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Abstract
The Schrödinger equation for the H+

2 ion is solved in prolate spheroidal coordinates using the
pseudospectral method. The Stark resonance parameters for the two lowest states of the ion
have been determined by adding a complex absorbing potential to the Hamiltonian. The
localized electron densities for both (lower and upper) states are obtained to provide
explanations for structures seen in the ionization rate as a function of internuclear separation.
The Riss–Meyer iterative and Padé extrapolation methods are applied to obtain highly accurate
values for the resonance parameters, which are compared to previous results.

(Some figures may appear in colour only in the online journal)

1. Introduction

The study of dissociative ionization of diatomic molecules in
intense laser fields has been carried out both experimentally
[1–9] and theoretically [10–14] following the pioneering
theoretical work of [15]. The simplest diatomic molecular
ion H+

2 is a prototype system which can be used to
understand intense-field phenomena. For the first excited
state (which in the field-free case has ungerade symmetry),
the ionization rate as a function of internuclear separation
R shows maxima at some critical separations beyond
the equilibrium separation. This enhanced ionization at
some larger internuclear separations has been observed
experimentally [5, 9] and was discussed on the basis of
numerical calculations [10]. In the case of low-frequency ac
fields and in the static (dc) field limit, explanations were given
for this phenomenon [10–13].

In the presence of an external electric field, the two-centre
potential experienced by the electron is distorted: the outer
edge of one well is raised, while the outer edge of the other
well is lowered, and the reflection symmetry of the electronic
potential is destroyed. The lowest gerade and ungerade states
of the ion which are nearly degenerate at large R in the absence
of the field are strongly split; the lower state remains in the
deeper well, and the other ‘upper’ state is localized in the upper
well.

Zuo and Bandrauk [10] observed that the over-the-
barrier mechanism is the main reason for the peak in the
ionization rate for the upper state as R is increased. Mulyukov
et al [12] extended the argument using a somewhat different
interpretation for this peak: their argument is based on the
curves of the real and imaginary parts of the quasi-energy for
varying R, which is due to the mixing of the upper state with
energetically nearby highly excited states that are localized
in the lower well. Chu and Chu [13] argued that the charge-
resonance effect and multiphoton transitions to the excited
electronic states represent the main mechanism responsible for
the enhanced ionization phenomenon. In addition, Plummer
and McCann [11] reasoned on the basis of localized electron
density pictures of the upper resonance state that the critical
distances validate a Coulomb explosion model [10, 16], while
electron localization and simple over-the-barrier models of
electron release are not appropriate mechanisms to explain
this phenomenon. Bandrauk and Lu [17] have used time-
dependent Schrödinger equation calculations to explore the dc
Stark problem of H+

2 in the presence of an additional magnetic
field. Their reported findings and interpretations for the pure
Stark problem are also precursors to this work.

In this paper, we report on resonance calculations for
the lower and upper states of H+

2 in the static electric field
which are obtained using the complex absorbing potential

0953-4075/13/085004+08$33.00 1 © 2013 IOP Publishing Ltd Printed in the UK & the USA

http://dx.doi.org/10.1088/0953-4075/46/8/085004
mailto:tsog218@yorku.ca
http://stacks.iop.org/JPhysB/46/085004


J. Phys. B: At. Mol. Opt. Phys. 46 (2013) 085004 Ts Tsogbayar and M Horbatsch

(CAP) method for the varying internuclear distance R to
complement previous work [10–14]. To obtain more accurate
values of the resonance parameters, the Riss–Meyer iterative
method [18] and the Padé approximation and extrapolation
to η = 0 [19–21] were implemented in analogy to the
computationally more restricted work of Mulyukov et al
[12]. We also show probability densities for both states to
support the interpretation of why the ionization rate peaks at
particular internuclear separations for two choices of strong-
field parameters. This work is restricted to the case where the
dc field is aligned with the internuclear axis. This restriction is
not considered to be severe, since the H+

2 molecule will align
prior to ionization [1, 22].

The paper is organized as follows. In section 2, we
discuss the fundamental procedures for the determination of
both bound and resonance states for the two-centre molecular
system with and without the external electric field. In
section 3, we present and discuss our results.

