38 "=1) results in theta= Pi/4 as expected." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 16 "In the limit of " }{TEXT 291 2 "r " }{TEXT -1 2 "= " } {TEXT 289 1 "M" }{TEXT -1 1 "/" }{TEXT 290 1 "m" }{TEXT -1 16 " going \+ to zero (" }{TEXT 288 1 "s" }{TEXT -1 184 " large, negative), i.e., a \+ massive incident particle as compared to the hit particle, the scatter ing angle for the incident particle goes to zero (note that phi is fix ed at phi=-Pi/4)." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 16 "In the limit of " }{TEXT 294 2 "r " }{TEXT -1 2 "= " } {TEXT 292 1 "M" }{TEXT -1 1 "/" }{TEXT 293 1 "m" }{TEXT -1 20 " going \+ to infinity (" }{TEXT 295 1 "s" }{TEXT -1 323 " large, positive), i.e. , a light incident particle as compared to the hit particle, the scatt ering angle theta approaches Pi, i.e., reflection while the heavier ob ject exits at phi=-45 degrees. This includes the limit of a head-on co llision with perfect reflection, as the previous graphs showed that in the limit of large " }{TEXT 297 1 "r" }{TEXT -1 44 " no energy is tra nsferred to the heavy mass " }{TEXT 296 1 "M" }{TEXT -1 41 " (its exit angle phi becomes irrelevant)." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }} {PARA 0 "" 0 "" {TEXT -1 145 "Another interesting case to investigate \+ involves fixing the energy of the hit particle and asking for the allo wed range of scattering angles phi." }}{PARA 0 "" 0 "" {TEXT -1 0 "" } }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 32 "Finally we are ready to discuss \+ " }{TEXT 298 18 "Compton scattering" }{TEXT -1 1 "." }}{PARA 0 "" 0 " " {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 428 "The discussion is slig htly different to take into account the fact that photons are not clas sical massive particles. It was observed in the passage of light throu gh matter that some light (X rays in particular) was emitted with an i ncreased wavelength, i.e., reduced energy. The change in wavelength de pended on the scattering angle of the observed photons. Compton's expl anation is based on a corpuscular model for the photons." }}{PARA 0 " " 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 102 "The problem can b e set up as before, except that one needs expressions for photon energ y and momentum." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 55 "The photon momentum before the collision is labeled as " }{TEXT 303 1 "p" }{TEXT -1 88 "0 and given in terms of Planck's consta nt h, the frequency nu, and the speed of light c:" }}}{EXCHG {PARA 0 " > " 0 "" {MPLTEXT 1 0 8 "restart;" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "p0:=h*nu0/c;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p0 G*&*&%\"hG\"\"\"%$nu0GF(\"\"\"%\"cG!\"\"" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 49 "The momentum conservation law can be expressed as" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 38 "Momx:=p0=h*nu/c*cos(theta)+P *cos(phi);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%%MomxG/*&*&%\"hG\"\"\" %$nu0GF)\"\"\"%\"cG!\"\",&*&*(F(F+%#nuGF)-%$cosG6#%&thetaGF)F+F,F-F)*& %\"PGF)-F36#%$phiGF)F)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 37 "M omy:=0=h*nu/c*sin(theta)+P*sin(phi);" }}{PARA 11 "" 1 "" {XPPMATH 20 " 6#>%%MomyG/\"\"!,&*&*(%\"hG\"\"\"%#nuGF+-%$sinG6#%&thetaGF+\"\"\"%\"cG !