2. Theory

2.1. Bound-state system

The Coulomb two-centre problem for one electron can
be solved analytically [23–25]. The field-free electronic
Hamiltonian of the H+

2 molecule can be written in atomic
units as

H = −1

2
∇2

r − 1∣∣r + R
2 ez

∣∣ − 1∣∣r − R
2 ez

∣∣ , (1)

where r is the electron position vector and R is the internuclear
separation.

We transform r to prolate spheroidal coordinates μ, ν and
ϕ, which are related to the Cartesian coordinates x, y and z as
follows:

x = R

2

√
(μ2 − 1)(1 − ν2) cos ϕ, (2)

y = R

2

√
(μ2 − 1)(1 − ν2) sin ϕ, (3)

z = R

2
μν, 1 � μ < ∞,−1 � ν � 1, 0 � ϕ � 2π. (4)

The kinetic energy operator and the Coulomb interaction are
written as

−1

2
∇2

r = −1

2

4

R2(μ2 − ν2)

(
∂

∂μ

[
(μ2 − 1)

∂

∂μ

]

+ ∂

∂ν

[
(1 − ν2)

∂

∂ν

]
+ μ2 − ν2

(μ2 − 1)(1 − ν2)

∂2

∂ϕ2

)
, (5)

V (μ, ν) = − 4μ

R(μ2 − ν2)
. (6)

The wavefunction can now be expressed in a separable form

�(μ, ν, ϕ) = ψm(μ, ν) eimϕ, (7)

and separate eigenvalue problems for different |m| values are
obtained:

− 1

2

4

R2(μ2 − ν2)

[
∂

∂μ

[
(μ2 − 1)

∂

∂μ

]
+ ∂

∂ν

[
(1 − ν2)

∂

∂ν

]

− m2

μ2 − 1
− m2

1 − ν2

]
ψm − 4μ

R(μ2 − ν2)
ψm = Eψm.

(8)

Because the solution for equation (8) is found analytically
in terms of Legendre polynomials, it is natural to employ a
Legendre-based pseudospectral method. This follows since
the zeros of the Legendre polynomials are more densely
distributed near ν = ±1 [26, 27]. In this work, we will only
consider 	 electronic states (|m| = 0, no ϕ dependence);
therefore, we will omit the subscript m from now on.

In the pseudospectral method, we approximate ψ(μ, ν)

by ψNμ,Mν
(μ, ν):

ψ(μ, ν) ≈ ψNμ,Mν
(μ, ν)

=
Nμ∑
i=0

Mν∑
j=0

φ(μi, ν j)gi[x(μ)]g j[y(ν)]. (9)

The independent variables μ, ν are transformed into x, y. For
our purposes, it is convenient to keep ν = y, since ν ∈ [−1, 1].
However, μ is mapped according to

μ(x) = 1 + (1 + x)

2
(b − 1), (10)

where x ∈ [−1, 1] and b is a mapping range parameter, which
defines the size of the elliptic region in which the problem is
solved (typically: b = 20 au).

Both cardinal functions gi[x(μ)], g j[y(ν)] are defined as
[13, 26, 27]

gi(x) = − 1

Nμ(Nμ + 1)PNμ
(xi)

(1 − x2)P′
Nμ

(x)

x − xi
, (11)

g j(y) = − 1

Mν (Mν + 1)PMν
(y j)

(1 − y2)P′
Mν

(y)

y − y j
. (12)

We have chosen the Legendre Gauss–Lobatto points which
take into account both points x0 = y0 = −1 and xNμ

= yMν
=

1, and the internal points are determined by the roots of the
first derivatives of the Legendre polynomials PNμ

and PMν
with

respect to x and y, respectively,

P′
Nμ

(xi) = 0, P′
Mν

(y j) = 0. (13)

The cardinal functions have the following unique properties
which make the matrix calculation easy:

gi(xi′ ) = δi,i′ , (14)

g j(y j′ ) = δ j, j′ . (15)

After the transformation, the two-dimensional discretized
eigenvalue problem (equation (8) to be satisfied exactly at
grid points μi′ , ν j′ ) can be implemented directly:

Nμ∑
i′=0

Mν+1∑
j′=0

[
− 1

2
Ti j;i′ j′ − 4

R
μiδii′δ j j′

]
φi′ j′

= E
(
μ2

i − ν2
j

)
δii′δ j j′φi j, (16)

Ti j;i′ j′ = 4

R2

[
T (μ)

ii′ δ j j′ + T (ν)
j j′ δii′

]
. (17)

Here, the partial matrices T (μ)

ii′ , T (ν)
j j′ are related to the

coordinates μ and ν, respectively, and are defined as follows:

Tii′ = (
μ2

i − 1
) (

2

b − 1

)2

dμ

ii′d
μ

ii′ + 2μi

(
2

b − 1

)
dμ

ii′ , (18)

Tj j′ = (
1 − ν2

j
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ν
j j′ − 2ν jd

ν
j j′ . (19)
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(a) (b)

Figure 1. The ionization rates (in fs−1) for varying R for the lower (a), and the upper (b) states for H+
2 in F = 0.0533 au. Curves: present

results, red crosses: Chu et al [13], green crosses: Plummer and McCann [11].

Table 1. Some solutions for the 1σg state of H+
2 at R = 2.0 au and

a = 1, b = 20.

Nμ Mν E0 〈r2〉 〈Q〉
12 10 −1.102 363 088 395 2.394 521 797 0.469 280 805
24 10 −1.102 634 214 495 2.394 529 332 0.469 351 782
Exact −1.102 634 214 495 2.394 529 332 0.469 351 782
[28]

The matrices dμ

ii′ and dν
j j′ are the first-order differentiation

matrices using the Legendre Gauss–Lobatto points x(μi) and
y(ν j), and can be found in a simple closed form [26, 27].

Our approach is very similar to that implemented in [13].
However, instead of using the variational symmetrized method,
we employ a direct collocation scheme in equations (16)–(19).

In table 1, we show the eigenenergy of the ground state
and expectation values of r = (R/2)

√
(μ2 + ν2 − 1) and

Q = (3z2 − r2)/2 as a function of the grid parameters Nμ

and Mν at R = 2.0 au. The collocation method gives excellent
results for the moderate values of Nμ and Mν .

2.2. Stark-resonance Hamiltonian and complex absorbing
potential method

The Stark Hamiltonian for the internuclear axis aligned
with the field (of strength F) written in prolate spheroidal
coordinates is given as

Hres = −1

2
∇2 − 4μ

R(μ2 − ν2)
+ F

R

2
μν. (20)

To avoid the calculation of outgoing waves, we add an
artificial complex absorbing potential to this Hamiltonian. One
has to choose this complex absorbing potential only for the
coordinate μ:

H = Hres − iηW = −1

2
∇2 − 4μ

R(μ2 − ν2)

+ F
R

2
μν − iηW, W (μ) = 
(μ − μc)(μ − μc)

2,

(21)

where 
 is the Heaviside step function, η is a small positive
parameter and μc determines the ellipse, outside of which the
CAP dampens the outgoing wave in the asymptotic region.

This means that the eigenfunction of the resonance state can
be solved for in a square-integrable basis, that is, one solves
an eigenvalue problem to find complex energy eigenvalues,
whose real part yields the resonance position, and the inverse
of the imaginary part is associated with the lifetime of that
state. While using a finite basis set, ideally we want η to be
small to have a small artefact. However, when the parameter η

tends to zero, the computational representation error increases.
Thus, we want η to be not too small to have an easier or more
accurate calculation. Then, we want to remove the artefact
due to the CAP. This can be done by the iterative correction
method of Riss and Meyer [18], or by a Padé extrapolation
method [19–21]. Following [18], we have

E (n) = E (n)(η̃) = Efb(η̃) +
n∑

j=1

(−η̃) j

j!

d jEfb

dη j

∣∣∣∣
η=η̃

, (22)

where η̃ is an optimal value found by the condition [18]∣∣∣∣ ηn+1

(n + 1)!

dn+1Efb

dηn+1

∣∣∣∣
η=η̃

= min, n = 0, 1, 2, 3. (23)

Here, Efb stands for finite-basis eigenvalues calculated on the
η-grid.

Following equation (5) in [21], (cf [19]) a Padé
approximant for Efb(η̃) is obtained from

EPadé(η) =
∑N1

i=0 piη
i

1 + ∑N1+1
j=1 q jη j

, (24)

where pi and q j are complex coefficients, and Np =
2(N1 + 1) is the number of points used in the approximant.
We found that Np = 8 yielded reasonable extrapolations
to η = 0.

The discretization procedure for the complex Hamiltonian
equation (21) is analogous to the Hermitian case discussed in
the preceding subsection.