\"\"F+*&%\"PGF+-F.6#%$phiGF+F+" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 211 "To formulate energy conservation we need to take into account the relativistic energy-momentum relationship (in the limit of high photo n energies the electron can be picking up a large amount of kinetic en ergy)." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 153 "The kinetic energy before the collision is rest energy of the ele ctron (it is assumed to be unbound, i.e., free, and at rest, we denote its rest mass as " }{TEXT 299 1 "M" }{TEXT -1 24 ") and the photon en ergy:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 25 "En:=h*nu0+M*c^2=h* nu+Eel;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#EnG/,&*&%\"hG\"\"\"%$nu0 GF)F)*&%\"MGF))%\"cG\"\"#\"\"\"F),&*&F(F0%#nuGF)F)%$EelGF)" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 105 "Before we can solve we need to express t he electron energy after the knock-out in terms of its rest mass " } {TEXT 300 1 "M" }{TEXT -1 24 " and its final momentum " }{TEXT 301 1 " P" }{TEXT -1 1 "." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 40 "En1:=s ubs(Eel=sqrt(M^2*c^4+P^2*c^2),En);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6# >%$En1G/,&*&%\"hG\"\"\"%$nu0GF)F)*&%\"MGF))%\"cG\"\"#\"\"\"F),&*&F(F0% #nuGF)F)*$-%%sqrtG6#,&*&)F,F/F0)F.\"\"%F0F)*&)%\"PGF/F0F-F0F)F0F)" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 39 "sol:=solve(\{Momx,Momy,En1\} ,\{nu,P,phi\});" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$solG6\"" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 41 "Matters are more complicated obvio usly..." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 97 "We can eliminate the electron emission angle phi by squaring the m omentum conservation equations:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 28 "ex1:=solve(Momx,P*cos(phi));" }}{PARA 11 "" 1 "" {XPPMATH 20 " 6#>%$ex1G*&*&%\"hG\"\"\",&%$nu0GF(*&%#nuGF(-%$cosG6#%&thetaGF(!\"\"F( \"\"\"%\"cG!\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 28 "ex2:=so lve(Momy,P*sin(phi));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$ex2G,$*&*( %\"hG\"\"\"%#nuGF)-%$sinG6#%&thetaGF)\"\"\"%\"cG!\"\"!\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "eq1:=ex1^2+ex2^2=P^2;" }}{PARA 11 " " 1 "" {XPPMATH 20 "6#>%$eq1G/,&*&*&)%\"hG\"\"#\"\"\"),&%$nu0G\"\"\"*& %#nuGF0-%$cosG6#%&thetaGF0!\"\"F+F,F,*$)%\"cG\"\"#F,!\"\"F0*&*(F)F,)F2 F+F,)-%$sinGF5F+F,F,*$)F:\"\"#F,F " 0 "" {MPLTEXT 1 0 19 "eq1:=simplify(eq1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$eq1G/*&*&)%\"hG\"\"#\"\"\",(*$)%$nu0GF*F+\"\"\"*(F/F 0%#nuGF0-%$cosG6#%&thetaGF0!\"#*$)F2F*F+F0F0F+*$)%\"cG\"\"#F+!\"\"*$)% \"PGF*F+" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 29 "sol:=solve(\{En 1,eq1\},\{P,nu\});" }}{PARA 12 "" 1 "" {XPPMATH 20 "6#>%$solG<$/%#nuG, $*&*(%$nu0G\"\"\"%\"MGF,)%\"cG\"\"#F,F,,(*(%\"hG\"\"\"F+F4-%$cosG6#%&t hetaGF4F4*&F3F,F+F,!\"\"*&F-F4F.F,F:!\"\"F:/%\"PG*&*(-%'RootOfG6#,4*$) %#_ZGF0F,F4*()F3F0F,)F+F0F,)F5F0F,F:*(FIF,FJF,F5F,F0*,F3F,F+F,F5F,F-F, F.F,\"\"%*&FIF,FJF,F:**F3F,F+F,F-F,F.F,!\"#*&)F-F0F,)F/FNF,FQ*,F-F,F.F ,FKF,F3F,F+F,FQ*(FSF,FTF,F5F,F0F4F+F,F3F,F,*&F/\"\"\"F1\"\"\"F<" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "assign(sol);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 3 "nu;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,$*&*(%$nu0G\"\"\"%\"MGF')%\"cG\"\"#F'F',(*(%\"hG\"\"\"F&F/-%$cosG6 #%&thetaGF/F/*&F.F'F&F'!