3. Results and discussion

In figure 1, we show the ionization rates for the lower and upper
states as a function of internuclear separation R for the field
strength of F = 0.0533 au. The lower state shown in panel (a)
displays the monotonic behaviour where the small rate at the
natural separation of R = 2 au rises gradually with R because

3
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Figure 2. Electronic potential and real parts of quasienergies for the lower and upper states (a) and contour plots of log |ψ |2 for the lower (b)
and upper (c) states for H+

2 at R = 4 au and F = 0.0533 au.

Table 2. The calculated dc widths �low and �up of the lower and upper states of H+
2 in F = 0.0533 au using the stabilization method (SM),

Padé extrapolations (PE), and the order (n = 3) Riss–Meyer scheme. Also shown are the earlier calculations of Zuo and Bandrauk [10],
Mulyukov et al [12] and Chu and Chu [13]: the stablilization results (SM) are equivalent to the (n = 0) RM results, and the Padé
extrapolation is based on complex eigenenergies calculated directly from the non-Hermitian matrix problem for η-values not far from the
SM result ηSM (η > ηSM).

R = 6 au R = 9 au

�low(au) �up(au) �low(au) �up(au)

[10] 2.2(−6) 9.8(−4)

[12] 5.69(−6) 1.87(−3)
[13] 5.692(−6) 1.873(−3)

SM 5.645 17(−6) 1.870 80(−3) 2.958 14(−5) 5.204 57(−3)
PE 5.692 38(−6) 1.873 34(−3) 2.970 75(−5) 5.206 67(−3)
RM (n = 3) 5.692 38(−6) 1.873 34(−3) 2.970 75(−5) 5.206 67(−3)

R = 10 au R = 14 au
�low(au) �up(au) �low(au) �up(au)

[10] 1.3(−5) 1.5(−3) 2.5(−5) 2.8(−4)
[12] 3.92(−5) 2.20(−3) 7.30(−5) 6.78(−4)
[13] 3.922(−5) 2.197(−3) 7.305(−5)a 6.778(−4)

SM 3.896 99(−5) 2.197 47(−3) 7.304 87(−5) 6.778 81(−4)
PE 3.922 55(−5) 2.196 79(−3) 7.305 23(−5) 6.778 27(−4)
RM (n = 3) 3.922 55(−5) 2.196 79(−3) 7.305 23(−5) 6.778 27(−4)

a Reference [13] shows actually 7.305(−6) which is likely a misprint.

the tunnelling barrier is easier to penetrate, as will be shown
in subsequent figures. For the upper state, the much larger
ionization rate is non-monotonic and shows strong maxima at
R ≈ 5.5 au and at R ≈ 9 au.

In the latter graph, we show how our results compare with
the data of Chu et al [13] and Plummer and McCann [11].
Our data are in excellent agreement with those at small and
intermediate R, and confirm the results of [13] at large R. Our
extrapolation and higher order Riss–Meyer results enable us
to reach higher accuracy than Chu et al and are presented in
table 2.

To understand the intriguing behaviour of the upper-state
ionization rate, we show plots that indicate the cross section
through the potential along the internuclear axis, and also
density plots for the resonance states for a few internuclear
separations. In figure 2(a), we observe on the basis of the
eigenenergies how the lower state is trapped efficiently by the
two-centre potential, while the upper state is technically above
the potential barrier (shown here just along the internuclear
axis). The density plots in parts (b) and (c) of the figure display
some preferential localization, as well as a still apparent nodal

structure in the upper state. Nevertheless, both states can still
be thought of as exploring the full two-centre potential. In
the following, we emphasize the behaviour found for the
upper state, since the lower state follows a simple pattern:
its tunnelling barrier decreases gradually with separation R
resulting in a monotonic increase in the ionization rate. The
upper state, on the other hand, exhibits de-localization and
a shift in resonance position as compared to the barrier
heights.

In figure 3, we move to the situation where the upper state
has a maximum in the ionization rate. The potential barrier
between the two protons increases, while the outer potential
barrier is lowered. The upper-state energy eigenvalue moves
up with increasing R, which also results in a big increase of the
ionization rate. The density plots reveal further localization for
the central parts of the resonance wavefunction. The distant
parts describe outgoing electron flux. Their relative weight is
increased due to the broadening of the resonance state, and the
upper state begins to lose its nodal structure.

Figure 4 shows what happens at R = 7 au, where the
upper-state ionization rate has a pronounced minimum, but

4
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Figure 3. The same as in figure 2, but for R = 5.5 au and F = 0.0533 au.
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Figure 4. The same as in figure 2, but for R = 7 au and F = 0.0533 au.

is still much larger than at R = 4 au. Panel (a) shows that
the energetic conditions are less favourable for the upper state
than in the R = 5.5 au case, because the inner barrier has risen
faster than the energy eigenvalue. The separation of the bound
parts of the wavefunctions of the lower and upper resonance
states is now very distinct. The outflow of ionized electron
density is more de-localized than for smaller separations.

In figure 5, we illustrate the situation for R = 9 au, where
the maximum in the upper-state ionization rate is achieved (at
more than twice the level of the first maximum). The energy
diagram shows that the inner barrier is catching up with the
rising upper-state eigenvalue. From the density plot, we can
deduce that diffractive scattering is happening from a well-
localized bound upper state (note that the lower state is very
well confined in the left well), with sideways scattering and
forward scattering being the preferred pathways for electron
emission.

Further increases in internuclear separation (figure 6
shows the situation for R = 14 au) result in an increased
inner barrier height for the upper state. Thus, its ionization
rate remains relatively low. The density pattern indicates more
diffractive electron emission with less flow in the direction of
the internuclear axis.

In order to understand whether these findings are
universal, it is useful to consider other field strength values. We
have carried out a detailed study of the case of F = 0.04 au.

The ionization rates for lower and upper states are shown in
figures 7(a) and (b), respectively. The upper-state ionization
rate curve again has two maxima with an almost 2:1 ratio for
the peak heights. Their positions are shifted to R ≈ 7.3 au
and R ≈ 11.2 au, respectively. As demonstrated in figure 8
for R ≈ 9.25 au, the minimum in the ionization rate for the
upper state occurs when the eigenvalue is ‘caught’ by the rising
potential barrier. Interestingly, for larger separations the barrier

keeps rising, but the system ionizes efficiently by avoiding this
region with more sideways electron emission. When going to
larger separations (R > 13 au), however, the trapping of the
upper state becomes efficient. These findings mostly confirm
the conclusions drawn by Plummer and McCann on the basis of
complex scaling calculations using an algebraic basis function
representation.

We now turn to the problem of a more accurate
determination of resonance parameters. While this may be
considered a somewhat academic issue, we feel that the
hydrogen molecular ion is a fundamental system for which
it is useful to have precise benchmark values of complex
eigenenergies. In order to reach higher accuracy, one needs
to investigate two aspects of the problem. On the one hand, the
solution of the discretized problem needs to be analysed with
respect to the parameters defining the discretization. We will
not report on this convergence study, but claim that we have
reached the continuum limit (by careful analysis of how the
numbers vary with respect to the basis size). On the other hand,
there is the issue that analytic continuation methods introduce
the artefact of complex scaling or complex absorption. It is
this second issue for which we show some detailed results.

There are two main methods of how to deal with removing
such artefacts. The Riss–Meyer method (equations (22) and
(23)) is a perturbation-theory-based technique to remove the
effects of the complex absorber order by order. Extrapolation
of complex eigenvalue trajectories as a function of the CAP
strength parameter η is a more direct method, but it requires
a careful analysis to ensure that the eigenvalues used in the
extrapolation are not contaminated by limitations imposed
by the discretization. In principle, by making use of a CAP
for which absorption sets in at large distances (analogous
to exterior scaling), and where the strength parameter is
chosen to be small, one has to represent (outgoing) oscillatory

5
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Figure 5. The same as in figure 2, but for R = 9 au and F = 0.0533 au.
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Figure 6. The same as in figure 2, but for R = 14 au and F = 0.0533 au.

(a) (b)

Figure 7. The ionization (in fs−1) rates for varying R for the lower (a) and the upper (b) states for H+
2 in F = 0.04 au. Green crosses: results

of Plummer and McCann [11].
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Figure 8. The same as in figure 2, but for R = 9.25 au and F = 0.04 au.

solutions at intermediate distances. If one is not careful, then
the discretization method itself prevents the (steady) outflow
of density, and one obtains artificial results.