\"\"*&F(F/F)F'F5!\"\"F5" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 226 "If we are just interested in the wavelength shift a s a function of photon scattering angle, we do the following. First we make use of the relationship lambda*nu=c to obtain an expression for the scattered photon's wavelength:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 17 "eq2:=nu=c/lambda;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6# >%$eq2G/,$*&*(%$nu0G\"\"\"%\"MGF*)%\"cG\"\"#F*F*,(*(%\"hG\"\"\"F)F2-%$ cosG6#%&thetaGF2F2*&F1F*F)F*!\"\"*&F+F2F,F*F8!\"\"F8*&F-F*%'lambdaGF: " }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 36 "Now we substitute the frequen cy nu0:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 29 "eq3:=subs(nu0=c/ lambda0,eq2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$eq3G/,$*&*&)%\"cG \"\"$\"\"\"%\"MGF,F,*&%(lambda0G\"\"\",(*&*(%\"hG\"\"\"F*F5-%$cosG6#%& thetaGF5F,F/!\"\"F5*&*&F4F,F*F,F,F/F:!\"\"*&F-F5)F*\"\"#F,F=\"\"\"F:F= *&F*F,%'lambdaGF:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "eq3:=s implify(eq3);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$eq3G/,$*&*&)%\"cG \"\"#\"\"\"%\"MGF,F,,(*&%\"hG\"\"\"-%$cosG6#%&thetaGF1F1F0!\"\"*(F-F1F *F1%(lambda0GF1F6!\"\"F6*&F*F,%'lambdaGF9" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 146 "The wavelength shift Delta is given by subtracting the o riginal wavelength lambda0 from lambda; the latter is obtained by isol ating lambda in eq3." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 43 "Del ta:=simplify(solve(eq3,lambda)-lambda0);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%&DeltaG,$*&*&%\"hG\"\"\",&!\"\"F)-%$cosG6#%&thetaGF)F)\"\"\"*& %\"MG\"\"\"%\"cG\"\"\"!\"\"F+" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 331 "The wavelength shift Delta does not depend on the original wavelength lambda0 and is given as a multiple of a natural length scale for the \+ electron, namely the Compton wavelength of the electron h/(M*c). If w e factor out this unit, the wavelength shift as a function of the phot on scattering angle is given in the following graph:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 31 "plot(1-cos(theta),theta=0..Pi);" }}{PARA 13 "" 1 "" {GLPLOT2D 648 302 302 {PLOTDATA 2 "6%-%'CURVESG6$7S7$\"\"!F (7$$\"1fD2LzxZo!#<$\"1jbD!3(oVB!#=7$$\"1Npx*G*f!G\"!#;$\"1%4#fcIZ)=)F/ 7$$\"15@exGm]>F3$\"1'o-bppn.PmL\"F37$$\"1PRr4) 3T*eF3$\"1c1ZAqJ(o\"F37$$\"1#[)yykYxlF3$\"1JmUr?G'3#F37$$\"1s'ocGo$zrF 3$\"1a'=I[a$oCF37$$\"1Q0;gr'p&yF3$\"1H)\\!*eV5$HF37$$\"1GMt?$[t`)F3$\" 1yO#yct#GMF37$$\"1#p30k@I>*F3$\"1Me*\\\"zCORF37$$\"1S7\\HeV)y*F3$\"1,4 \"eCu,U%F37$$\"1$[))*)3W'\\5!#:$\"1qZ^\"e-7-&F37$$\"1'[@XS@'46Fdp$\"10 chwS**\\bF37$$\"19w$3G*Qz6Fdp$\"1I0(4s0^='F37$$\"1%3*3tc9T7Fdp$\"1*H)e x[(Gw'F37$$\"1y0DBA!*38Fdp$\"1L9uwY*3T(F37$$\"1kE.#[AMP\"Fdp$\"1:P.$e^ !R!)F37$$\"1a@X.EuS9Fdp$\"1\"Rza(e7.()F37$$\"1WF)**[jD]\"Fdp$\"14jhj4? =$*F37$$\"1hw\"ymX#p:Fdp$\"1B?W;M\\%)**F37$$\"1xM!