In figure 9(a), we show four basic methods to extract
information from the complex eigenvalue trajectories. Shown

as red diamonds are the original finite-basis matrix eigenvalues
Efb near the stabilization value ηst (red cross). For η-values
less than this stabilization value, the trajectory displays erratic
behaviour, since the numerical method cannot handle the
demand to compute an outgoing oscillatory solution. When

6
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(a) (b)

Figure 9. The η-trajectories for E (0) (red diamonds), E (1) (blue diamonds), E (2) (magenta diamonds), and E (3) (black diamonds) for the
upper state of the H+

2 ion, and the red, blue, magenta, black and green crosses are for E (0)(η̃(0) ), E (1)(η̃(1) ), E (2)(η̃(2) ), E (3)(η̃(3) ), and the
Padé extrapolated values (end point of the green line), respectively. The computational parameters for the upper state at R = 9 au are
N = 110, M = 14, μc = 2.2. The electric field strength is F = 0.005 33 au.

using Np = 8 accurate eigenvalues from η > ηst, a Padé
approximation equation (24) is calculated, and this functional
form is extrapolated to η = 0. This analytic η-trajectory is
shown as a green curve.

Also shown in figure 9(a) are results from the first three
orders n = 1, . . . , 3 of the Riss–Meyer iterative correction
scheme (equations (22) and (23)). The trajectories E (n)(η) are
shown parametrically, and it is evident that on the scale of
the graph they have accumulation points equation (23) very
close to each other, and that the complex energy values at
the accumulation points are very close for n = 1, . . . , 3, but
deviate from the stabilization point (n = 0). The proximity to
the Padé extrapolation result is also evident.

A magnification of the region close to the n = 1, . . . , 3
accumulation points is shown in figure 9(b). The accumulation
points given by equation (23) are marked by crosses and
are coinciding with many data points that fall on top of
each other. With increasing order n, the data are based
on Efb(η) values calculated at larger η. For n = 1 (blue
symbols), the results at the accumulation point come from
the η = 0.007, . . . , 0.01 range, for n = 2 (magenta
symbols) from η = 0.009, . . . , 0.024, and for n = 3
from η = 0.013, . . . , 0.042. The Padé extrapolated results
were based upon η = 0.007, . . . , 0.014 and ηst = 0.003.
The strength of the higher-n calculations comes, therefore,
from the effective removal of the complex-absorber artefacts
while using larger values of η. At these larger η-values the
solution of the discretized complex Schrödinger problem
is closer to the continuum limit, since it involves more
localized wavefunctions which are more amenable to a finite
representation.

Figure 9(b) allows one to make an assessment of the
accuracy level reached by the calculations. Ideally, one would
like to demonstrate the convergence of the Riss–Meyer series
by showing higher n results. In practice, these results become
affected by differentiation errors along the complex trajectory
of Efb(η). A conservative estimate of the error would be the
difference between the n = 2 and n = 3 results. The Padé
extrapolated value falls close to the n = 3 value. Further tests

were performed by varying the value of μc. Within the range
1.5 < μc < 3 (in au), the changes in the accumulation point
value for n = 3 remained stable within the tolerance limit
mentioned above.

4. Conclusions

In this work, we extended previous complex scaling
calculations for the Stark resonance problem of the hydrogen
molecular ion, which were performed both in algebraic
[11, 12] and pseudospectral representations [13] to a higher
degree of accuracy by implementing several orders of the Riss–
Meyer correction scheme to complex eigenvalues obtained
from a pseudospectral calculation with a complex absorbing
potential. The surprising behaviour of the ionization rate of
the upper state (localized in the higher well) as a function
of the internuclear distance was illustrated by density plots
of the localized decaying state (whose long-range tails are
suppressed by the complex absorber). The computation in
prolate spheroidal coordinates is highly efficient. Our previous
attempts using cylindrical coordinates were not as successful
[29], even though the corresponding Hermitian problem was
solved accurately [30].

Some emphasis was placed on the degree of accuracy
that can be reached with this method. We intend to apply this
methodology to other molecules where the structure problem
needs to be addressed with density functional theory. The intent
of the work will be to provide other measures than just the
ground-state energy and ionization potential for a comparison
of different models for the energy functional.

A natural extension of this work would be the ac Stark
problem which can be accomplished using a Floquet approach.
If one assumes that the strong modulation of the upper-
state ionization rate with intermediate separation persists in
the case of infrared laser fields, then it follows that the
detailed analysis of experiments [31] will be affected by this
phenomenon.
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