*4(4&Q;Fdp$\"1nf]\\; mn5Fdp7$$\"1DL:iU!))p\"Fdp$\"14GKJ'ew7\"Fdp7$$\"1)R1/.CRw\"Fdp$\"1VLS% QH>>\"Fdp7$$\"1Id)H7*>J=Fdp$\"1%pG#*ypuD\"Fdp7$$\"1fb7wY,(*=Fdp$\"1?E@ =JY?8Fdp7$$\"1N5'zg%pg>Fdp$\"1va[KV4!Q\"Fdp7$$\"1pJ8:.SJ?Fdp$\"1V]@J#* [W9Fdp7$$\"1+2zPD$\\4#Fdp$\"1EbZg`Y+:Fdp7$$\"1=!fhumF;#Fdp$\"1^xSVs*zb \"Fdp7$$\"1bk3@YBCAFdp$\"1^)4N**>zg\"Fdp7$$\"1/bFdp7$$\"1/0LMNh6GFdp$\"1-1e4\"\\g %>Fdp7$$\"1$oUX107)GFdp$\"1tF%RE!Hm>Fdp7$$\"146xe&[M%HFdp$\"18w?,OV!)> Fdp7$$\"1.6)e58)4IFdp$\"1D8mL'H8*>Fdp7$$\"1t2RXCLtIFdp$\"1hKXw6n(*>Fdp 7$$\"1++X]EfTJFdp$\"\"#F(-%'COLOURG6&%$RGBG$\"#5!\"\"F(F(-%+AXESLABELS G6$Q&theta6\"%!G-%%VIEWG6$;F($\"+aEfTJ!\"*%(DEFAULTG" 1 2 0 1 0 2 9 1 4 2 1.000000 45.000000 45.000000 0 }}}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 192 "The wavelength shift acquires a maximum in the backward direct ion. The maximum inelasticity equals twice the Compton wavelength of t he particle that has been hit (in our case a free electron)." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 74 "In the forward \+ direction the photons pass through without energy transfer." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 96 "It is useful to obtain an idea about the length scale of the Compton wavelength for a n electron:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "lambda[C]:=h /(M*c);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%'lambdaG6#%\"CG*&%\"hG\" \"\"*&%\"MG\"\"\"%\"cG\"\"\"!\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 57 "h:=6.63*10^(-34)*_N*_m*_s; #Planck's constant in SI u nits" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"hG,$*(%#_NG\"\"\"%#_mGF(%# _sGF($\"++++Im!#V" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 46 "c:=3.* 10^8*_m/_s; # speed of light in SI units" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"cG,$*&%#_mG\"\"\"%#_sG!\"\"$\"*++++$\"\"!" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 49 "M:=9.11*10^(-31)*_kg; # electron mass in \+ SI units" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"MG,$%$_kgG$\"++++5\"*! #S" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 10 "lambda[C];" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,$*&*&%#_NG\"\"\")%#_sG\"\"#\"\"\"F+%$_kgG! \"\"$\"+)f0fU#!#@" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "subs(_ N=_kg*_m/_s^2,%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,$%#_mG$\"+)f0fU# !#@" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 409 "Thus the maximum waveleng th shift that a free electron can provide equals approximately 5*10^(- 12) m, or 0.05 Angstroms, or 5 picometers. To put this in relation wit h the photon wavelengths we note that hard X rays have wavelengths tha t are thousands of times shorter than those of visible light (0.1 nm v s 450-700 nm, 1 Angstrom = 0.1 nm). For hard X rays the wavelength shi ft thus reaches the percent range." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }} {PARA 0 "" 0 "" {TEXT -1 417 "We conclude that soft photons can backsc atter from electrons without appreciable energy loss, while hard photo ns can transfer a sizable amount of energy in a backscattering process . Of course, matters are in reality more complicated: soft photons can excite electrons to undergo transitions between bound states. It is j ust the consideration of the kinematics of elastic scattering that lea ds to the above conclusion." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}}{MARK "85 1 0" 0 }{VIEWOPTS 1 1 0 1 1 1803 }